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Abstract

A practical method for the design of arti�cial neu-
ral networks (ANN) for behavioral modeling of various
devices is presented. The approach has been applied
to the modeling of micro-
ow sensors and MOS tran-
sistors. It is shown that the ANN based behavioral
models are accurate and computationally eÆcient.
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I. Introduction

Behavioral modeling is important in a top-down de-
sign methodology [1]. The hierarchy and abstraction
resulting from behavioral models makes it possible to
simulate complex systems in an eÆcient manner. The
performance of a behavioral simulation of a complex
system is determined by the performance of the behav-
ioral models for the various components and subsys-
tems. Therefore, accurate and computationally eÆ-
cient behavioral models are required for the nonlinear
components of a system.

Conventional approaches to behavioral modeling
include use of tables [2], B-splines [3], [4], polynomials
[5] and arti�cial neural networks (ANN) [6], [7], [8].
The most promising of these are the ANN-based be-
havioral models since ANNs can approximate highly
nonlinear characteristics. In addition, ANNs possess
highly desirable characteristics for behavioral model-
ing. They produce reasonable outputs for inputs not
encountered during training (learning). Furthermore,
ANNs work well with noisy and incomplete data.

However, existing approaches for ANN design do
not provide ANNs guaranteed to be free from under-
�tting (large errors) or over-�tting (large oscillations
for small errors) of data [9]. Moreover, as pure approx-
imators, ANNs can approximate a given data set, but
with features not present in the original data. These
include a local non-monotonical approximation for a
monotonical function, a local negative approximation

for a positive function, and false oscillations. Because
of these undesirable features the simulation accuracy
is compromised. Traditional ANN based algorithms
for model generation [7], [8] do not guarantee shape
preserving approximations, which are essential for ac-
curate simulation.

In this paper, an algorithm for creation of ANNs
with shape-preserving properties for multivariate
approximations is described. The paper is organized
as follows. An overview of ANNs and techniques for
behavioral model generation are described in Section
II. Examples of ANN-based behavioral models are
presented in Section III and conclusions are provided
in Section IV.

II. ANN-based behavioral model generation

ANNs are nonlinear mapping schemes the struc-
ture of which corresponds to the nervous system. An
ANN consists of simple units, called neurons, which
can be combined in a network resulting in a compli-
cated structure. The most widely used ANN are the
multi-layer perceptrons (MLP), as shown in Fig. 1.
These are a subset of the feed-forward ANN [10]. The
design of an ANN consists of choosing the connection
topology and the connection weights. The informa-
tion processing by a single neuron is shown in Fig. 2.
These neurons have a smooth nonlinear transforma-
tion function as shown in the �gure. Neurons in the
output layer employ a linear transformation function.

MLPs with two hidden layers can approximate any
bounded continuous function with an arbitrary accu-
racy [10], [11], [12]. A MLP with one hidden layer is
not as general but can also be used to approximate
most functions.

In the design of ANN based behavioral models there
are several key considerations. These are:

De�nition of the objective function: The optimal
ANN must be shape preserving and have small
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Fig. 1. A multi-layer perceptron. The network consists of

arti�cial neurons with weighted connections. The network has a

feed-forward structure, i.e., there are no connection loops. The

network implements a static nonlinear mapping RNinputs )

R
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Fig. 2. Information processing by one arti�cial neuron. A neu-

ron collects weighted input signals and nonlinearly transforms

a sum to the output.

errors.
Design of the ANN topology: The optimal ANN
structure depends on the number of neurons in
the hidden layers.

Training of ANN: A fast and reliable optimization
algorithm is required for the adjustment of ANN
weights.

Design of experiments: The data set used to train
the ANN must provide a reasonable approxima-
tion for data not used to train the ANN.

A. De�nition of the objective function

The objective function that is minimized is of the
following form:

f(x;V) = f1(x;V) � f2(x;V) (1)

where
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where N is the number of weights, x 2 RN is a vector
of ANN weights, Ninp is the number of inputs, No is
the number of outputs, M is the number of points in
the data set, V 2 RNinp�M is the input data set, vj 2
R
Ninp is the j-th input vector, fNN : RNinp ) R

No is
the ANN mapping, Y 2 R

Nout�M is the output data
set, and Nsign;k is the number of changes in the sign
of the partial derivatives (@fNN(x;V)=@Vk) of the NN
output with respect to the inputs V.

The �rst factor of Eq. (1) is the standard root
mean square error (RMSE) as given in Eq. (2). This
is used to minimize the error between the data points
and the ANN. The second factor in (1) is a measure of
the numbers of oscillations in the function fNN (x;V).
The minimum of the objective function yields both
the shape reconstruction (a small number of the os-
cillations expressed by Nsign;k), and good accuracy
(expressed by the RMSE). Thus, an optimum for the
objective function avoids the over-�tting and under-
�tting of data, a problem common to regular ANN
[10].

