
Towards a Specification Notation for
High-Level Synthesis of Mixed-Signal and Analog Systems�

Alex Doboli, Ranga Vemuri
Digital Design Environments Laboratory, Department of ECECS

University of Cincinnati, Cincinnati, OH 45221-0030
Email: fadoboli, rangag@ececs.uc.edu

August 15, 2000

Abstract

This paper discusses aBlox - a specification notation that
we defined for automated synthesis of mixed-signal systems.
aBlox addresses two important aspects of mixed-signal sys-
tem specification: (1) description of functionality and per-
formance issues and (2) expression of analog-digital interac-
tions. The semantics of aBlox embeds concepts and rules of
a computational model that we developed for mixed-signal
systems. Finally, the paper shows some mixed-signal speci-
fications that we developed in aBlox.

1 Introduction

Different specification styles can be used for describing
mixed-signal and analog systems i.e. declarative style, im-
perative style, functional style, object-oriented style etc [10].
Each of the styles is useful for different synthesis scenarios
or synthesis tasks. For example, declarative specifications
are very popular for describing performance constraints and
performance models for parameter optimization of analog cir-
cuits [19]. A declarative specification shows what a system
does and not how it achieves its functionality. A declarative
specification expresses relationships and constraints among
objects that describe signals or circuit performances i.e. volt-
ages, current, unity-gain-frequency, slew-rate, etc. Declara-
tive specifications perform well if the implementation (struc-
ture) of a mixed-signal system is known and the goal is pa-
rameter optimization. Nevertheless, a declarative style does
not provide any clues for producing structural implementa-
tions (hardware architectures) for a general system. Hence,
identifying a proper specification style is one of the tasks
when defining a synthesis-oriented specification notation.

A requirement for a specification language for mixed-signal

�This work was sponsored by the USAF, Air Force Research Laborato-
ries, Wright Patterson Air Force Base under contract number F33615-96-C-
1911

synthesis is that the language must clearly distinguish func-
tional and performance elements in a specification. Oth-
erwise, erroneous situations might occur where systems are
synthesized to emulate performance aspects. Finally, another
need is to preserve a similar specification style for both the
analog and digital parts of a mixed-signal system. If not, there
will be a dramatic difference between the descriptions of the
two domains. Hence, specification styles must be converted
in order to perform analog/digital trade-off explorations dur-
ing mixed-signal synthesis.

We feel that the first step in systematically synthesizing op-
timized mixed-signal implementations is to start from func-
tional specifications at the Signal Flow Graph (SFG) level
[17]. SFGs indicate the system behavior by showing the
signal processing and flow. Similar approaches for basing a
specification language on SFGs are proposed by Kopec [14]
[15] and Lee et al [16] for synthesis of digital DSP systems.
We present next our concrete arguments for adopting a func-
tional specification style at the level of SFGs:

� SFG-s are similar to algorithmic descriptions for digital
synthesis as they explicitly capture signal flow (depen-
dencies) and processing (operations). Keeping similar-
ity between analog and digital specifications is important
for re-targetable mixed-signal synthesis.

� Effective synthesis algorithms can be formulated for
SFG-s [5]. SFG blocks suggest the structure of a system
and they are easily mappable to electronic circuits as
they represent operations i.e. amplification, integration,
summing, etc.

� The effectiveness of analog synthesis dramatically de-
pends on describing lower-level attributes i.e. fre-
quency, speed, noise. SFG-s are a convenient
abstraction-level for linking such attributes to the lan-
guage constructs of a specification.

