
An Open VHDL-AMS Simulation Framework

T. Schneider, J. Mades, M. Glesner A. Windisch, W. Ecker

Institute of Microelectronic Systems Corporate Development

Darmstadt University of Technology In�neon Technologies AG

Darmstadt, Germany Munich, Germany

Abstract

The increasing importance of mixed-signal de-
sign among today's and tomorrows hardware systems
brings up new challenges in the �eld of design tool
construction. We present a newly developed VHDL-
AMS simulation framework. It consists of a VHDL-
AMS compiler, elaborator, and simulator comprising
of a digital kernel and an analog kernel. The latter
has an open interface for the integration of di�erent
analog solvers. A coupling with a MATLAB kernel
is described in this paper. Furthermore, the frame-
work provides an interface for the integration of di�er-
ent synchronization algorithms. The presented frame-
work has an open object-oriented architecture which
provides good capabilities for research in the �eld of
mixed-signal simulation.

1 Introduction

The increasing importance and the growing amount
of mixed-signal hardware designs gave rise to the de-
velopment of new mixed-signal hardware description
languages (MS-HDLs). In comparison to traditional
analog description languages, such as SPICE, the new
MS-HDLs allow mixed analog/digital hardware de-
scriptions on di�erent levels of abstraction ranging
from transistor to system level. Moreover, standard-
ization of MS-HDLs accelerates development of lan-
guage speci�c mixed-language simulators thus provid-
ing the foundation for the exchange of mixed-signal
hardware models. One of these languages is VHDL-
AMS [1] which was standardized by IEEE last year
and has found wide acceptance in industry since. Cur-
rently, VHDL-AMS is integrated into several indus-
trial design
ows and, caused by this activity, research
on language speci�c issues is increasing. Research di-
rections include development of eÆcient synchroniza-
tion algorithms for mixed-language simulators as well
as development of new solvability checks for hierarchi-
cal VHDL-AMS models.

A �rst approach of a VHDL-AMS simulator was
presented in [2]. In [3] a distributed solution is in-
troduced. In addition, several commercial simulators
are now available [4, 5, 6]. In this paper, we present
a JAVA based VHDL-AMS simulation environment.
It is intended as a basis for future research on mixed
signal simulation. The next chapters will describe the
overall architecture, the simulation data structure and
the simulator components. A detailed example will
show the results of a simulation run.

2 Overall structure

Our VHDL-AMS simulation framework is based on
an already existing VHDL-AMS analysis environment
consisting of a VHDL-AMS compiler and a VHDL-
AMS elaborator. The environment was implemented
in JAVA, which gained us platform independence and
powerful class libraries. The compiler translates the
VHDL-AMS design �les into an intermediate repre-
sentation. The intermediate is structured as a con-
crete syntax tree with annotated symbol tables and
additional semantic information.

Elaborator Intermediate

Compiler Intermediate

VHDL−AMS Description

Elaborator Intermediate

Compiler Intermediate F
L
O
W

Compiler

Elaborator

Simulator
VHDL−AMS

Figure 1: Design Flow

After compilation the design is elaborated.
Thereby, the hierarchical design is
attened to a list of
time-discrete(digital) processes and the time continu-
ous(analog) equation sets. The simulation framework

consists of a digital kernel and an analog kernel with
an interface to di�erent analog solvers for mathemat-
ical calculations. The components of the VHDL-AMS
simulator and the data structures used for simulation
are described in detail in the following chapters. For
a more detailed description of the compiler and the
elaborator the interested reader is referred to [7, 8].

3 Simulation data structure

Our simulation intermediate structure is an object
oriented data structure implemented in JAVA. It is
built by the VHDL-AMS elaborator [8] which eval-
uates dynamically pre-compiled VHDL-AMS design
units [7]. The intermediate represents the hierarchi-
cal structure of the model consisting of objects rep-
resenting language scopes, concurrent statements and
simultaneous statements. Objects representing lan-
guage scopes contain an activation record which holds
instances of VHDL-AMS objects, types, and natures.
These objects are interconnected as shown in �gure
3 and therefore represent the complete hierarchical
signal
ow(digital) as well as the
ow of the quan-
tities(analog) and the connection of terminals. For
the digital VHDL object signal, signal drivers are an-
notating explicit and implicit signal instances. Signal
drivers store transactions with each transaction denot-
ing a time-value pair of the corresponding signal. In
case of explicit signals the signal driver also annotates
the VHDL process instance of the hierarchical inter-
mediate structure in which the signal appears as target
of a signal assignment. These annotated process in-
stances furthermore store information about objects
being read inside its scope.

entity

comp.-
instance

A

tecture
archi-

entity

process

X

OW quantity out

?

