
1

Semantic Validation of VHDL-AMS by an Abstract State Machine

Hisashi Sasaki1, Kazunori Mizushima2, Takeshi Sasaki2

1 Analog & Mixed Signal LSI Design Dept., Toshiba Corp.
2 Dept. of Computer Science, Tokyo Institute of Technology

Abstract
This report presents a semantic analysis for
VHDL-AMS, a mixed-signal extension of
VHDL, based on an abstract state machine.
Intended as a validation for the on-going
standardization project, it faithfully reflects
the view of simulation proposed. Our
experiences proved practical advantages of
formal approach in sharing concepts.

1. Introduction

As a language validation for VHDL-AMS [1],
there are many approaches according to its
focus. 1) Preparations of test examples [2] has
two purposes: model description that intent is
trivial for everyone is effective to check how
we combine language constructs (suggesting
practical usage) and to reconfirm the
semantics by getting approval from language
design team. 2) Test suit attentive to each
language construct will be useful not only to
check language semantics separately but also
to verify the coverage of tool implementation
and its correctness. 3) A development of a
parser [3] is important to check whether
proposed syntax rules is sound for
implementation because that language
proposal doesn't mention about a language
class, such as LR(k). 4) A satisfiability check
[4] how design objectives are resolved is
important but not so easy to do in some cases,
because that design objective is not explained
enough. We cannot easily know what is
expected as language constructs. 5) The
formal approach in this report is most
attractive in sharing operational concepts on
language proposal. Another formal approach

1 1000-1, Kasama-cho, Sakae-ku, Yokohama 247,

Japan. E-mail: sasaki @acad.eec.toshiba.co.jp.
2 2-12-1, Oookayama, Meguro-ku, Tokyo 152, Japan.

E-mail: {mizkaz, sasaki}@cs.titech.ac.jp

[5] is also undertaken independently. Note
that each of approach has its reasons to exit.
No one is fully superior to others.

We have selected an abstract state machine
semantics [6] for our foundation because it
has already fully described semantics for
VHDL'93 and reflected LRM (language
reference manual) faithfully. As far as we
know, other approaches [7] provided the
VHDL'87 semantics, and most of them treat a
small subset of it, thus they seems for us not
easy to apply for practical validation.

There are five factors to prevent
understanding: 1) the mixed-signal
simulation cycle itself is so complex, 2) the
design objective request not to define
excessively analog kernel in order to assure
free-hands for future advances in equation
solving. As a result, it causes a lack of
necessary and sufficient formulation, 3) the
writing style of LRM is based on a natural
language followed in the convention with
danger to permit ambiguity, 4) We cannot
identify immediately a type of extension: a
new concept introduced for new syntax, a new
concept overloaded to conventional syntax, a
combination of conventional mechanism as
not new concept. 5) readers (including us)
have bias and misunderstanding caused by
unfamiliarity of VHDL simulation cycle.

After establishing our formal model by
recognizing above factors, we intentionally
formulate a wrong semantics to reconfirm
why we could feel such wrong (but not so
strange) interpretations admissible.

The remainder is composed as follows:
Chapter 2 gives a brief introduction for an
abstract state machine. In chapter 3, we
extend [6] for analog and mixed-signal

2

extension. In chapter 4 , based on the
developed semantic model, we review our
validation experiences. This clarify how
misunderstandings are taken. Chapter 5
concludes this report.

2. Abstract State Machine

We set out here the basic definition shortly
and refer the readers to Gurevich’s work [8]
for a rigorous formalization . Abstract state
machine (ASM) can be understood as
“pseudo-code over abstract data”.

A sequential ASM is defined by a finite set of
transition rules of form
 if Cond then Updates

where Cond (condition or guard) is a first-
order expression, the truth of which triggers
simultaneous execution of all update
instructions in the finite set Updates.

We will give a simple example:
 if Condition
 then A := B
 B := A

This example defines the simultaneous
update of A and B. Since the assignments are
performed in parallel A becomes the value of
B and vice versa. These updates are
performed each time Condition evaluates to
true.