This paper describes aBlox - a specification notation for auto-
mated synthesis of mixed-signal and analog systems. aBlox
notation permits functional descriptions of mixed-signal sys-
tems at the level of SFGs. aBlox constructs address two key

1

constraints for op amps +
values of external resistors and capacitors

Circuit net-list with minimum area +

Gain Distribution

definition
style

Connection

Ideal
behavior
of system

Update generic performance model for the new net-list +

Optimize circuit parameters using the updated symbolic model

Net-list + gains assigned to circuits

Parameter optimization

Generic performance model

Performance Model Generator

an
d

A
C

 b
eh

av
io

r
S

ys
te

m
 a

re
a

Architecture Generator

New architecture for system

aBlox specification of analog system

Figure 1: Behavioral analog synthesis flow

aspects: (1) description of functionality and performance
issues and (2) expression of analog-digital interactions. Fol-
lowing concrete aBlox elements target the two general goals:

1. The aBlox "philosophy" is to explicitly describe signal
processing and flows. This is important for having a
similar description style for both analog and digital do-
mains so that analog-digital trade-off exploration can be
easily performed.

2. aBlox constructs encourage a hierarchical and modular
description of systems. This is useful for increasing the
effectiveness of both specification and synthesis tasks
[5].

3. aBlox provides a notation for linking performance con-
straints or performance models to the constituting mod-
ules of a program. This is important as components of
a mixed-signal system tend to have very heterogeneous
performances. For example, the analog part of a tele-
phone set [20] includes two modules, a receiver and a
transmitter, with different noise constraints.

4. aBlox provides a well defined interface mechanism for
describing analog-digital interactions.

The definition of aBlox was motivated by the absence of
any feasible specification notation for mixed-signal synthe-
sis. Existing languages i.e. VHDL-AMS [3], Verilog-A [2],
MAST [8] are all simulation oriented. There are difficulties
in adapting there semantics for synthesis [4].

The paper has the following structure. Section 2 presents
the main tasks that are performed by our analog synthesis
methodology. Section 3 discusses the aBlox constructs for
specifying system functionality and Section 4 those for ex-
pressing higher-order functions. Section 5 concentrates on
performance model description in aBlox. Finally, conclu-
sions will be provided.

macro receiver is continuous_time
inputs

line is voltage

local is voltage
with range 0-1.0 V;

with range 0-1.0 V;
outputs

earph is voltage
with range 0-1.5 V
with impedance 280.0 Ohms;

attributes
noise <= 80 dB;
bandwidth is range 300-3600 Hz;

arch receiver is
output = (100.0 * line + local) * -1.78;

end arch;
end macro;

Figure 2: Specification of the telephone receiver system

a) Implementation solution 1

block1
block2

earphblock4

block3
local

line earph

block1
block2block4

block3

line

local

b) Implementation solution 2

Figure 3: Net-list samples for receiver module

2 Synthesis Approach

We illustrate the successive synthesis steps by referring to a
much simplified version of the receiver module of a telephone
set [20]. The receiver provides an audible output signal to
the earphone of the telephone set. It amplifies with differ-
ent gains incoming signals from the calling part (signal line)
and locally produced by its own microphone amplifier (sig-
nal local). The specification imposes that port signals line,
local and earph are voltages and that their value ranges are
[0:0; 1:0]V for inputs and [0:0; 1:5]V for the output. The
output load is 280Ω. Our synthesis method assumes that
specifications express how continuous-time analog behavior
results as signal flow and processing. Signal-flow graphs
(SFG) accommodate well this description style and they are
specified as aBlox programs in our environment. Figure 2
depicts the aBlox program for the receiver module.

The considered analog synthesis methodology is depicted in
Figure 1. The performance model generator [6] produces
a generic computational tree that describes how system pa-
rameters depend on parameters of the blocks composing the
system. A computational tree referred in the paper as Analog
Performance Tree (APT) is an uninterpreted variant of the
closed-form symbolic expressions produced by traditional
methods [11]. Symbolic models for all net-lists explored
during synthesis result by updating the generic model in a
very short time (linear with the number of blocks).

The architecture generator [7] creates different implemen-
tations for a specification. Specification functionality can be
achieved by interconnecting basic building blocks i.e. op
amps, resistors, capacitors and not necessarily only library

2

circuits i.e. adders, integrators etc. Figures 3a and 3b illus-
trate two distinct implementations for the receiver module
obtained by our method.