? type [direction] Object instance type and direction

Driver with transactions denoting a signal instance

tecture
archi-

I quantity in

quantity inA

O signal out

CA

CQ

X

Y

Z

quantity out

signal in

signal in

quantity

signal

assign.
signal-

Figure 2: Elaborated data structure

Elaboration of the analog parts of the model results

in the generation of an explicit and an implicit set
of characteristic expressions (CEs) that have to be
solved by the analog solver. The implicit set is a
static set resulting from structural information of the
model. It is built during elaboration of branch quantity
declarations and during the evaluation of hierarchical
interconnection(ports/ port map aspects).

The explicit set is the set of explicitly described
equations in the model using simultaneous statements
provided by VHDL-AMS. Because of control elements
in the simultaneous statements(if/case) this set is a
dynamic set that has to be re-built at each time the
analog solver is executed. During simulation addi-
tional augmentation sets are determined.

Characteristic expressions are represented in the
following form: An operand interface is implemented
by all allocated VHDL-AMS objects and literals. The
operators, which implement the operand interface too,
are divided into three subclasses: binary and unary
operators as well as a class for function calls. With
these two objects the left associative expression struc-
ture is build and stored in a characteristic expression
object corresponding to a set object. Figure 3 illus-
trates the characteristic expression V = I � R of a
resistor model stored in the explicit set.

After this discussion of the simulator internal data
structure we now focus on the class hierarchy under-
lying our VHDL-AMS object implementation. Object
oriented languages like JAVA allow class inheritance
and polymorphism. Based on those two concepts an
eÆcient object structure containing di�erent classes
of VHDL-AMS objects was implemented. Figure 4
shows the partial class hierarchy for VHDL signals.

*
-

I through quantity

R interface constant

across quantityVcharac.
expr.

E
xp

lic
it

S
e

t

Figure 3: Characteristic expression of a resistor model

We distinguish between VHDL-AMS objects of dif-
ferent types. Thus, a signal declaration of type integer
is represented by a scalar signal instance whereas a sig-
nal declaration of an array type results in the creation
of an array signal instance which stores n scalar signal
instances.

4 Simulator components

The simulator framework consists of a digital ker-
nel, an analog kernel, an interface to di�erent analog

solvers and an open scheduler interface for the im-
plementation of di�erent synchronization algorithms.
The complete simulator accesses the above described
global data structure. The particular components are
discussed in the next sections.

4.1 Digital kernel

The digital kernel contains a set of elementary pro-
cesses (p1,. . . ,pn), which are activated by the sched-
uler. Such processes are process statements, concur-
rent signal assignments, concurrent assertions, con-
current procedure calls and concurrent break state-
ments. These processes can access the above described
elaborated data structure which includes the access to
the corresponding parse-trees.

After elaboration all composite signals are
attened
to their scalar sub-elements. This set of signals is up-
dated in every simulation cycle. The update mech-
anism is encapsulated in the above described data
structure. Each process is associated with an inter-
preter that executes the corresponding sensitive pro-
cess until a wait statement occurs. The execution of
a wait statement causes a suspend exception to be
thrown which contains the new sensitivity set or time
out clause and the wait statement node. This informa-
tion is stored in the process data structure. In the next
simulation cycle, this information is used to determine
the resumption and the sensitivity of the process. The
kernel calls are invoked by a scheduler, which can be
easily adapted to di�erent scheduling algorithms. By
default, the digital kernel runs as a VHDL-93 digital
simulator. For mixed-signal simulation the kernel is
extended by an analog kernel which is described in
the next chapter.

abstract
Signal Class

abstract
Implicit Signal

final
Record Signal

abstract
Interface Signal

final

Signal
Interface
Scalar

abstract
Composite

Signal
Interface

Signal
Record Above
finalfinal

Signal
Array Above

abstract
Composite Signal

final
Array Signal

abstract
Above Signal

final

Signal
Scalar Above

Signal
Composite Above
abstract

final
Scalar Signal

(other
implicit
signals)

Figure 4: Object Hierarchy of the VHDL object signal

Equation
Sets

Digital Kernel
VHDL−AMS

Analog Kernel
VHDL−AMS

VHDL

MATLAB

Processes

MAPLE TITAN

Control

Digital Sub−System

S
ch

e
d

u
le

r
In

te
rf

a
ce

Analog Sub−System

S
yn

ch
ro

n
is

a
tio

n

Simulation Model

S
te

p
P

o
n

g

Analog
Solvers

P
in

g
L

o
ck

..
.

Analog Solver Interface

Figure 5: The architecture of the simulation frame-
work

4.2 Analog kernel

The analog kernel is called by the scheduler to cal-
culate the values of the quantities in a time interval
current time Tc and time of the next digital event
Tn. It divides this interval into a couple of time-
steps Ti were an analog solution point(ASP) has to
be found as described below. Additionally the ker-
nel guards the implicit signals corresponding to the
attribute Q'above(E). If the calculated value of the
quantity Q crosses the threshold de�ned by the ex-
pression E, an event occurs on the implicit signal and
the analog solvers suspends at its local time Ti.