Besides simultaneous execution of multiple
update instruction guarded by a condition,
there is another form of parallelism. A
characteristic example which we will use later
has the form
 if S ∈ SIGNAL ∧ condition(S) then updates(S)

where condition(S) is a condition and
updates(S) is a set of update instructions in
which S does appear. The meaning of this rule
is to simultaneously execute updates(S) for
each signal S which satisfies condition(S).

We also introduce a sequential execution by a
delimiter “;” in order to simply express it in
analog kernel, which seems to be against the
original ASM idea. For example, A:=B ; B:=C
means that B:=C is executed after A:=B.

3. The Formal Model

In this section, we first redefine the basic
concept for defining the mixed-signal kernel
in order to update the original work [6].

Thereafter, we add the formal definition of
break statement and simultaneous
statements newly invented for mixed signal
extension. Finally, we give a definition of the
mixed-signal simulation kernel process by
adding analog kernel.

3.1 Basic Concept
3.1.1 Mixed Signal Simulation Cycle

Given the underlying digital time model, the
domain TIME is linearly ordered and contains
the distinguished element Tc for current time.

Assignment to signals are performed by the
user defined processes and may cause events
at specified point in time. Before reaching the
next simulation time Tn or before interruption

by a2d event, analog kernel process is
invoked. After suspending analog kernel
process, digital kernel resumes. Each user
defined process is executed until digital
kernel process suspends. A process becomes
suspended upon reaching a wait statement,
which then delays the process execution until
the timeout expires, or one of the associated
signals is updated, or a given expression
becomes true if one of the corresponding
signals is updated.

If all user defined process are suspended, the
kernel process executes: digital kernel:1)
determines the value for the next time point
Tn, analog kernel: 2) apply break set , 3) find

analog solution at Tc, 4) find analog solution

at each Ti until a detection of a2d event or

reach to next time Tn, digital kernel:5) sets

the new current simulation time Tc, if

required; 6) updates the current values of the
relevant signals, and 7) resume the
suspended process which are sensitive to the
signal changes or timeouts.

3.1.2 Quantities, Equations, Basic set,
 Augmentation set

Now, we prepare definitions about analog
solver and mixed-signal simulation cycle.

 Let QUANTITY be the set of quantities,
classified by its kinds:
QUANTITY ≡ QSOURCE ∪ QFREE ∪ QTERMINAL
∪ QDOT ∪ QINTEG ∪ QDELAYED
∪ QZOH ∪ QLTF ∪ QZTF ∪ QRAMP ∪ QSLEW

3

where each set has its name after
declaration: for example, QSOURCE is a set of
quantity declared as source quantity.

Let EQUATION be the set of maximal
execution unit textually described, that is the
set union of explicit equations (by
simultaneous statements) and implicit
equations (by block statements). This
concepts corresponds to the user-defined
Process. It may contain the nested form by
simultaneous if/case statements.

For simple speaking, let equation eq be given
in form of simple simultaneous statement,
and its quantities be of scalar type. Then a
characteristic expression char_expr(eq) of eq is
the difference between left-hand-side and
right-hand-side:
 char_expr(eq) = lhs - rls

where
 lhs: left-hand-side of equation eq
 rhs: right-hand-side of equation eq

A basic set is the set of instantiated
characteristic expressions of all equations
which is the base for analyses, and to be
modified further into an augmentation set for
a specific analysis.

 Basic set = { char_expr(eq) | eq ∈ EQUATION and
 char_expr(eq) is instantiation by eq }

Example: Note that eq (∈EQUATION) is a
single execution unit of description, it is not a
set of characteristic expressions.