Area and AC behavior of each net-list are determined by net-
list parameter optimization [6] and used to guide the net-
list generator. Parameter optimization step first updates the
implementation dependent part of the generic performance
model corresponding to the net-list to be optimized. Next,
it finds sizes for external resistors and capacitors and bounds
for op amp parameters i.e. input and output impedance, gain
and dominant pole so that total area is minimized and the re-
sulting AC frequency behavior of a system is within an error
margin from the desired behavior. To guarantee that feasible
solutions result, each free parameter was modeled by a feasi-
bility range for CMOS technology [12] i.e. external resistors
are in range [1; 100]kΩ, op amp gains in range [103; 104] etc.

3 aBlox Notation for Specifying Mixed-
Signal Systems for Synthesis

An aBlox program describes interacting analog and digital
domains. These domains can have a hierarchical structure
as a domain is built of parts, stages, components, etc. The
macro construct is the main notation feature for describing
functionality, hierarchy and interface of a system, sub-system
or block. Samples of macro definitions are illustrated in
Figure 4 for a two stage 4-th order filter. The latter figure
suggests how macro definitions and macro calls are employed
for expressing hierarchy description for a system. A mixed-
signal specification must contain a top-most macro (the macro
that is not called by other macros). The semantics of the top-
most macro is that it executes forever.

A macro definition includes following five elements:

� Domain descriptor that indicates the domain of the
macro. It can be continuous time, digital or none if
the domain is not fixed yet. In the latter case, finding
the macro domain is subject to analog-digital trade-off
exploration.

� Input and output ports: ports indicate the interface of
a macro with the rest of the specification or with the
external environment. Ports of the top-most macro are
system ports with the external environment.

� Generic parameter are used for indicating the generic el-
ements of a macro i.e. constant values, operators, block
identities and performance attributes. Each macro-call
instantiates concrete values for the generics. Generic
parameters are useful for expressing uniformity and hi-
erarchy of macro structures. Linear operators i.e. addi-
tion, integration, etc. can also be generics for a macro.
The two filter stages in Figure 4 are characterized by dif-
ferent filter constants that are specified as generics in the

inputs

outputs

generics
constants a1, a2;

variables
m, n, p;
o is array[2];

out;

end arch;

arch controlable is

o[1] = i1 + m;
o[2] = a2 * p;
n = + o;
p = integ(n);

out = integ(p);

macro stage

i1;

end macro;

arch two_stage_filter is
variables

v;
v = stage.controlable(

1.7251, -1.9374);
i, generics are

1.7251, -1.9374);
end arch;

outputs

inputs
i is voltage;

end macro;

o is voltage;

macro filter is continuous_time

o = stage.controlable(
v, generics are

m = a1 * integ (p);

Figure 4: aBlox specification for a filter

program. Thus operators can be passed as arguments to
macro calls for describing stages built of distinct blocks
but connected in similar patterns.

� Attribute section is currently allowed only for macro-s of
the continuous-time analog domain. It allows descrip-
tion of declarative or equational performance models
that can be associated with a macro and then used for
synthesis.

� Macro body expresses functionality described as a set
of statements i.e. assignment statements, if statements,
macro-calls and that refer to input ports, output ports
and local variables.

Semantic rules for domain definitions:

Rule 1: Each call to a continuous time macro defines a dis-
tinct macro structure having as inputs and outputs the vari-
ables referred by the call. If more macro calls or operators
take the same variables as inputs then a single macro structure
is generated but its output is linked to all referring places.

This rule is natural as no macro sharing is feasible for distinct
signals in a continuous-time analog system. The second part
of the rule refers to situations where outputs of the same
operators or macro calls are used as inputs multiple places
(i.e. operation integ (p) in macro stage in Figure 4).

Rule 2: Inside a macro with a continuous time domain de-
scriptor only macros with continuous time or without any
domain descriptor can be called. Inside a macro with a dig-
ital domain descriptor only macros with digital or without
any domain descriptor can be called.

