
Dynamic Time Step Control Algorithm Enhancements

James C. (Jim) Bach
Hardware Analysis & Simulation Group

Delphi Delco Electronics Systems, Kokomo, IN, 46904-9005 USA
Tel: (765)-451-0455 E-mail: James.C.Bach@DelphiAuto.com

Abstract
Analog simulators typically use a dynamic, adaptive

time step control strategy in order to minimize the
calculations performed during inactive portions of a
system’s operation, while maintaining adequate time
resolution during active portions. Without this dynamic
control of time steps, one could generate too few time steps
to accurately render fast-edged events, or spend a large
percentage of CPU time calculating redundant values.

These Dynamic Time Step (DTS) algorithms are often
overzealous in their relaxation of time steps, and thus can
render waveforms inadequately or inaccurately. Thus, the
user can make poor decisions because of the incorrectly
presented waveforms. Some simulators provide user-
adjustable control parameters for the DTS. The Saber
simulator, with four primary DTS control parameters,
allows users to “dial in” just about any results they want.
Which one is correct is often debatable.

The techniques presented here allow the user to
override the built-in DTS in order to obtain trustworthy
results.

Introduction

The Saber simulator, like most analog time-
domain simulators, makes use of an algorithm
commonly referred to as Dynamic Time Steps (DTS)
to control the time intervals at which the governing
equations are solved. The purpose of this algorithm is
to reduce the number of calculations performed during
the inactive portions of the simulation, while at the
same time maintaining the fidelity of the results during
the active portions. Without DTS, that is, if one were
to use Fixed Time Steps (FTS), the simulator could
produce either:

♦ Results that are too coarse to accurately render
important, transient events (edges, glitches, etc.).
Fast-edged events would have jagged “bumps”.

♦ Results that contain many redundant data points
generated at the expense of CPU time. The user
would wait a long time for the results, possibly
filling the hard drive in the process.

For the most part, Saber’s built-in DTS, using the
default settings for the four primary DTS control
parameters, produces acceptable results, particularly
with simple circuits and systems. However, the built-
in algorithm often does not provide an adequate
number of time steps to accurately render waveforms.
The user can adjust these control parameters, and
often obtain better-looking results; however, this
requires a lot of experimentation by even an
experienced user. Often this “calibrating the
simulator” (as Saber’s creators refer to this task) is
non-productive, as adjusting these parameters can
cause convergence problems, preventing the
simulation from completing. Novice and infrequent
users often don’t even know that these control
parameters exist, much less how to adjust them
properly.

The techniques presented here allow the user to
override the built-in DTS in order to provide more
believable and trustworthy results. These techniques
can be “built-in” to device or sub-system models, so
that the end users of the models are able to use them
without added thought or distress. Adding in some of
these alternative DTS algorithms can make the models
a “no brainer” to use. Although these techniques were
developed to overcome perceived deficiencies with the
Saber simulator, it is hoped that they can be beneficial
with other analog HDL-based simulators.

Example of the Problem

Given the simplistic (but real-world) circuit
below:

Figure 1 – Solenoid & Driver

The Natural Resonance Frequency (NRF) is:

The Decay (or Damping) Time-Constant is:

The time to decay to ½ of peak amplitude is:

The Apparent Resonance Frequency (ARF, i.e.
what you would measure with an oscilloscope) is:

Key points that a designer would be interested in
observing/learning from the simulation are:

♦ Output voltage rise and fall times

♦ Load current rise and fall times

♦ Percentage of overshoot (if any)

♦ Amplitude/frequency of ringing (or oscillation)

What kind of results do we expect from this kind
of circuit? This is a “textbook example” of an under-
damped system, which exhibits severe ringing just
after the end of the “Avalanche” interval. PSPICE
easily gives us the classical result shown in Figure 2.

Figure 2 – Driver Output Voltage (PSPICE)

However, with Saber’s user-adjustable DTS, we
can observe any number of different results.
Unfortunately, the result we get with the default
settings is nowhere close to “correct”. Figure 3
illustrates only a few of the possible “answers” the
engineer might observe.