 If vinput > dvmax use -- (1)
 gain_current == imax; -- (2)
 elsif vinput < -dvmax use -- (3)
 gain_current == -imax; -- (4)
 else -- (5)
 gain_current == gmnom * vinput; -- (6)
 end use; -- (7)

The statements (2), (4), and (6) dynamically
determine a single characteristic expression
according to the value of if-conditional in (1)
and (3). That is, EQUATION is determined at
compile time (elaboration), but a characteristic
expression such as basic set is determined at
run time (simulation).

An augmentation set is the set of scalar
characteristic expressions. It is determined by
QSOURCE, QDOT, QINTEG and QDELAYED(T)
because other predefined QZOH, QLTF, QZTF,
QRAMP, QSLEW are derived from the former
four basic kinds of quantity. Let
scalar_subelem(q) be a set of scalar quantity
involved in the composite quantity q. Now we
choose to define time domain augmentation
set as a representative example (others are
defined by the same way):

time domain augmentation set:
{ sq | sq ∈ scalar_subelem(q) ∧ q ∈QSOURCE } ∪
{ sq ’DOT - time_derivative() |
 sq ∈ scalar_subelem(q) ∧ q ∈QDOT } ∪

. H U Q H O 3 U R F H V V

G LJ L W D O D Q D OR J

) LJ � � � P L[H G �V LJ Q D O V LP X OD W LR Q F \ F OH

.. �� �� '' HH WWHH UUPP LLQQ HH 11 HH [[WW 77 LLPP HH

. � D � 8 S G D WH ' U LY LQ J 9 D OX H V

. � E � 8 S G D WH (I IH F W LY H 9 D OX H V

. � F � 8 S G D WH & X U U H Q W 9 D OX H V

. � � 5 H V X P H 3 U R F H V V H V

([H F X W H 1 R Q S R V W S R Q H G

� ([H F X W H 3 R V W S R Q H G

3 U R F H V V H V

3 � � V K D U H G � O R F D O

Y D U LD E OH D V V L J Q P H Q W

3 � � W U D Q V S R U W G H O D \

3 � � L Q H U W L D O G H OD \

3 � � Z D L W IR U

3 � � Z D L W R Q

3 � � Z D L W X Q W L O

3 � � Z D L W IR U H Y H U

33 �� �� EE UU HH DD NN

.. $$ �� � $$ SS SS OO\\ %% UU HH DD NN 66 HH WW

.. $$ �� �)) LLQQ GG VV RR OOXX WW LLRR QQ DD WW 77 FF

.. $$ �� �)) LLQQ G V RG V R OOXX W LW LRR QQ DD WW HH DD FF KK 77 LL

�� LLQQ FF OOX GX G LLQQ JJ 77 QQ �� ��

X QX Q WW LL OO D �D � GG RR UU QQ HH [[WW 77 QQ

([H F X W H & (�H Y D OX D W R U

W R F R P S X W H

F K D U D F W H U LV W L F

H [S U H V V LR Q V

66 �� �� VV LLPP SS OOHH VV LLPP XX OO WWDD QQ H RH R XX VV

66 �� �� VV LLPP XX OOWWDD QQ H RH R XX VV LL II

66 �� �� VV LLPP XX OOWWDD QQ H RH R XX V FV F DD VV HH

66 �� �� VV LLPP XX OOWWDD QQ H RH R XX VV QQ XX OO OO

66 �� �� // ,,00 ,,77 BB11 (;(; 77 BB 6 76 7 ((33

4

{ sq ’INTEG - time_integral() |
 sq ∈ scalar_subelem(q) ∧ q ∈QINTEG } ∪
{ sq ‘DELAYED(T) - delay_value_sq |
 sq ∈scalar_subelem(q) ∧ q ∈QDELAYED(T) }

where the time_derivative() denotes a returned
value by an implemented numerical analysis
routine as a primitive function. The
time_integral() is same as time_derivative().
The delay_value_sq is defined as
follows:

 sq when T = 0.0

delay_value_sq = sq0 when T ≤ Tc

 sq(Tc - T) when Tc < T

where sq0 is the value of sq at the time when
the time domain augmentation set was
determined. sq(Tc - T) is the value of sq at

time Tc - T.