4.3 Analog solver interface

The analog kernel provides an interface to adapt
di�erent analog solvers for calculating the analog so-
lution point at a speci�c time step Ti. To calculate an
ASP the analog kernel has to export all the unknowns
of the structural- and the explicit equation sets as
well as the unknowns of the current augmentation
set (exportUnknowns()). Then the analog solver is
invoked to export the equations or the corresponding
matrixes(exportEquations()) from the above described
data representation into its internal representation,
like symbolic variables or matrix representing data-
structures. After this step the calculation of the ASP
is performed(getASP()) and �nally the calculated val-
ues of the quantities are passed back to the database
objects/quantities by calling the update-method up-

date() of the interface.

Analog Kernel
VHDL−AMS

Analog Sub−System

In
te

rf
a

ce
M

A
T

L
A

B
 E

n
g

in
e

MATLABC

In
te

rf
a

ce
JA

V
A

 N
a

tiv
e

JAVA

RaphsonData
Newton /

AlgorithmInterface

Intermediate

Sets
Equation

Figure 6: Implementation of the analog kernel/matlab
coupling

The interface was tested by a prototype implemen-
tation of such an analog solver using MATLAB[9].
The implementation consists of a C-library to couple
the MATLAB-engine to the JAVA analog kernel and
a newton-raphson iteration algorithm implemented in
the MATLAB programming language. The algorithm
uses an additional toolbox, the MATLAB symbolic
toolbox to access prede�ned symbolic functions like ja-
cobian(F,x) to calculate the jacobian of the functions
F and the unknowns x. Using this approach of sym-
bolic calculations, the performance of the simulation
was very weak in di�erence to a second implementa-
tion using numerical calculations. To implement the
numerical algorithm the quantity values of previous
time-step had to be stored additionally.

Now in time, the In�neon circuit simulator TITAN
will be extended towards VHDL-AMS by using the in-
terface to connect to the presented simulation system.

4.4 Scheduler interface

As mentioned above, the open scheduling interface
provides an easy adaption of di�erent synchronization
algorithms. The scheduler interface provides methods
for the integration of sequential and parallel execution
of the analog and digital kernel. Therefore the simula-
tion cycle is divided into atomic steps. For each step,
the scheduler calls a method at the corresponding ana-
log or digital kernel. In a simple lock-step algorithm,
these steps are executed in sequential order. More ad-
vanced algorithms can execute some of these steps in
parallel. Both, the analog and the digital kernel, work
on an uniform data structure. This allows the imple-
mentation of eÆcient synchronization algorithms.

5 Example

The example shows the simulation results for the
mixed-signal circuit shown in �gure 7 below. This cir-
cuit is modeled in structural VHDL-AMS. The nmos
transistor(ohmic region) ampli�es the sinus input volt-
age while the schmitt-trigger generates a digital clock

impulse comparing the ampli�ed voltage with two
threshold voltages.

R

NMOS

VSIN

Vdd

SCHM

Figure 7: Mixed signal VHDL-AMS example circuit

Example Source Code

entity mse is

end entity;

architecture struct of mse is

terminal drain, gate, vdd: electrical;

signal clk : bit := '0';

begin

NMOS: entity work.mosfet(nmos)

generic map(tc => 1.0,

vth => 0.7)

port map(drain, gate, ground);

R : entity work.res(behave)

generic map(100.0)

port map(vdd, drain);

VSIN: entity work.vsin(behave)

generic map (offset => 1.0,

T => 1.0e-3,

mag => 0.1)

port map(v1 => gate,

v2 => ground);

SCHM: entity work.schmitt(behave)

generic map (vl => 3.5,

vh => 7.5)

port map (refTerm => drain,

s => clk);

VDD1: entity work.vdd(behave)

generic map (v => 10.0)

port map(drain, ground);

end struct;

--

entity schmitt is

generic (constant vl, vh : real :=0.0);

port (terminal refTerm: electrical;

signal s : out bit:='0');

end entity;

architecture behave of schmitt is

quantity ref:real;

begin

ref == refTerm'reference;

P: process

begin

if(ref'above(vh)) then

s <= '1';

else

if(not(ref'above(vl))) then

s <= '0';

end if;

end if;

wait on ref'above(vh),ref'above(vl);

end process;

end behave;

entity vsin is

generic (offset : real := 0.0;

