
An Extensible Compact Model Description Language and Compiler

R. V. H. Booth, Agere Systems
1247 S. Cedar Crest Blvd., Allentown, PA 18103

(610) 712-2324 rvbooth@agere.com

at-
el
p-

re

c-
tes
h

e-
de
e
nd
].
l-
-
at
ure
o fit
ork-
of
f
del

d-

g
-
w
-

od-

nt
lar
or.
e
not

-
be

of
cri-
ed
l/
Abstract
In this paper, we describe the Compact Model Compil-

er approach to developing and supporting compact device
models. A single model specification and model compiler
tool support circuit simulation, parameter extraction, and
documentation. We present three examples of the model
compiler approach: a compact transisitor model, a band-
gap reference circuit, and a flip-flop.

Introduction
Developing, implementing, and providing support for

a compact device model, which is to be used for analog/
mixed-signal circuit simulation, requires significant time
and resources. This is because the model must be represent-
ed in many different domains, including the development
platform, the circuit simulation software, documentation,
and parameter extraction tools.

For example, some analog/mixed-signal circuit simu-
lation programs provide an application-program interface,
such that user-specific models can be incorporated into the
simulator [1]. Other packages provide high-level means for
describing non-standard device models, albeit in simulator-
specific language, such as VHDL-AMS and Verilog-AMS
[2], and MAST [3]. Each of these circuit simulator targets
for a compact device model requires special handling, in-
cluding reformatting and possible re-coding. Whenever a
revision to the model is implemented, whether major or mi-
nor, then all of the targets must be revisited and maintained.

In this paper, we describe the Compact Model Compil-
er approach to this problem. This approach consists of: (1)
a single model specification, and (2) a model compiler tool.

The model specification supports all downstream rep-
resentations, such as circuit simulation and parameter ex-
traction tools. It includes generic specifications for all
details of the model, including the equivalent circuit topol-
ogy, model parameters, branch-limiting, element equa-
tions, and parameter extraction frames. The specification
may also cover an entire model family, including variations
for device polarity and model complexity.

The model compiler is used to compile, or in some cas-
es translate, the model specification, for incorporation or
use within the downstream application. This is typically
done by generating code for an API which is supplied by
the respective application. The model compiler must be ex-
tensible, so that as further applications are presented, it is

straightforward to add target code to support the new pl
forms. It must also be straightforward to add new mod
specifications, as required, and new compiler code to su
port them.

The model compiler tool we have developed at Age
Systems, theAnalogModel Compiler, supports a variety
of different platforms: circuit simulators, parameter extra
tors, and stand-alone solvers, and automatically genera
model documentation. The AMC model compiler approac
greatly improves model maintainability, since only one d
scription file must be maintained, rather than source co
for the different target simulation and extraction tools. W
have used the model compiler approach to develop a
support a large variety of device models, for example [4

AMC provides a powerful compact-modeling deve
opment platform. Model development initially involves ex
ercising the model using a stand-alone solver to verify th
the correct behavior over bias, frequency and temperat
has been achieved. Next, a parameter extractor is used t
model parameters to measured data, and to develop a w
able parameter extraction strategy. Finally, the behavior
the model in a circuit simulator must be investigated. All o
these targets are generated using AMC and a single mo
description. Once the model is ready for distribution, mo
el documentation can be automatically generated.

The AMC compiler/approach is a means for portin
models to newly acquired circuit simulators. In this situa
tion, no model specification need be rewritten for the ne
target, but rather only specific target code within the com
piler. Once this step has been accomplished once, all m
els can be ported to the new simulator.

The model compiler approach provides an efficie
way to answer specific questions about whether a particu
processing problem gives rise to unusual circuit behavi
In this situation, special model implementations with th
suspected processing peculiarity are implemented, but
distributed to the design community.

In addition to using AMC for representing basic phys
ical device models, the Model Compiler approach can
used for higher-level descriptions of circuit building
blocks, which can drastically speed up the simulation
large systems such as Phase-Locked-Loops, without sa
ficing any accuracy. This analog behavioral approach, us
in an analog simulator, complements the large-digita
small-analog approach for simulating large systems.

t
e
s,
nto

L-
s,
e
d

be
ch

ing
g
is
ne
del
he
k-
ed
g
s-

r-
e

c-
cr
d-
ly
in-
ive

re.

t-

el
g

p-
ox
s.

l-
-
re
ter-
In the next two sections, we describe the architecture
of AMC, and describe some details of the description lan-
guage. In the following sections, we present three examples
using the model compiler approach: a compact transisitor
model, a bandgap reference circuit, and a flip-flop.

Model Compiler Architecture
The AMC system consists of a front-end and a back-

end (Figure 1). The front-end is responsible for extracting
and storing information about the model from the AMC
compact-model description language file. The back-end is
responsible for generating source-code or other target-spe-
cific text-files. In addition, if it is required for a specific tar-
get, the back-end proceeds to actually compile the AMC-
generated source-code and completely generate an execut-
able.