Rule 3: Inside a macro without a domain descriptor following
three cases are correct: (1) only macros with continuous time
or without a domain descriptor are called or (2) only macros
with digital or without a domain descriptor are called. (3) A
top most macro without a domain descriptor can call macros
with both continuous time and digital domain descriptors.

These semantic rules prohibit developing a hierarchy of sub-
systems in which a subsystem (excepting the top-most macro)

3

... = ... u ... ;

u = ... ; (statement2)

... = ... u ... ;(statement 3)

value of state object at time t-q-time

value of state object at time t

value of state object at time t

a)

(statement1)

Hardware for
instruction 2

instruction 3
Hardware for

Hardware for
instruction 1

u

b)

Figure 5: Semantics of instruction sequence

includes both time models. Hence, a synthesis tool can easily
identify the parts meant for analog and digital realizations.

Semantic rule for mapping variables to ports

Rule 4: Ports of the top-most macro have types voltage,
current or digital as the interface with the environment is
assumed to be well defined. These ports can be annotated
with attributes i.e. value ranges, impedances etc using the
with construct (see Figure 2).

Semantic rule for variable scoping

Rule 5: The scope of variables defined inside a macro is
limited to the macro body.

Semantic rule 5 is important to guarantee that macro defi-
nitions have the meaning of functions, thus the property of
referential transparency [10]. Hence, a macro’s functional-
ity (meaning) is not influenced by its connections with other
macros.

Semantic rule for describing domain interactions

Rule 6: Interdomain interactions happen through macro-
calls, port mappings and variable/port assignments at the
level of the top-most macro. Explicit conversions from bit or
bitstring to float and vice-versa are performed depending on
variable/port types.

Data objects, expressions and assignment instruction

We defined two types of data objects depending on the time
intervals they are capable of preserving their values (their
life-time). Data objects can be with or without memory.
Memory-less objects preserve their value for one q-time (a
very small time interval) if they are in continuous time macros
or one clock cycle if they pertain to digital macros. Memory
elements can store their values for more than one q-time or
one clock cycle. This classification is due to implementation
specifics for objects i.e. as wires, latches, flip-flops and

is a link between the abstract specification and a physical
implementation.

Semantic rules for aBlox objects:

Rule 7: All variables of continuous time macros denote
memory-less objects. Variables can be of three types: voltage
- when they only correspond to voltages in implementations,
current - when they are "realized" as currents and unspecified
- when both voltage and current alternatives are acceptable
in an implementation.

Rule 8: Variables in digital macros are either memory or
memory-less objects. Input and output ports of the top-most
macro are memory-elements, always. Memory elements are
indicated by using the keyword static before variable defini-
tions. Digital variables can be of type bit or bitstring. Bit-
string is an array with either static dimension or a dimension
is described using generics. However, bitstring dimensions
must be computable at compile time.

Rule 9: Expression operators are different for the two do-
mains:

� The continuous time macros include the following arith-
metic operations: addition, subtraction, multiplication
by a constant and integration. This is a complete opera-
tor set for a linear system [22] and it can be implemented
with simple electronic circuits [9]. For smoothening the
specification task we introduced unary add and minus
operators (i.e. in statement n = + o in Figure 4). Its
argument is an array variable. The operator returns the
sum of all array elements. The operator is useful for
describing multi-entry additions.

� Digital macros include arithmetic operators i.e. ad-
dition, subtraction, multiplication, division and logical
operators i.e. and, or, negation, etc.

Semantic rules for assignment statement:

Unconstrained assignment statements violate the functional
character of a specification as they introduce side-effects.
Although side-effects do not pose any problem for digital
synthesis they might be difficult for analog synthesis. Thus,
we accept assignment statements in our functional model but
we enforce a functional semantics for being consistent with
the rest of the mixed-signal model.

Rule 10: An assignment statement is viewed as a connection
between a name (the left part of an assignment) and an anony-
mous function definition (�-expression [10]) defined by the
right part of the statement. All references to assigned objects
are actually calls to the lambda expression with the same
values for input parameters as in the assignment statement.
Memory elements reside only in the top most macro.