An application of an augmentation set to basic
set is defined as a set union:

 apply (basic_set, augmentation_set) ≡
 basic_set ∪ augmentation_set

An application of break set to an augmentation
set is defined by both a type of augmentation
(discontinuity / quiescent) and a form of
selector quantity (Q / Q’Integ):

Apply-break-set(break_set, augmentation set) ≡
 if discontinuity augmentation set is active
 and selector quantity is in form of Q
 then
 discontinuity augmentation set :=
 discontinuity augmentation set
 – { sq |sq ∈ scalar_subelem(selector quantity) }
 ∪ { sq - sq_value |
 (sq, sq_value)∈ scalar_subelem(q, q_value),
 (q, q_value) ∈break_set, q is the selector quantity }

 ...

where other omitted cases are defined by the
same way.

3.2 User Defined Processes
3.2.1 Processing Statements

The control flow of each iterative process
(user-defined process) is determined by the
environment which provides the dynamic
changes of values for the program_counter.
The program_counter of each process is
initialized by pointing to the first statement of

that process. After having processed the last
statement it returns to the first statement
again.

In order to express the execution of statement
by Process, we use the following abbreviation:
 Process does < statement >

3.2.2 Break Statements

A break statement sets the flag true in order
that the user-defined process announces the
discontinuity and its treatment (as break set,
a union of break-set(Process)) to the analog
kernel. As the flag break-indicated(Process) is
attached to each process, user-defined
processes are executed concurrently. It only
prepares the data for analog kernel to treat
discontinuity.

P8: SEQUENTIAL BREAK STATEMENT
if Process does < break break_list >
then if break_list is empty
 then announce-discontinuity(Process)
 else announce-discontinuity(Process)
 register-break-set(break_list)
announce-discontinuity(Process) ≡
 break-indicated(Process) := true
register-break-set(break_list) ≡
if break-element ∈ break_list
then add-break-set(break-set(Process),
 quantity-name, value(expression))

The procedure add-break-set add the pair of
the name of quantity and its associated value
(value is computed in the execution of this
break statement) to break-set(Process).

A break with “when <condition>” option and
a concurrent break statement are interpreted
based on this rule.

3.3 CE-evaluator
3.3.1 Processing Simultaneous Statements

CE-evaluator (characteristic expression
evaluator) is defined for each eq ∈
EQUATION. At first, we give an outline for the
equation solving by SolveEquationsByOracle.
Its argument set_of_char_expr is the
augmented set to be solved finally, that is the
basic set augmented by various set such as
discontinuity set , time domain augmentation
set etc. SolveEquationsByOracle is called
recursively until all of characteristic
expression are within tolerance, and its body
is sequentially executed.

5

SolveEquationsByOracle(set_of_char_expr) ≡
 guess Q’s;
 calculate CE;
 check convergence;
 if found-solution = false
 then SolveEquationsByOracle(set_of_char_expr);

Guess Q’s ≡
 if Q ∈QUANTITY
 then guess Q by an oracle;

The design objective DO37 requests that the
language doesn’t assume any specific
algorithm in advance. So we adopt a keyword
an oracle to explicitly express it.

Calculate CE ≡
if eq ∈ EQUATION
then CE-Evaluator does < simultaneous _statement(eq) >

where arguments of CE-Evaluator,
simultaneous statements, are simultaneously
evaluated with all eq ∈ EQUATION.

Check Convergence ≡
 if (∀ expr ∈ set_of_char_expr

 [| value(expr) | ≤ value(tolerance(expr))]
 then found-solution := true ;

tolerance(expr) is the tolerance associated
with a characteristic expression expr. A
found-solution flag is always reset before
invoking SolveEquationsByOracle.