No parameters have to be determined for the ob-
jective function described above. This is an impor-
tant property, because the adjustable parameters in
an objective function can a�ect the optimization per-
formance and the quality of results in unknown ways.

B. Design of ANN topology

The objective function is a non-smooth function of
parameters x. Therefore, conventional optimization
techniques cannot be applied for the minimization of
the objective function in Eq. (1). Moreover, even for a
smooth RMSE, application of traditional optimization
methods does not guarantee a global minimum [10].

Genetic algorithms [13] can be applied to minimize
Eq. (1). However, our investigations show this ap-
proach takes a very long time. A simpler and more
eÆcient algorithm consists of a few repetitions of de-
terministic optimization with multiple random initial-
izations.

The objective function is directly proportional to
the RMSE. Therefore we can use RMSE (Eq. (2)) as



a function to be minimized for the deterministic local
optimization. A multiple number of neural networks
are generated randomly and optimized based on the
training data. During this step the number of neurons
are varied. From this collection of neural networks the
best neural network is selected which yields ANN with
structure and parameters near a global optimum.

For improved optimization performance and to ob-
tain a model valid for a wide parameter range we use
nonlinear scaling and normalization.

C. Training of ANN

Back-propagation [14], [15] is the most commonly
used method for training multi-layer feed-forward
ANN. From an optimization point of view, this
method is equivalent to gradient descent optimization.
The method is very simple and eÆcient for ANN pro-
gramming, but has slow convergence [16]. Other ap-
proaches for ANN training are the conjugate gradi-
ent methods [17] and the Levenberg-Marquardt algo-
rithm [18], [19]. For a small and moderate ANN, the
Levenberg-Marquardt algorithm is preferred, whereas
the conjugate gradient methods are preferred for many
weights.

In this paper, our focus is on relatively small
ANN. Therefore, we use the Levenberg-Marquardt al-
gorithm. The method is applied to the nonlinear least
squares problem:

Minimize f(x) = r(x)T � r(x) =
PM

j=1(rj(x))
2

where x 2 RN , and r(x) is the residual vector (the dif-
ference between the ANN model and the data). This
results in the following iteration:

xk+1 = xk � (J(xk)
T
J(xk) + �kI)

�1
J(xk)

T
r(xk); (4)

where J(x) 2 R
N�M ;J(x) = @r(x)=@x is the Jaco-

bian matrix and I is the N -dimensional identity ma-
trix.

Our experience shows that di�erent implementa-
tions of the Levenberg-Marquardt method have di�er-
ent performance for di�erent tasks. In general, two
approaches are preferred (i) explicit control of �k as
implemented in the MATLAB neural network toolbox
[20] and (ii) trust region algorithms [21].

D. Design of Experiments

Design of experiments [22] is a mature �eld in pro-
cess development and process improvement and also
in polynomial model generation. The techniques for
design of experiments (response surface design, fac-
torial design, I-optimal design) use simple polynomial
models and provide a small number of points to deter-
mine the coeÆcients of models. However, such meth-

ods do not yield a good sampling for accurate highly
nonlinear model generation. Therefore, the design of
simulation experiments for general models continues
to be a challenging problem.

The use of uniform grids (one-variable-at-a-time)
is a very ineÆcient approach for multivariate models
because of a large number of data points. To avoid
a big data set and to obtain a distribution with
a good uniformity over each variable and over the
multidimensional unit hypercube low-discrepancy
sequences have been developed [23]. Low-discrepancy
sequences are the basic ingredients of quasi-Monte
Carlo methods, e.g., for numerical integration and
global optimization with an improved performance.
We use the low-discrepancy Sobol's (��� ) quasi-
random number generator [24] for data points used
in model generation. Our testing shows that this
algorithm is superior in comparison with other
generators (e.g., Halton sequences, Faur sequences)
and with a uniform grid. We use the ��� generator
to obtain di�erent point density distributions via the
inversion function method.

III. ANN-based behavioral models

In this section the ANN-based behavioral model-
ing is demonstrated on two very di�erent examples.
The �rst example is of MOSFET modeling where the
ANN is used to provide an accurate DC model for the
transistor. The second example is that of a micro-
ow
sensor which can only be modeled using a solution of
the partial di�erential equations describing the device.
These examples illustrate the generality of the mod-
eling technique whereby this approach can be applied
to other type of devices.

A. MOSFET Transistor Modeling

ANN based models speed up the simulation time
and can therefore be used instead of accurate (but
slow) physics based models. For this reason, we con-
sider the application of ANN to MOSFET model-
ing. For illustration purposes the circuit simulator
SPICE3f5 is used to generate the data for the BSIM3
MOSFET model [25]. In a real application, measured
data will be used to train the ANN. The model takes
5 input arguments (channel width W, channel length
L, gate-source voltage Vgs, drain-source voltage Vds,
and the bulk-source voltage Vbs) and the output is
the drain current Id. The training data set was ob-
tained by the (��� ) quasi-random number generator
with piecewise linear distribution functions for Vds 2
[0, 3] V, Vgs 2 [0, 3] V, and for uniform distribution



functions for W 2 [1, 100] �m, L 2 [0.5, 100] �m,
and Vbs 2 [-3, 0] V. The range of Id is [1e-9, 1e-2] A.
Hence, a nonlinear scaling was applied for Vds, Vgs,
and Id.