Figure 3 – Driver Output Voltage (Saber)

The bottom waveform was the result of the DTS
control parameters being set to their defaults. Notice
that there is hardly any ringing/oscillation present.
The next two waveforms illustrate what happens when
the “Truncation Type” and “Truncation Error” control
parameters were changed individually; some ringing is
present, but nowhere near “correct”. The fourth
waveform from the bottom results from changing the
previous two parameters together whereas the fifth
waveform also changes the “Integration Method” from
“Gear” to “Trapezoid”. This setting provides the most
correct result. The top-most waveform resets the
“Truncation Type” and “Truncation Error” controls
back to their default settings, but leaves the
“Integration Method” set to “Trapezoid”.

s
R
L

Coil

Coil
Decay µτ 2002 ==

sT DecayAmplitude
µτ 6.138*69315.0

2
1 ==

2

Decay

2
sOsc 2

1
FF

−=

τπ *Re

22 8.7952.153 HzkHz −≈

kHz
CCL

F
ZenerRFICoil

s 2.153
)(2

1
Re ≈

+
=

π

FET
or

Relay

kHz197.153≈

When you consider the four major and two minor
control parameters that preside over Saber’s DTS
algorithms, you soon realize that there are an
overwhelming number of combinations that an
engineer might use to achieve useful results.

Table 1 – Saber DTS Control Settings

Parameter
of

Settings Settings
Truncation
Error 3

Default ± 1 decade
(0.05, 0.005, 0.0005)

Truncation
Type 3

Method to use
(Dynamic, Static, All)

Truncation
Normalization 6

Formula to use
(1, 2, 3, 4, 5, 6)

Integration
Method 2

Method to use
(Gear, Trapezoid)

Number of
Same Points 3

Default + 2 decades
(1, 10, 100)

Sample Point
Density 3

Default + 2 decades
(1, 10, 100)

972
As you can see from Table 1, “Calibrating the

simulator” can be a very daunting task. It would be
nice if there was an easier way to get more time steps
when you need them.

The “Limit Step-Out” Template

The first enhancement to the DTS we can make is
to override Saber’s desire to overzealously relax the
time steps whenever it thinks the waveforms are
simple and smooth. Saber automatically relaxes the
time steps by 10X whenever it decides that solving the
system of equations was “easy”. For instance, if the
current time step was 1µs away from the last time step,
then the next time step will be 10µs away and then
100µs, etc. A simple, rounded voltage rise, as
typically occurs with RC-filtered pulses, gets coarser
and coarser as the voltage rises. On the other hand,
PSPICE only relaxes the time steps by a factor of 2X.

Of course, both simulators have this “hard coded”,
and the user ordinarily cannot adjust it. However,
Saber’s MAST modeling language allows a model
(template) to limit the spacing to the next time step.
The step_size system variable can be set in the
values section of the template to dictate that the
next time step can not be any farther out in time than
what the template demands. Thus, we can make a very
simple symbol/template pair to control the rate at
which time steps are relaxed.

The gist of the code is:
template Limit_StepOut = \ # Model Name
 StepOut_Factor # Parameters
Number StepOut_Factor = 2
{
when(time_step_done) {
 Time_Step = time – Last_Time
 Last_Time = time
 Desired_Step_Size =
 Time_Step * StepOut_Factor
 }

values {
 step_size = Desired_Step_Size
 }
}

Simply explained:

♦ At the end of each time step (event captured by
the when(time_step_done) construct), the
template calculates the size of the current step
(Time_Step) by subtracting the current time
(time) from the time it was when the last time step
was finished (Last_Time).

♦ The current time step size is multiplied by the
user-specified relaxation rate (StepOut_Factor),
which defaults to 2X (to mimic PSPICE), in order
to determine how large the next time step can be
(Desired_Step_Size).

♦ The DTS is constrained (via step_size system
variable) as to how large it can make the next
time step (Desired_Step_Size).

The DTS gathers up all of the step_size
constraints given to it by the various templates in the
system, and uses the smallest one to constrain the
distance to the next time step.

The benefits of this technique are astounding.
Figure 4 shows the rising current in the load
inductance of the circuit in Figure 1.