T : real := 1.0;

mag : real := 1.0);

port (terminal v1, v2: electrical);

end entity vsin;

architecture behave of vsin is

quantity V across I through v1 to v2;

begin

V == offset +

mag * sin(2.0*MATH_PI/T * now);

end behave;

entity mosfet is

generic (tc : real := 1.0; -- K' W/L

vth : real := 0.7); -- Vth

port (TERMINAL d, g, s : electrical);

end entity;

architecture nmos of mosfet is

quantity vgs across g to s;

quantity vds across ids through d to s;

quantity vgd across g to d;

begin

if vds >= 0.0 use -- forward

if (vgs - vth) <= 0.0 use

ids == 0.0;

elsif (vgs - vth) <= vds use

ids == 0.5 * tc *(vgs - vth)**2

else

ids == tc * vds *(vgs - vth

- 0.5*vds)

end use;

else -- reverse

...

end use;

end nmos;

entity res is

generic (constant R : real :=10.0);

port (terminal pr, mr: ELECTRICAL);

end entity;

architecture a_res of res is

quantity Vr across Ir through pr to mr;

begin

Vr == R * Ir;

end;

Our top level architecture of the example circuit is
a structural description connecting the single models
(VSIN, NMOS, VDD1, SCHM, R) to build the circuit
shown in schematic 7.
The sinus voltage source VSIN is a behavioral descrip-
tion providing a sinus voltage with the parameters
DC-O�set, magnitude and period time. In our exam-
ple VSIN is used to stimulate the gate of the transistor
model around the operating point.
The NMOS-transistor model NMOS is a behavioral
description describing the di�erent behavior of the
drain-source current ids depending on the values of
the voltages vgs, vds and vt (threshold voltage). In
our example the transistor is working in the ohmic
region to amplify the sinus gate-source voltage. In a
separate simulation run we simulated the transistor
model with an increasing gate-source voltage vgs (see
Figure 8).
The model SCHM of the schmitt-trigger is described
as a digital process triggered on the implicit signals
ref 'above(vh) and ref 'above(vl) of the reference quan-
tity ref of the connected terminal refTerm. In case
of the value of the reference quantity being above vh
the digital output signal s is high ('1') and changes
it's value to low ('0') when the value of the reference
quantity is below vl. In our example the connected ter-
minal is the drain of the nmos-transistor. This causes
that the reference quantity compared to the voltages
vl and vh equals the drain-source voltage vds.
The models R and VDD are simple behavioral models
describing the behavior of the linear resistor and the
constant source voltage vdd. Figure 9 illustrates the
simulation results of the simulation run.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ID
S

VGS

Figure 8: Drain-Source voltage VDS over Gate-Source
voltage VGS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0.9

1

1.1

VG
S

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0

3.5

5.5

7.5

10

VD
S

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−3

0

0.5

1

simulation time

C
LK

Figure 9: The simulation results of the example circuit

6 Outlook

Future research will focus on development of dif-
ferent synchronization algorithms and on checks for
solvability of hierarchical VHDL-AMS models. Fur-
thermore, e�ort will be put into the integration of the
In�neon in-house analog simulator TITAN [11].

References

[1] The Institute of Electrical and Electronics Engi-
neers, Inc., IEEE Standard 1076.1-1999. VHDL
Language Reference Manual, IEEE; 1999

[2] P. Frey, K. Nellayappen, V. Shanmugasundaram,
R. S. Mayiladuthurai, C. L. Chandrashekar, H.
W. Charter SEAMS: simulation environment for
VHDL-AMS, Proceedings of Winter Simulation
Conference; 1998

[3] D. Atef, A. Salem, An Architecture of a Dis-
tributed VHDL-AMS Simulator, Forum on Design
Languages, Lyon; 1999

[4] SMASH, Mixed-Signal Simulator,
http://www.dolphin.fr, Dolphin Integration,
MEYLAN, France; 2000

[5] AdvanceMS, Analog and Mixed-Signal Simula-
tor, http://www.mentorg.com, Mentor Graphics,
Wilsonville, OR; 2000

[6] TheHDL, Analog and Mixed-Signal Simula-
tor, http://www.analogy.com, Avant! Systems,
Beaverton; 2000

[7] A. Windisch, W. Ecker, C. Hammer, J. Mades,
T. Schneider, K. Yang, An Adaptable VHDL-
AMS Compiler Front-end, Forum on Design Lan-
guages, Lyon; 1999

[8] J. Mades, T. Schneider, A.Windisch, W. Ecker,
Elaboration of Hierarchical VHDL-AMS Models
for Mixed-Signal Simulation, HDLCON, The In-
ternational HDL Conference and Exhibition, San
Jose; March 2000

[9] The Mathworks, MATLAB Online Documen-
tation, http://www.mathworks.com, The Math-
works Inc., Natick MA; 2000

[10] The Java Native Interface JNI, Online Tutorial,
http://java.sun.com, JavaSoft; 2000

[11] G. Denk, U. Feldmann, C. Hammer, M. Kahlert,
R. Neubert, G. Reissig, A. Windisch, Extension
of a Standard Circuit Simulator towards VHDL-
AMS, Analog 99, Munich; 1999