3.3.2 Simultaneous Statements

S1: SIMPLE SIMULTANEOUS STATEMENT
if CE-evaluator does < expr1 == expr2 >
then if scalar_expr ∈ scalar_subelem(char_expr)
 value(scalar_expr) :=
 value(expr1(char_expr)) - value(expr2(char_expr))

where char_expr is the characteristic
expression for the statement expr1 == expr2.
scalar_subelem(char_expr) gives the set of
scalar characteristic expressions scalar_expr.
expr1(char_expr) is a corresponding scalar
sub-expressions of scalar_expr for expr1 .
expr2(char_expr) is a corresponding scalar
sub-expressions of scalar_expr for expr2 .
Thus, equations using composite type of
quantity is converted into scalar one.

3.3.3 LIMIT_NEXT_STEP

S5: LIMIT_NEXT_STEP
if CE-evaluator does < LIMIT_NEXT_STEP(Expr) >
then bound-Ti(EQ) := value(Expr)

The value(Expr) gives the argument evaluation
of LIMIT_NEXT_STEP at Ti in [Tc. Tn]. Its value

will be referred in analog kernel.

3.4 The Kernel Process

Though VHDL-AMS treats various kind of
analysis, we will focus only on the time
domain analysis here, because it is the core
behavior of mixed simulation kernel.

Mixed-signal kernel actions are defined by the
rules KA1, KA2 and K1-K3. After
determination of next time point by K1,
analog kernel KA1 and KA2 will start. The
rule KA1 treats the break set and find the
solution for the (digital) current time Tc. The

rule KA2 find the solutions for each (analog)
current time Ti including the (digital) next

time Tn. The rule K2 and K3 are to be

modified (not mentioned here, see [6]).

3.4.1 Determine Next Time Point

Analog kernel will be invoked only when cycle
is time_cycle and phase is
update_driving_value.

K1: DETERMINE NEXT TIME POINT
if AllProcessesSuspended
then /* step X corresponds to the step of simulation cycle in the draft 12.6.4 */
 if Tn = Tc
 then cycle := delta_cycle
 phase := update_driving_values ... (for step c)
 elsif cycle = delta_cycle
 then cycle := postponed_cycle
 phase := execute_postponed ... (for step j)
 else cycle := time_cycle
 phase := update_driving_values ... (for steps c, d, e)
 AdvanceTime; ... (step b) Tc is updated for next sim cycle

 apply_break_set; by analog kernel KA1
 find_solution_for_Tc; ... by analog kernel KA1

 find_solution_for_each_Ti ; ... by analog kernel KA2

Tn :=

 if DOMAIN=TIME_DOMAIN ... (step i)
 then universal_to_physical_time(0.0)
 else min { time-high, mindriver, mintimeout }

AdvanceTime ≡
if Tn ≤ TIME’HIGH then Tc := Tn else phase := undef

time-high = TIME’HIGH,
mindriver = min { time(t) |

 ∃ d ∈DRIVER: t = ti, active(d) = I }
 where

 ttrue = first(d) and tfalse = second(d)
mintimeout = min { timeout(p) |

 p ∈PROCESS ∧ timeout(p) ≠ undef ∧ timeout(p) ≥ Tc }

UpdateDrivers(Time) ≡

6

if d ∈DRIVER ∧ tail(d)=<> ∧ timeout(second(d)) = Time
then d := tail(d)
 active(d) := true

3.4.2 Analog Kernel

At first, time domain augmentation set is
determined, then applied to basic set. To
process break, merge-break-set and break-
indicated, apply_break_set are used. After
fixing set_of_char_expr_Tc, solution is found
by solveEuationsByOracle:

KA1: APPLY BREAK SET & FIND SOULTION FOR Tc
determine time_domain_augmentation_set;
set_of_char_expr := apply(basic_set, time_domain_augmentation_set);
merge-break-sets;
if break-indicated then
 set_of_char_expr :=
 apply(set_of_char_expr, discontinuity_augmentation_set) ;
end if;
set_of_char_expr_Tc := apply_break_set (set_of_char_expr, break_set);

found-solution := false ; /* set the flag false for SolveEquationsByOracle */
SolveEquationsByOracle(set_of_char_expr_Tc); --- for time Tc
clear-break-indication;

solve-For-Each-analog-cycle; --- solve for time Ti in [Tc , Tn]

break-indicated ≡
 (∃ P ∈PROCESS [break-indicated(P)=true])
If there exists a process P such that break-
Indicated(P) = true, then break-indication
break-indicated is announced to kernel.