Rule 11: Memory-less objects are updated immediately after
their corresponding assignment statement is executed.

4

Rule 12: Updating of memory variables implicitly happens
after executing the last statement of its defining macro.

Semantic rule for instruction sequence:

Rule 13: It is not allowed to assign a variable of a continu-
ous time macro more than once in a sequence of statements.

If a variable were assigned twice or more times in a sequence
of statements it means that for the same q� time it has more
than one value. Variables can have only a single value in
our model (we assumed that each distinct data object has a
different name).

Rule 14: Any variable or output port of a continuous time
macro that is referred by a statement must also appear in the
left part of an assignment statement.

This guarantees that a continuous-time data object has a value
at any q-time.

Rule 15: Semantics of data dependencies among instructions
of continuous time macros describes signal flows among pro-
cessing blocks.

For example, consider the situation in Figure 5, where object
u denotes a variable of the analog domain. Figure 5(a) depicts
a program fragment and Figure 5(b) shows how data depen-
dencies among instructions express signal flows between the
processing macros.

Observation: If previous semantic rules hold for the contin-
uous time macro then any sequencing (ordering) of a given
set of instructions produces the same block structure.

If statements denote a conditional behavior of a system with
multiple modes of behavior. For example, a variable-gain
block has multiple modes of behavior fixed by its distinct
gains and its behavior can be described with if statements.
There are no special semantic rules for the digital domain
but there are some requirements for if statements of continu-
ous time macros.

Semantic rules for if statement:

Rule 16: If a variable of a continuous time macro is assigned
by one if-branch then it has to be assigned by the other branch,
also.

This is a consequence of the life-time rule for analog object
values, which are considered to be permanently a-life. If
an object were updated by only one of the branches then,
the object will not have a value when the opposite branch is
executed. This contradicts the assumption that any analog
object is permanently a-life.

Rule 17: An object of the analog domain that is assigned
inside an if statement cannot be also assigned outside the if
statement.

This is a particular case of Rule 13 for instruction sequence.

part
Summing

Feedback
path

Direct
path

Direct
path 2

Direct
path k

Direct
path 1

Output
stage

...

...

...

...

......

...

Direct
path 2

Direct
path 1

Direct
path k

...

...

...
...

...

... ...
...

...

a) Feedback structure b) Convergent paths

c) Divergent paths

Output
stage

...

...

...

...

...

...

...

d) Series connection

Figure 6: Block structure

The rule also accommodates well a functional specification
style where all object assignments are inside the same scope
(the scope of the if statement in this case).

Rule 18: For the analog domain, conditions of if statements
refer only to digital input ports of a macro.

There are two reasons for this rule:

� For addressed applications, the modes of functioning of
the analog domain are selected by signals coming from
outside the continuous-time domain. This is reason-
able as we assume that any non-linear functionality i.e.
comparing two analog signals is outside the system.

� To avoid repeated "switching" of if statement execu-
tions due to changes in each q-time. The semantics for
updating digital objects prohibits repeated switchings.

4 Higher-order functions

An important aspect for mixed-signal synthesis is the possi-
bility to use hierarchical specifications. Hierarchy helps not
only in abstracting design elements irrelevant to a particular
synthesis task but also in approaching synthesis complexity.
Another opportunity for addressing synthesis complexity is
to identify and exploit any uniform (similar) parts in a system.
Thus, hierarchy and uniformity are important for making sys-
tem specification easier and more readable and synthesis tasks
i.e. performance model generation more efficient.

Macro definitions and macro calls permit a hierarchical spec-
ification of a system. For example, a two stage filter is
described in Figure 4. Both stages are in controllable form

5

a) feedback_structure construct

. . .

b) convergent_paths construct

. . .

c) divergent_paths construct

. . .

feedback_structure is

summing part is

end feedback_structure;

inputs ...
outputs ...

end summing part;

. . .

