
Dynamic Time Step ControlDynamic Time Step Control
Algorithm EnhancementsAlgorithm Enhancements

Sr. Project Engineer
Electrical Analysis & Simulation Group

Delphi Delco Electronics Systems
Kokomo, IN

James.C.Bach@DelphiAuto.com

James C. (Jim) BachJames C. (Jim) Bach

17-OCT-002

IntroductionIntroduction
n Analog simulators typically utilize a scheme known

as “Dynamic Time Step” control (aka DTS)
uProvide adequately spaced time steps during active

portions of simulation (signal edges, oscillations)
l Tightens-up time steps when matrix solver has difficulty converging

on a solution (i.e. lots of NR iterations to converge)

uReduce the amount of calculations performed during
inactive portions of simulation (stable signals)
l Loosens-up time steps when matrix-solver finds it easy to converge

on a solution (i.e. few NR iterations to converge)

n In general, DTS does a good job, most of the time

n The techniques presented here can help overcome
some troublesome situations
uThese are only a FEW of the “helpers” I’ve created

17-OCT-003

IntroductionIntroduction (cont.) (cont.)

n Am I “picking-on” Saber?
uNo
l I am attempting to point-out to the developers (and users) of AHDL

(aka AMS) simulators that this has been an issue in the past, and
needs to be addressed in anything they create for the future
l Saber’s MAST language is the predecessor of VHDL-AMS

 I am afraid that these deficiencies will become a part of the Next-
Generation (aka AMS) simulators

l I want to offer solutions to AHDL (AMS) users to problems they
might encounter

17-OCT-004

The ProblemThe Problem
n DTS algorithms can perform inadequately
uLoosen-up time steps too quickly
lWaveforms appear “jagged” or “steppy”
l Oscillations decay-away too abruptly

uGenerate insufficient time steps to produce “smooth”
waveforms
l Oscillations appear “segmented”

n An inaccurate answer, obtained quickly, is often less
useful (or even more harmful) than no answer at all
uCan validate false assumptions
uCan lead to invalid conclusions
uCan cause more “design turns” (wasted time)
uCan give false optimism that circuit/system works OK
uCan give false pessimism that circuit/system won’t work

17-OCT-005

The ProblemThe Problem (cont.) (cont.)

n Given a simple test case: Solenoid Driver

Top-Level
Circuit

Simple FET
Macro Model

17-OCT-006

The ProblemThe Problem (cont.) (cont.)

n The circuit should have the following characteristics:

kHz2153
CCL2

1
F

DSRFICoil
s .

)(
Re ≈

+
=

π

s200
R

L
2

Coil

Coil
Decay µτ ≈=

s6138693150T DecayAmplitude2
1 µτ .*. ≈=

2

Decay

2
sOsc 2

1
FF

−=

τπ *Re

22 Hz8795kHz2153 .. −≈

kHz197153.≈

uApparent Resonance Frequency

uNatural Resonance Frequency (NRF)

uDecay (or Damping) Time-Constant

uTime to decay to ½ of peak amplitude

17-OCT-007

The ProblemThe Problem (cont.) (cont.)

n The text book answer:
uPost-avalanche ringing

l as produced using PSPICE (without effort)

l Saber requires considerable “adjusting” to obtain

17-OCT-008

n Saber results with default DTS settings:

@Turn-On:

@Turn-Off:

The ProblemThe Problem (cont.) (cont.)

Coil current at turn-on overshoots V/R target

Lack of ringing & oscillation after avalanche

Very few time steps
(fast completion)

17-OCT-009

n Saber results with Trapezoidal Integration:

@Turn-On:

@Turn-Off:

The ProblemThe Problem (cont.) (cont.)

Oscillation is coarse, wrong amplitude

Very many time steps
(slow completion)

Coil current at turn-on reaches V/R target OK

17-OCT-0010

n Saber results with 10X finer Truncation Error:

@Turn-On:

@Turn-Off:

The ProblemThe Problem (cont.) (cont.)

Oscillation present, but decays too rapidly

Many time steps
(acceptable completion)

Coil current at turn-on slightly
overshoots V/R target (acceptable)

17-OCT-0011

n Saber results with “All” Truncation Type:

@Turn-On:

@Turn-Off:

The ProblemThe Problem (cont.) (cont.)

Moderate time steps
(fast completion)

Coil current at turn-on overshoots V/R target

Oscillation present, but decays too rapidly

17-OCT-0012

n Saber results with 10 same-size time steps:

@Turn-On:

@Turn-Off:

The ProblemThe Problem (cont.) (cont.)