merge-break-sets ≡
 if P ∈ PROCESS
 then if (q, q-value) ∈ break-set(P)
 then add-break-set(break-set, (q, q-value))

merge-break-sets gathers the (q, q-val) pairs
as break set: add-break-set is the procedure
to add its pair to break set.

clear-break-indication ≡
 break-set := φ
 break-Indicated := false
 if P ∈PROCESS
 then break-Indicated(P) := false

 break-set(P) := φ

clear-break-indication immediately reset the
effects of break statement.

By the following behavior KA2, it is easy to see
what is the difference between Q’Above(E) and
an evaluation of the expression Q-E > 0 which
causes no suspension of analog solver.

KA2: FIND SOLUTION FOR EACH Ti

solve-for-each-analog-cycle ≡
 guess next Ti ; /* T i in the interval [T c , T n] , 1 ≤ i */

 if Ti ≥ Tn --- 1 ≤ i

 then
 /* no a2d event occurred in this interval [Tc, Tn] */

 /* and reached the time next digital event to be occurred */
 Ti := Tn ;

 /* let last Ti be Tn in order to include Tn ; Ti must includes Tn’ */

 determine time_domain_aug_set;
 set_of_char_expr := apply(basic_set, time_domain_aug_set);
 found-solution := false ;
 SolveEquationsByOracle(set_of_char_expr);

 if a2dEventQAbove ≠ φ /* detect a2d event for Tn*/

 then setDriverQAbove;
 /* analog solver suspended here ... */
 else
 /* set the flag false for SolveEquationsByOracle */
 determine time_domain_aug_set;
 set_of_char_expr := apply(basic_set, time_domain_aug_set);
 found-solution := false ;
 SolveEquationsByOracle(set_of_char_expr);

 if a2dEventQAbove ≠ φ /* detect a2d event for Ti */

 then setDriverQAbove;
 /* analog solver suspended here ... */
 else
 solve-for-each-analog-cycle;
 end if;
 end if;

guess next Ti ≡
if. ∃ eq ∈EQUATION [bound-Ti (eq) is defined]

then guess next Ti by using bound-Ti(eq)

 /* such that ∀ eq. [|Ti - Ti-1 | ≤ bound-Ti(eq)] */

else guess next Ti without limit;

The value of bound-Ti(EQ) gives maximum

limit of time step. By using Guess next Ti , it

does not specify any algorithmic details.

setDriverQAbove ≡
if Q’Above(E) ∈ a2dEventQAbove
then

Tn := universal_to_physical_time(Ti)

 driver(Process,Q’Above(E)):=<notvalue(Q’Above(E)), Tn>

active(driver(Process, Q’Above(E))) := true

a2dEventQAbove ≡ {Q’Above(E) ∈QAboveSignal|
 contradictory(Q’Above(E)) }
contradictory(Q’Above(E)) ≡
 (value(Q - E) > 0.0 ∧ value(Q’Above(E)) = false)
 ∨ (value(Q - E) < 0.0 ∧ value(Q’Above(E)) = true)

If there exits a contradictory implicit
Q’Above(E), the driver of implicit Q’Above(E)
signal is assigned a waveform <not
(value(Q’Above(E))),Tn> by setDriverQAbove.

4. Experiences in Language Validation

Here we will show our experiences how we
had made wrong interpretations. The reasons
we dare to expose our failures and struggles is
to illustrate examples such that the formal
methods not only gives the theoretical
foundations but it is practically useful.