AMC is an object-oriented application – separate
classes for different aspects of a compact model are respon-
sible for storing the information (front-end), and reformat-
ting the information (back-end).

The back-end of AMC is template driven. Generating
source code for each target involves filling in one or several
templates which are very specific. The templates are writ-
ten with embedded code which requests information from
the various classes which have stored the information from
the model description. Therefore, the bulk of the work to
build a new target involves writing templates. Within
AMC, there are many internal methods which are required
for the template requests for information. For example, de-
pendency information for each set of element equations is
developed for many of the targets which require this infor-
mation. Presently, templates do not issue all of the com-
mands which are required to build a target. The rest of the
work is done in a Model class method. That is, the Model
class method controls building the target, but allows the
template a great deal of freedom in doing the job.

Currently, AMC provides support for three circui
simulators: ADVICE and Celerity, which are Cadenc
tools which were originally developed at Bell Laboratorie
and Cadence Spectre. AMC can translate the model i
Verilog-AMS and VHDL-AMS format. Other targets are
the stand-alone solver, parameter-extractor, and HTM
format model documentation. For the circuit simulator
AMC generates an initial input deck for exercising th
model in the simulator with DC sweep, AC analysis, an
noise analysis.

AMC description language
The AMC description language is actually Tcl-Tk

code. This arrangement allows each description file to
an executable program, interpreted by Camelot [5], whi
is a Tcl-Tk application, incorporating Tcl-Tk 8.0, [incr Tcl]
[6], and other extensions. There are many benefits to us
Tcl /[incr Tcl] as the description language. Tcl is a scriptin
language which is already well-documented. Since Tcl
used to interpret the description file, no new parsing engi
is required. Tcl can be used to structure the compact-mo
description in a programmatic way, such as partitioning t
model into a hierarchy. Tcl provides extensive error-chec
ing – many errors in the model description can be flush
out simply by responding to reported Tcl errors. Addin
additional error-detection in the model description can ea
ily be added at any point in the compiler. This early erro
detection in the model description greatly improves th
maintainability of the model description file.

The AMC language is essentially a set of model spe
ification commands, each of which is a method of the [in
Tcl] Model class. The specification commands are mixe
case phrases. However, it would be trivial to complete
change the specification command-set, should this be of
terest, simply by changing the names of the respect
Model class methods, and only slightly more difficult to
modify the body of a specification, and would involve
changing the details of the respective front-end procedu

Simple MOSFET transistor model
Figure 2 shows a simple MOSFET transistor compac

model AMC description. In the description, thecom-
pact-model command takes two arguments: the mod
name and a list of specifications. Immediately followin
the compact-model command is theamc-compile
command, which invokes the compiler with any user-su
plied arguments. If no arguments are supplied, a dialog b
is displayed, and the user can select models and target

The first specification of thecompact-model com-
mand iscomponentSpecs , which establishes the name
of the model component and its heritage, if applicable. Fo
lowing this specification are the specifications for the to
pology of the equivalent circuit. Nodes are specified befo
branches and elements, and can be either external or inFigure 1. AMC model compiler block diagram.

AMC compact model
description file

compact model
documentation

 AMC front-end

 AMC back-end

parse description language
store compact model specifications
error-checking

develop dependency and derivatives
manage template fill-in process

AMC

Circuit Simulator Parameter ExtractorSolver

Code Compilation

fied

han-
as
th
ter
-

tor
ues
ues
-

ing
ion

ca-
c-

ly

S
ics

b-
nal. Branches are aliases for voltage differences between
two nodes, and can be used in the element equations. Ele-
ments are equivalent circuit elements connected between
two nodes.

For each element in the equivalent circuit, equations
are specified in anelementEquations specification.
One of the lines in this specification must be an assignment
to the variable by the same name as the element; in this case
Ids .The YMOS model is symmetric about the MOSFET
drain and source. If the source voltage is higher than the
drain voltage, then the equations effectively turn the device
around.

Parameters which appear in the equations are speci
in theparameterSpecs block. In this case, all of the pa-
rameters do not depend on layout parameters, such as c
nel length or width, so they have been specified
process parameters, or ones which do not change wi
specified dimensions. Each specification in the parame
block configures each parameter with typical values, lim
its, units and descriptive text. For the parameter extrac
target, the parameter limits are used to constrain the val
the parameters are allowed to assume to realistic val
during optimization. On the other hand, for a circuit sim
ulator target, the parameter limits may be used for detect
out of range parameter values. The units and descript
fields are provided for the model-documentation target.

The parameter extractor target uses several specifi
tions for the data sets which are to be fit, and for the extra
tor frames, or subroutines. In the listing in Figure 2, on
one of each of these is shown.