The nonlinear scaling is described by the transform:

x0 = (log(x) + a)=b;

where a and b are chosen such that x0min =
�1; x0max = 1. This scaling results in a

� better condition number for the Jacobian used in
the Levenberg-Marquardt method

� smoothing of the nonlinearity for improved opti-
mization performance

� eÆcient stochastic search with random initializa-
tion of NN weights and biases

� the same optimum solution for both the absolute
error of the scaled variable x0 and for the relative
error of the original variable x

� the same percentage error estimate for each scaled
output value

Small-signal analysis is important for analog cir-
cuit design. Therefore, good agreement is required not
only for Id, but also for its derivatives gds=@Id/@Vds,
and gm=@Id/@Vgs. The results for the ANN based
model for di�erent parameter values are shown in Figs.
3 and 4.
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Fig. 3. MOSFET modeling by ANN. W=45 �m, L=0.5 �m,

Vbs=-2 V. Comparisons are provided for data not used in the

training set.

From these �gures the following observations can
be made
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Fig. 4. MOSFET modeling by ANN. W=100 �m, L=1 �m,

Vbs=-2 V. Comparisons are provided for data not used in the

training set.

� The conductances gds and gm are accurately
modeled

� Both the high current regimes (Id 2 [1e-3, 1e-2]
A), and low currents (Id 2 [1e-9, 1e-3] A) are
accurately modeled

� The current Id is very close to zero for Vds=0
(jIdj < 1e-12 A)

B. Micro-
ow Sensor Modeling

The micro-
ow sensor is an important component
of a micro
uidic system. We have applied the ANN to
model an anemometer type micro-
ow sensor [26] as
shown in Fig. 5. The data set for training the ANN
was obtained from �nite-element solutions of the par-
tial di�erential equations describing the device opera-
tion.

The ANN takes 3 input arguments (
ow velocity U,
sensor separation d and channel height h) and yields
the temperature di�erence �T , the temperature of the
heater T2, and the temperature of the upstream sensor
T1.

The sequence of steps used to obtain the ANN
model is outlined below:

� A numerical solution is obtained for �T , T1, and
T2 for di�erent values of U, d, h

� This solution yields discrete data points for �T ,
T1, and T2 as a function of U, d, and h

� The discrete data points are then approximated
by neural networks

In our modeling approach, we have used a nonlinear
scaling for U, h, and �T (because these values vary
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Fig. 5. Structure of an anemometer type 
ow sensor. This

sensor is made up of a heating element and two sensing elements.

In this �gure, the upstream sensor is placed to the left of the

heater. The downstream sensor is placed to the right of the

heater. The temperature di�erence between the downstream

and upstream sensors is used to measure the 
ow.

over a large interval) and a linear scaling for d, T1 and
T2.

A good agreement was obtained for a large range of
input variables. The ANN model can be used to pre-
dict �T for parameter values that were not included
in the training set for the ANN. An example of such
a result is shown in Figure 6 where the model is com-
pared with simulation data for a channel height of 50
�m. It should be noted that this data was not in-
cluded in the training set and yet excellent agreement
between the model and data is obtained.
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Fig. 6. Predicted �T versus separation d for di�erent velocities

U with a channel height h=50 �m. The channel height of 50

�m was not used in the training set.

We have considered a micro-
ow sensor with water
as the 
uid. The solutions of PDEs were used to
determine T1, T2, and �T for di�erent velocities
in the range U=[0, 10] m/s, separation in the range
d=[30, 200] �m and channel height in the range
h=[2, 200] �m. The data set consisted of 1100 points.

The optimal ANN-based model (repetitions of ANN
training for multiple random initializations) was
obtained in two days on a PC with a Pentium-II 400
MHz processor. The time required for evaluation
of one data point using the ANN-model is 80 �s
compared with 300 s for one PDE solution.

IV. Conclusion

In this paper we have presented a technique for
developing ANN-based behavioral models which
posses the correct physical behavior. The ANN
models are simple, accurate, have shape preserving
properties, and are applicable for a wide range of
device parameters. The models can be generated
from simulated or measured data. Two examples,
a MOS-transistor and a micro-
ow sensor are used
to demonstrate the application of the ANN-based
modeling technique. The performance of ANN-based
models is up to 7 orders of magnitude higher com-
pared with PDE solutions. The approach described
in this paper is general and can be used to create fast
and accurate behavioral models of other components
or systems. Furthermore, the models can be incorpo-
rated in VHDL-AMS or Verilog-AMS environments
for behavioral simulation.
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