7

4.1 Difficulties in the Guideline of LRM
Design

There are two concepts of sequential
statement relating to user-defined processes
and simultaneous procedural statements.
But proposal provide single non-terminal
symbol sequential_statement. In fact, the
draft defines BNF as:
Simultaneous_procedural_statement ::=
 [procedural_label :] [pure | impure]

 procedural [is]
 procedural_declarative_part
 begin
 procedural_statement_part
 end procedural [procedural_label];

 procedural_statement_part ::=
 { sequential_statement }

 Sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assigment_statement
 ...
 | null_statement
 | break_statement

But also LRM draft says:
It is also an error if a wait statement or a signal
assignment statement occurs in the procedural statement
part.

Note that break_statement is not mentioned.

4.2 How we made misunderstandings
4.2.1 Break Statement

Following was the typical misunderstanding
caused by the above decision on language
design.
EE HHJJ LLQQ

� � X V H E UH D N WR V H W WK H S K D V H LQ L W LD O F R Q G LW LR Q

EE UUHHD ND N 3 K D VH ! � �� �

� � D Q R WK H U E UH D N V WD WHP HQ W N H HS V WK H S K D VH Z LWK LQ � �� � S L

EE UUHHD ND N 3 K D VH ! 3 K D V H PP RRGG 7 Z R3 L ZZ KK HHQQ 3 K D VH ! 7 Z R3 L �

� � S K D V H H T X D W LR Q

3 K D VH
GG RRWW P D [�� �� 0 +] � IF� �9 LQ �9 F � G I � �

� � R X WS X W Y R O W D J H VRX U FH H T X D W LR Q

9 RX W � �� �� �� � V LQ �3 K D VH � � �

HHQQ G DG D U FU FKK LLWWHH F WF WXX UUHH 3 K D VH ,Q WH J UD WR U �

The underlined statement should be corrected
by “on Phase’ Above(TwoPi)”.

4.2.2 Expiration of Break Effects

Next we will formulate the wrong
interpretation excluded by LDC to give clue to

nobreak/unbreak misunderstanding. The
wrong break statement could be defined
related to CE-evaluator:
S6: (SIMULTANEOUS) BREAK STATEMENT
if CE-evaluator does < break break_list >
then
 if break_list is empty
 then announce-discontinuity2(eq, Break);
 else announce-discontinuity2(eq, Break)
 register-break-set2(break_list);

announce-discontinuity2(eq) ≡
 Break-indicated2(eq) := true;
 /* the variable Break-indicated2(eq) will
 be referred for each Ti */

register-break-set2(break_list) ≡
 if break-element ∈ break_list
 then
 /* assume break-element is in form of the pair
 < quantity-name , expression > */
 add-break-set2(Break-Set2(eq),
 quantity-name, value(expression))
break-indicated2 ≡
 (∃ eq ∈EQUATION [break-Indicated2(eq)=true])

We can define nobreak statement:
S7: (SIMULTANEOUS) NO BREAK STATEMENT
if CE-evaluator does < nobreak >
then clear-break-indication2

clear-break-indication2 ≡
 break-set2 := φ
 break-Indicated2 := false
 if eq ∈EQUATION
 then break-Indicated2(eq) := false

 break-set2(eq) := φ

By this definition, we give some possible event
models which show when break indication is
set and reset. Note that there are two kind of
break-indication in our models: break-
indication relating to process and break-
indication2 relating to equation. Fig. 2 shows
the various candidates for effective lifetime for
break. In (a) and (c), as there is some duration
of time point which break effect is ON, it is
natural to want to cancel the effects of break,
because that we afraid redundant break
operations will make simulation speed slow.
In (b) and (d), as lifetime is instantaneous, no
such an anxiety.

Further, even worse, we could have other
twisted interpretation as (e) and (f): All above
assumed that there are two independent
clear-break-indication, but (e) and (f) share
the single clear-break-indication for two
different kinds of break.