. . .

direct path is

end direct path;

feedback path is

end feedback path;

convergent_paths is

end convergent_paths;

. . .

. . .

inputs ...
outputs ...
direct path 1 is

end direct path 1;
direct path k is

end direct path k;

output stage is

end output stage;

divergent_paths is

end divergent_paths;

. . .

. . .

inputs ...
outputs ...

input stage is

end input stage;
direct path 1 is

end direct path 1;
direct path k is

end direct path k;

d) series_blocks construct

. . .

. . .

series_blocks is

end series_blocks;

inputs ...
outputs ...

aBlox instructions
for indicating

block connections;

Figure 7: aBlox instructions for expressing block structure

and they contain blocks performing similar kind of function-
ality. Macros are a convenient way for describing identical
parts of a system. Moreover, it can happen that similar block
structures occur in a system but involving different blocks.
Such situations introduce structural uniformity that can be
exploited for synthesis [6].

aBlox notation permits definition of higher-order functions
to allow full re-use of structural uniformities. Higher-order
functions are macro-s that have other macro-s among their
parameters. Structural uniformities are expressed as inter-
connections of generic blocks. Such macros are instantiated
for different actual aBlox blocks or macro-s. The only re-
striction for higher-order function definitions is that is must
be possible to produce the global block structure of a system
at compile time.

Rule 19: No direct or indirect recursions are allowed for any
macro-calls including higher-order macro calls.

Rule 20: A higher-order function is described in aBlox lan-
guage by indicating in the generics part the signature of the
generic macro structure. Signature is defined by enumerating
the type of inputs and outputs for the generic structure so that
it can be verified when calling the higher-order macro.

A special category of higher order functions are aBlox
constructs feedback structure, convergent paths, diver-
gent paths and series blocks. Figure 6 illustrates the cor-
responding block structures. These constructs are not or-
thogonal as their behavior can be achieved with the already
existing aBlox instructions. They were introduced to increase
the readability of aBlox programs. Figure 7 depicts the syntax
of the four aBlox constructs.

5 Description of performance models

In the process of exploring different notations for specifying
mixed-signal systems for synthesis, we found that a declar-
ative description style is still needed. Following reasons
motivate our conclusion:

� Macro-s can express structures with heterogeneous
design-performance constraints. In Figure 2, the trans-
mitter and the receiver module of the telephone set have
different noise and bandwidth constraints.

� Explicit description of performance models of a system
could be required for synthesis. An ideal mixed-signal
synthesis tool would have the ability of automatically
inferring all performance models needed for synthesis.
We already automated linear performance model gen-
eration. Nevertheless, there is currently no solution for
automated generation of non-linear performance mod-
els. To overcome this limitation, aBlox notation permits
explicit definition of performance models.

We stress that declarations do not express system functional-
ity, thus they are not mapped to hardware. They are thought
as performance requirements and models for macro imple-
mentations. In our synthesis methodology, they are useful
for parameter optimization.

aBlox has a flexible mechanism of attribute definition based
on the principle that a language must offer the possibility of
describing new entities based on primitive constructs. This
avoids an explosion of dedicated keywords for many possible
performance elements i.e. raise-time, fall-time, settle-time,
slew-rate, sensitivity, unity-gain frequency etc.

We extended the formulation of Rosenberger et al [18] for
system-level performances by defining a flexible notation.

Rule 21: The notation for declarative descriptions includes
four types of constructs:

� Primitive constructs
� Predicate definitions
� Attributes definitions
� Model definitions

Declarative constructions can be global or local to aBlox
macros. Global declarations are defined using an at-
tribute package construct. Global declarations are made vis-
ible to a macro by importing its definitions in the attribute
section of the macro. Local declarations are defined using the
attributes construct. Attributes can refer to generic elements
that are instantiated by macro-calls.

For example, it is not necessary to redefine slew-rate for all
macros in a specification. Slew-rate can be described in an
attribute package section and then imported in all macros
that require slew-rate definitions.