Figure 4 – Limit_StepOut Operation

We all know that the current is supposed to rise
smoothly to something just under 1A (10V into
10Ohm coil + switch resistance). However, letting
Saber use its default DTS settings shows us a very
coarse edge followed by 200µA of overshoot. Yes,
Saber kept us down to 142 time steps, but gave us a
rough (and wrong) answer. Adding the
Limit_StepOut block, with StepOut_Factor
set to 1.1 gave a slightly smoother curve and reduced
the overshoot to 20µA (10X smaller). The number of
time steps only increased to 445. Changing the
StepOut_Factor to 1.05 yielded a much smoother
curve (with no overshoot) with 759 time steps, which
rivaled that of the 4201 time step result obtained by
adjusting three of Saber’s DTS control parameters.
Thus, we were able to obtain in about 1.76 seconds a
waveform with the same fidelity and accuracy as what
normally would have taken Saber about 9.5 seconds.
Not quite as fast as the wrong answer, using the
default settings, that we obtained in 0.35 seconds, but
well worth the wait. Keep in mind that without the
Limit_StepOut template the accurate answer
would be forthcoming IFF we happened to find the 3
or 4 “silver bullets” (parameter settings) to give us the
right answer. There was a lot of experimentation
needed to get that answer in the first place!

The “Target_Crossing” Template

Another technique to force the DTS to generate
time steps often enough is to tell the simulator at
which values of a given signal a time step must occur.
For instance, it is common for analog circuit designers
to talk about rise/fall times in terms of 10%/90%
points. Similarly, it is common for digital circuit
designers to talk about delay times in terms of 50%
points, or even 30%/70% (CMOS logic level) points.
It would certainly be handy to have time steps that
occur at precisely those levels, so that we can avoid
inaccuracies in the linear interpolation between
whatever time steps happened to be near those levels.

The Saber MAST modeling language provides a
construct to generate an interrupt (event) when a
signal has crossed through a specified level. MAST
also provides a construct that allows the event-driven
simulator to force the time-domain simulator to
backtrack and recalculate values at any desired point
in time. Because of these two constructs, it is easy to
create a template (model) which watches the voltage
of a node or the voltage between two nodes and force
analog time steps to occur at user-specified levels.

The gist of the code is:
template Target_Crossing \ # Model Name
 P \
 M = # Pins
 Targets # Parameters
electrical P, M
number Targets[10] = [0.50, # 10% of Vcc
 1.50, # 30%
 2.50, # 50%
 3.50, # 70%
 4.50, # 90%
 0.00, # 0%
 5.00, # 100%
 -0.50, # Gnd Clamp
 5.50, # Vcc Clamp
 inf] # Unused
{
when(threshold(v(P,M),Targets[1])) {
 schedule_next_time(time)
 }
.
.
.
when(threshold(v(P,M),Targets[10])) {
 schedule_next_time(time)
 }
}

Simply explained:

♦ The user specifies up to ten voltage levels at
which time steps should occur (Targets).

♦ The voltage between the inputs (P and M) are
monitored (using when(threshold()) construct).

♦ When any of the ten thresholds are crossed, an
analog time step is forced (using the
schedule_next_time construct) at the point in
time (time) which the built-in linear interpolation
routine estimated the threshold was crossed.

♦ The analog simulator throws away the data for
the just-calculated time step and goes back to the
specified point in time.

This can be illustrated pictorially:

Figure 5 – Target_Crossing Explanation

The simulator is running along solving the system
of equations at time steps 1 and 2, both of which are

Target[2]

6

1

Target[1]

2

4

3

Time1

7

8

Time2

9=Time-Step Thrown Away

=Time-Step Kept (Used)

5

below the user-specified threshold (Target[1]).
The conditions of the system change such that the
signal level starts to rise, and a time step is calculated
at position 3. However, this new level is above the
threshold, triggering the when(threshold())
construct, passing down the estimated time of that
crossing (time). The schedule_next_time()
construct is used to force the analog simulator to go
back in time, and generate a time step at position 4.
Once completed, the DTS resumes its normal
operation, and commands the next time step to occur
at position 5. The situation repeats itself when the
time step at position 6 occurs, which is above the
second threshold. Backtracking is performed, and the
time step at position 7 is calculated.

Returning to our test circuit from Figure 1,
applying targets of –0.5, 0.0, 0.5, 5.0, 7.5, 10.0, 12.5,
15.0, 19.5, 20.0:

Figure 6 – Target_Crossing Operation

As you can see, time steps occurred precisely at
the voltages that were commanded. With Saber’s DTS
control parameters set to their default values, Saber
didn’t attempt many more time steps than that which
were required to fulfill the needs of the
Target_Crossing template. Without this model,
the time steps at the beginning and ending of the
avalanche interval were very far apart and produced a
very crude representation of the time response of the
circuit. In fact, not shown here are the targets that
were specified in order to smooth out the curve at the
peak of the avalanche interval at approximately 100V.
Without this block, the DTS generates so few time
steps that the voltage actually overshot the 100V
clamp level (for two time steps). Using this block,
with targets of 90, 95, 96, 97, 98, 99, 99.5, 100, and
100.5 volts, forced the DTS to slow down as the signal

approached the known target, thus avoiding the
fictitious overshoot condition.