8

�D�

7F 7� 7� 7L 7Q

�E�

�F�

�G�

�H�

�I�

EUHDN�LQGLFDWHG �VHW� FOHDU�EUHDN�LQGLFDWHG �UHVHW�

EUHDN�LQGLFDWHG��VHW� FOHDU�EUHDN�LQGLFDWHG� �UHVHW�

EUHDN HIIHFWV 21 EUHDN HIIHFWV 2))

)LJ� � � HIIHFWLYH OLIHWLPHV RI EUHDN

The point here is the fact that we can ask LDC
what is their intent based on the accurate
model.

4.2.3 Discussion on the Implicit Break
Signal

Next is more philosophical discussion. You
may feel no difference on actual behavior by
the both formulation. But it is so critical in
concept that it will affect the difficulty /
complexity in understanding.

For the execution of a break statement the condition, if present, is
first evaluated. A break is indicated if the value of the condition is
TRUE or if there is no condition. If a break is indicated, the driver
of the implicit BREAK signal is assigned the waveform TRUE after
0 sec and then each break element is evaluated in the order in
which the elements appear.

A faithful model to above LRM is:

 announce-discontinuity(Process, Break) ≡
 driver(Process, Break) := <true, Tc>;

 active(Process, Break) := true;

In our understanding, flag set is better to
show straight meaning: A Flag is expressed as
the predicate break-indicated(Process)
explained by P8 in the previous chapter.

By stating that implicit break signal is not
signal (which has a specific meaning in view
of digital kernel), we can avoid the
undesirable confusion that break effects
would continue over the several simulation

cycles. Without ASM, we cannot make
delicate discussions to consider the lifetime of
break effects.

5. Conclusion

We had provided the formal foundation on
VHDL-AMS, and verified its practical
usefulness. We wish that such an approach
will be popular in our standardization activity
in future and the writing style of LRM will be
improved.

Acknowledgment

We would like to thank members of analog-task group
EIAJ (Toshiyuki Saito, Nokuya Emoto, Jun-ichiro
Toyozumi, Goichi Yokomizo, Seitaro Shinbara, Prof.
Hidetoshi Onodera), and LDC and VAL team of 1076.1
WG, for discussing on validation works. Especially, Ernst
Christen and Kenneth Bakalar for helpful e-mail advises,
and Prof. Alain Vachoux for his help to analog-task
group. We would also like to thank Prof. Naoki Yonezaki,
Prof. Takuya Katayama and VHDL-project EIAJ (Satoshi
Kojima, Prof. Masaharu Imai, Kenji Yoshida) for their
miscellaneous supports, and Prof. Egon Boeger, Prof.
Wolfgang Muller for their e-mail encouragement.

References

[1] IEEE/DASC 1076.1 Working Group, “1076.1
Working Document Definition of Analog
Extensions to IEEE Standard VHDL”, June 1996,
May 1, and July 1 1997.

[2] Tom Kazmierski, Mark Zwolinski, Southampton
VHDL-AMS validation Suits, accessible by http:
//www. syssim. ecs. soton. ac.uk/index.html

[3] Vasu Shanmugasundaram, Hal Carter, the
analyzer for VHDL-AMS, accessible by
http://www.ececs.uc.edu/~vasu

[4] Hisashi Sasaki, et. al., 1076.1 validation by EIAJ
team, accessible by http: //www. tamaru.
kuee.kyoto-u. ac.jp /1076.1 /index. htm.

[5] M. Madrid, P. T. Breuer, C. D. Kloos, “A semantic
model for VHDL-AMS”, CHARME’97, October
1997.

[6] Egon Boerger et.al., “A Formal Definition of an
Abstract VHDL’93 Simulator by EA-Machines,” in
[7]

[7] Carlos D. Kloos, Peter, T. Breuer (editors), Formal
Semantics for VHDL, 1995, Kluwer Academic
Publishers.

[8] Yuri Gurevich, “Evolving Algebras 1993: Lipari
Guide”, in Specification and Validation Methods,
Ed. E. Boerger, 1994, Oxford University Press.