6

Rule 22: The primitive constructs for declarative specifica-
tions are:

1. Signal characteristics such as voltage, current, phase
and frequency can be denoted using the dot construct.

2. Following predicates are defined for signals: min for
indicating the minimum value of a signal, max for the
maximum signal value, current for the momentary value
of a signal and final for the final signal value (value at
time infinite). Using predicate in it can be tested that a
signal value pertains to a given range.

3. Time aspects: Keywords StartTime and EndTime de-
note time moments for start and end of execution. Con-
struct Time.(event at i) indicates the time moment when
the i-th occurrence of event event happens. The hap-
pening of the event is indicated by predicate event being
true. Construct a.voltage(event at i) denotes the volt-
age of signal a at the i-th occurrence of event event.
Similar constructs exist in aBlox for currents, phase and
frequency.

4. Frequency aspects: Construct Frequency.(event at i)
indicates the frequency for the i-th occurrence of event
event. Keyword DC denotes a frequency of 0 Hz.

For example, the construct v.voltage denotes the voltage facet
of signal v. The settle-time of a circuit is the time moment
for which the value of its output signal stays in a given range.
The condition that the voltage facet of signal a is within a
2% error margin from its final output value is defined as the
aBlox predicate

a.voltage in [0.98 * final (a.voltage), 1.02 * final
(a.voltage)].

The 3-db bandwidth of a system is defined in aBlox as

define Bandwidth = Frequency. ((output.voltage -
output.voltage (DC) < 3dB) at 1)

Rule 23: Predicates are formed using: (1) arithmetic opera-
tors i.e. +, -, *, /, (2) relational operators i.e. <, <=, >, >=, <>,
== and (3) the derivative operator derivate for indicating sen-
sitivities or rates of change in time i.e. slew-rate. Predicates
refer to primitive constructs or attribute definitions.

Rule 24: An attribute definition associates a name with a
predicate.

An example is the previous definition of attribute Bandwidth.

Rule 25: Model definitions introduce a set of equations that
are simultaneously approached (solved) during synthesis for
obtaining performance values.

Model definitions have a simulation character and their need
is a consequence of the current knowledge on developing
automated CAD tools. aBlox does not explicitly define

how model definitions are solved but linear or non-linear
solvers are possible options. The concept of this mechanism
is similar to simultaneous statements [3] in VHDL-AMS.
Model definitions are useful to indicate behavioral perfor-
mance models. For example, we described in aBlox the
behavioral model of a PLL system as indicated by Vassiliou
et al [21]:

derivate (phase (Vi.voltage), Time) == 2 * Pi * frequency
(Vi.voltage);

derivate (Vc.voltage, Time) == 1 / C2 * Ipeff.current -
1/(R*C2) * Vc.voltage + 1/(RC2) * Vx.voltage;

derivate (Vx.voltage, Time) == 1/(R * C2) * Vc.voltage -
1/(R * C) * Vx.voltage;

derivate (phase (Vj.voltage), Time) == 2 * Pi * nd * (Fo +
ko * Vc.voltage);

6 Conclusions

This paper discusses specification issues for synthesis of
mixed-signal and analog systems by defining the aBlox spec-
ification notation. aBlox provides constructs for express-
ing system functionality and structure, interactions among
the analog and digital domains and performance models and
constraints. The soundness of the notation semantics was
achieved by basing it on a computational model for mixed-
signal systems. The analog component of aBlox already
serves as a specification notation for our existing top-down
synthesis methodology [5]. The research described in the
paper is also important because it identifies situations for
which functionality can be moved across the analog and dig-
ital domains so that semantics of the resulting systems is the
same.

References

[1] “IEEE Standard VHDL Language Reference Manual (In-
tegrated with VHDL-AMS changes)”, IEEE Std.1076.1.

[2] “Verilog-A Language Reference Manual - Analog Ex-
tensions to Verilog HDL Version 1.0”, IEEE, 1996.