Output Driver (Source) Control

A technique similar to “Target_Crossing” can be
hard coded into a model of an output driver, or signal
source, in order to control the time steps during its
state changes. The standard Saber “pulse” sources
schedule time steps to occur at the beginning and
ending points of the linear ramps (rise and fall
intervals). They do nothing, however, to provide extra
time steps along the way. It is up to the circuitry
connected to the source to govern when the other time
steps will be scheduled.

When writing our own source (driver) models, we
can enhance the performance of the DTS by
scheduling time steps at known points during the
rise/fall ramps. For instance, if we want to force time
steps at 10, 30, 50, 70, and 90% points, we could use
the following code:

T_Start = time
T_Stop = T_Start + T_Transition
schedule_next_time(T_Start)
schedule_next_time(T_Start +

 (0.1 * T_Transition))
schedule_next_time(T_Start +

 (0.3 * T_Transition))
schedule_next_time(T_Start +

 (0.7 * T_Transition))
schedule_next_time(T_Start +

 (0.7 * T_Transition))
schedule_next_time(T_Start +

 (0.9 * T_Transition))
schedule_next_time(T_Stop)

In this example T_Transition is the rise (or fall)
time of the transition. The result of these commands
is shown pictorially in Figure 7.

Figure 7 – Output Driver Control Explanation

If the DTS senses, from other portions of the
design, that more time steps are needed, it will still
generate them. All this technique does is guarantee

0%

T_Stop

100%

50%

30%

70%

10%

90%

T_Start

T_Transition

that time steps will occur at precise points along this
waveform.

The “Angle_DTS” Template

A similar technique can be used in the
electromechanical domain as well. A Variable
Reluctance (VR) sensor generates an electrical signal
(voltage) as a rotating toothed wheel (or gear) spins
past a magnetically biased coil of wire. A mixed-
domain model of the sensor can be created by
monitoring the mechanical “shaft position” input, and
using it as the index into a look-up table to obtain the
value to be applied across the electrical “voltage”
output. Unfortunately, due to the nature of the VR
signal, the standard DTS algorithm has a hard time
generating enough time steps during the “interesting”
parts of the waveform. Left unassisted, the DTS often
spreads out the time steps so rapidly that the signal
generated looks nothing like what it should. Since we
were the ones who generated the look-up table, we
know which shaft angles correspond to “interesting”
portions of the VR waveform, and which do not. We
can thus force the time steps to be closer in the
“interesting” portions and relax them elsewhere. The
gist of the code is:

template Angle_DTS \ # Model Name
 Shaft_Posn # Pin
rotational Shaft_Posn
{
values {
 Rev_Num = int(Shaft_Posn/360)
 Shaft_Angle = Shaft_Posn –
 (Rev_Num * 360)
 Angle_Step = 10
 if(abs(Shaft_Angle)<30) {
 Angle_Step = 2
 }
 if(abs(Shaft_Angle)<10) {
 Angle_Step = 0.4
 }
 step_size = Angle_Step / Degs_per_sec
 }
equations {
 Degs_per_sec: Degs_per_sec =
 d_by_dt(ang_deg(Shaft_Posn))
 }

Simply explained:

♦ The model monitors the rotational shaft angle
(Shaft_Posn), and calculates the position in
degrees in a “modulo” fashion.

♦ If the shaft angle is within 10 degrees of the zero
crossing, the desired shaft angle change per time
step is 0.4 degrees.

♦ If the shaft angle is between 10 and 30 degrees of
the zero crossing, the desired shaft angle change
per time step is 2 degrees.

♦ If the shaft angle is greater than 30 degrees of the
zero crossing, the desired shaft angle change per
time step is 10 degrees.

♦ The step_size system variable is used to
constrain Saber’s DTS algorithm so that the next
time step is the desired distance from the current
time step.

The results are shown below:

Figure 8 – Angle_DTS Example

About The Author

Jim Bach is currently employed as a Senior
Project Engineer in the Hardware Analysis and
Simulation group of Delphi Delco Electronics
Systems, where he uses Avanti’s Saber simulator to
create circuit- and device-level electrical and
electrothermal models. Jim co-authored two US
patents related to solenoid driver circuit design.