Ringing present, but decays too rapidly

Few time steps
(fast completion)

Coil current at turn-on overshoots V/R target
(but is acceptable)

17-OCT-0013

The ProblemThe Problem (cont.) (cont.)

n Considering four major and two minor control
parameters:

VERY many combinations

Major
Controls

Minor
Controls

n “Calibrating the simulator” can be a very daunting
task: there are TOO MANY combinations to try!

17-OCT-0014

Solution #1: Limit Step-OutSolution #1: Limit Step-Out
n Limit Step-Out (LSO) performs these tasks:
uAt the end of each time step, the template calculates the

size of the current step (Time_Step) by subtracting the
current time (time) from the time it was when the last time
step was finished (Last_Time).

uThe current time step size is multiplied by the user-
specified relaxation rate (StepOut_Factor) in order to
determine how large the next time step can be
(Desired_Step_Size).

uThe DTS is constrained (via step_size system variable) as
to how large it can make the next time step
(Desired_Step_Size).

17-OCT-0015

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

n LSO added to the original circuit:

uSimply place on top-level schematic
l Needs no “connection” to circuit
l Provides three user-adjustable (optional) parameters

17-OCT-0016

n Results: Step-Out Factor=1.05

uAll other DTS parameters set to “Defaults”

@Turn-On:

@Turn-Off:

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

Many time steps
(acceptable completion)

Oscillation present, but decays too rapidly

No overshoot in load current

17-OCT-0017

n Results: Step-Out Factor=1.01

uAll other DTS parameters set to “Defaults”

@Turn-On:

@Turn-Off:

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

Very many time steps
(slow completion)

Oscillation present, but still decays too rapidly

No overshoot in load current

17-OCT-0018

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

n Results: Step-Out Factor=1.01 -vs- No Assistance

uPost avalanche ringing

17-OCT-0019

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

n Results: Step-Out Factor=1.01 -vs- No Assistance

uEnd of avalanche interval

17-OCT-0020

Solution #1: Limit Step-OutSolution #1: Limit Step-Out (cont.) (cont.)

n Results: Various Step-Out Factors

uCurrent build-up at turn-on

Saber Defaults:
 Very Coarse
 Overshoots Target
 Very Fast Answer (0.35sec)
Saber w/“Cranked Down” TruncError:
 Very Fine
 No Overshoot
 Slow Answer (9.5 sec)
LSO @ 1.05 (Very Restrictive):
 Very Fine
 No Overshoot
 Fast Answer (1.76sec)

17-OCT-0021

Solution #2: Target CrossingSolution #2: Target Crossing
n Target Crossing (TC) operates as follows:
uThe user specifies up to ten voltage levels at which time

steps should occur (Targets).

uThe voltage between the inputs (P and M) are monitored
(using when(threshold()) construct).

uWhen any of the ten thresholds are crossed, an analog
time step is forced (using the schedule_next_time
construct) at the point in time (time) which the built-in
linear interpolation routine estimated the threshold was
actually crossed.

uThe analog simulator throws away the data for the just-
calculated time step and goes back to the specified
(interpolated) point in time.

17-OCT-0022

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n Target Crossing (TC) illustrated:
uTime step #3 is

calculated, but
signal crossed
Target[1] level.

uEstimated time
of crossing is
Time1, so DTS
forced back for
time step #4.

uTime step #5 OK.
uTime step #6 causes signal to pass through Target[2], so

cross time is estimated to be Time2, and time step #7
is forced to occur there.

uTime step #8 OK, so simulation continues.

Target[2]

6

1

Target[1]

2

4

3

Time1

7

8

Time2

9=Time-Step Thrown Away

=Time-Step Kept (Used)

5

17-OCT-0023

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n Target Crossings (TCs) added to schematic:

3 TC blocks added: 30 target voltages

17-OCT-0024

@Turn-Off:

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n TCs at 10V intervals (during avalanche):

Missing points
at start of fall

Corners still too
sharp (abrupt)

17-OCT-0025

@Turn-Off:

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n TCs at 10V intervals overall & finer at upper corners:

Corner still
too sharp
(abrupt)

17-OCT-0026

@Turn-Off:

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n TCs at 10V intervals overall & 1V at bottom corners:

17-OCT-0027

Solution #2: Target CrossingSolution #2: Target Crossing (cont.) (cont.)

n TCs at key levels from GND to VSUPPLY:

@Turn-On:

@Turn-Off:

@Turn-Off:

17-OCT-0028

ConclusionConclusion
n Using AHDL coding, it is possible to enhance the

generation/control of time steps so that more
calculations are performed during active intervals.

n More calculations in active intervals leads to more
accurate rendition of waveforms
uOscillations become apparent
uRising/Falling edges don’t erroneously overshoot target
uRising/Falling edges approach target smoothly

n All AHDL (AMS) languages should provide
mechanisms for allowing the model-writer to
manipulate time steps from within device models (as
Saber’s MAST does).