[3] “IEEE Standard VHDL Language Reference Manual (In-
tegrated with VHDL-AMS changes)”, IEEE Std.1076.1.

[4] A. Doboli, R. Vemuri, “A VHDL-AMS Compiler and Ar-
chitecture Generator for Behavioral Synthesis of Analog
Systems”, Proceedings of DATE’99, 1999, pp.338-345.

[5] A. Doboli, A. Nunez-Aldana, N. Dhanwada, S. Ganesan,
R. Vemuri, “Behavioral Synthesis of Analog Systems us-
ing Two-Layered Design Space Exploration”, Proc. of the
36th DAC, 1999, pp.951-957.

7

[6] A. Doboli, “Specification and Design-Space Exploration
for High-Level Synthesis of Analog and Mixed-Signal
Systems”, PhD Dissertation, University of Cincinnati,
2000.

[7] A. Doboli, N. Dhanwada, R. Vemuri, “A Heuristic Tech-
nique for System-Level Architecture Generation from
Signal-Flow Graph Representations of Analog Systems”,
Proc. of ISCAS’2000, Geneva.

[8] P. Duran, “A Practical Guide to Analog Behavioral Mod-
eling for IC System Design”, 1998.

[9] S. Franco, “Design with Operational Amplifiers and Ana-
log Integrated Circuits”, McGraw Hill, 1998.

[10] C. Ghezzi, M. Jazayeri, “Programming Language Con-
cepts”, John Wiley & Sons, 1987.

[11] G. Gielen, W. Sansen, “Symbolic Analysis for Auto-
mated Design of Analog Integrated Circuits”, Kluwer,
1991.

[12] R. Gregorian, G. Temes, “Analog MOS Integrated Cir-
cuits for Signal Processing”, John Wiley & Sons, 1986.

[13] B. J. Hosticka, W. Brockherde, R. Klinke, R. Kokozin-
ski, “Design Methodology for Analog Monolithic Cir-
cuits”, IEEE Transactions on Circuits and Systems - I:
Fundamental Theory and Applications”, Vol.41, No.5,
May 1994, pp.387-394.

[14] G. Kopec, “The Signal Representation Language SRL”,
IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. ASSP-33, No.4, August 1985, pp.921-932.

[15] G. Kopec, “Signal Representations for Numerical Pro-
cessing”, in Symbolic and Knowledge-Based Signal Pro-
cessing, editors: A. Oppenheim, S. Hamid Nawab, Pren-
tice Hall, 1992.

[16] E. Lee, W.-H. Ho, E. Goei, J. Bier, S. Bhattacharyya,
“GABRIEL: A Design Environment for DSP”, IEEE
Transactions on Acoustics, Speech, Signal Processing,
ASSP-37, vol. 37, no. 11, 1989, pp. 1751-1762.

[17] K. Ogata, “Modern Control Engineering”, Prentice-
Hall, 1990.

[18] R. Rosenberger, S. A. Huss, “A Systems Theoretic Ap-
proach to Behavioral Modeling and Simulation of Analog
Functional Blocks”, Proceedings of DATE, 1998, pp. 721-
728.

[19] K. Swings, W. Sansen, “Ariadne, a Constraint-based
Approach to Computer-aided Synthesis and Modeling
of Analog Integrated Circuits”, Analog Integrated Cir-
cuits and Signal Processing Journal, Kluwer, May 1993,
pp.197-215.

[20] J. Trontelj, L. Trontelj, G. Shenton, “Analog Digital
ASIC Design”, McGraw-Hill Book Company, 1989.

[21] I. Vassiliou, H. Chang, A. Demir, E. Charbon, P.
Miliozzi, A. Sangiovanni-Vincentelli, “A Video Driver
System Designed Using Top-Down, Constraint-Driven
Methodology”, Proc. of ICCAD, IEEE CS Press, pp.463-
468, 1996.

[22] L. Zadeh, C. Desoer, “Linear System Theory”, Mc-
Graw Hill, 1963.

8