A parameter extractor was constructed for the YMO
model and used to fit the model to simulated characterist
of a 0.13µm channel-length n-MOSFET from the TSMC

compact-model ymos {
 componentSpecs {
 family mosfet component ymos version 1.0
 }
 nodeSpecs external {
 d "Drain"; g "Gate"; s "Source"; b "Bulk"
 }
 branchSpecs {
 Vds d s "Drain to source voltage"
 Vgs g s "Gate to source voltage"
 Vbs b s "Bulk to source voltage"
 }
 elementSpecs {Ids d s}
 elementEqns Ids {
 rev = ISLTZ(Vds)
 rsp = sqrt(PHI-MIN(Vbs-Vds*rev,0))
 abc = 1+GAMMA/(2*rsp)
 dib = ETA-(1+2*ETA)*rev
 Vsth = SST/1151
 Vgse = Vgs-VTH-GAMMA*(rsp-sqrt(PHI))+dib*Vds
 Vgsl = Vsth*log(1+exp(Vgse/Vsth))
 Vdss = Vgsl/(abc+THETAC*Vgsl/2)
 Vdsl = MAX(MIN(Vds,Vdss),-Vdss)
 vmob = 1+THETAS*(Vgsl+2*GAMMA*rsp)
 hmob = 1+THETAC*ABS(Vdsl)
 cls = 1+LAMBDA*ABS(Vds-Vdsl)
 Ids = BETA*cls/(vmob*hmob)*\
 (Vgsl-abc*ABS(Vdsl)/2)*Vdsl
 }
 parameterSpecs process {
 {BETA 1e-3 1e-4 0.1
 A/V^2 "transconductance parameter"}
 {VTH 0.5 0.2 2.0
 V "threshold voltage at Vbs=0"}
 {PHI 0.7 0.5 1.2
 V "strong-inversion surface potential"}
 {GAMMA 0.7 0 2
 sqrt(V) "body-effect parameter"}
 {LAMBDA 0.01 0 0.5
 1/V "output-conductance parameter"}
 {THETAS 0.01 0 5
 1/V "verti. field mobility parameter"}
 {THETAC 0.10 0 5
 1/V "horiz. field mobility parameter"}
 {ETA 0 0 0.2
 # "dibl parameter"}
 {SST 80 20 200
 mV/dec "subthreshold slope"}
 }
 extractorData ts {
 variables {Vd}
 interface {MODEL = Id*1E6}
 screen {MEAST = Id*1E6}
 plots {xy Vd MEAST MODEL -xtitle Vds -ytitle Id}
 }
 extractorFrame TS1 {
 fit {ts}
 evaluate {ts th st}
 residual {conductance}
 include {LAMBDA THETAC}
 }
}
eval amc-compile $argv
exit 0

Figure 2. Simple MOSFET transistor compact-model
AMC description.

(a)

(b)

Figure 3. YMOS simplified MOSFET compact model
playbacks versus data generated by simulating a 0.13µm
n-MOSFET using BSIM3 models for the TSMC
CL013LV process. (a) Output characteristics (b) Su
threshold characteristics.

ly
re

in

ters
l

-
l-

ne.
am-
re-
u-
ts

in

-

re

f
in
nt,
ly

e,
t-
s-
lid

re
CL013LV process using the foundry-supplied BSIM3
models. Playbacks of YMOS versus BSIM3 are shown in
Figure 3. YMOS fits the output and subthreshold character-
istics very well, even though a very simple output conduc-
tance model is employed. Although not shown in the
figure, the bulk bias dependence is also well-modeled.

Bandgap reference circuit compact model

Figure 4 shows the AMC description of a bandgap ref-
erence circuit compact model. At the top of the description
is a macro definition. The macroISGT returns a 1 if the ar-
gument X is greater than Y, and 0 otherwise. In addition,
the constantTabs , 0 degrees C in absolute temperature, is
defined. There are only external nodes in the compact mod-
el. The bandgap reference voltage appears at the “output”
nodev . Nodesh andl establish the high and low reference
voltages of the circuit. We make use of the high reference
node to detect whether the supply voltage to the circuit is
greater than a drop-out voltage, which is specified by the
value of theVDO model parameter

Branches and elements of the equivalent circuit are
specified in thebranchSpecs and elementSpecs
blocks of the description code. The main voltage-con-

trolled current source,Iv , is connected between nodesv
and l . The voltage-controlled charge elementQv is not
strictly necessary, but is included in the description simp
so that the simulation program does not complain that the
are too few elements connected at nodeh.

The variable parameters of the model are specified
the first parameterSpecs block of description code.
Just as in the MOSFET compact-model, these parame
are categorized asprocess parameters, since the mode
does not include a geometry mapping

In the secondparameterSpecs block, another

class of model parameters is listed. Thesetemperature
derived parameters are invisible to the user of the com
pact model in a circuit simulator. That is, the parameter va
ue can not be specified on the model card or instance li
Rather, these parameters are calculated from other par
eters and temperature in the simulator’s temperature p
calculation routine for the compact model. The pre-calc
lated value is then available to equivalent circuit elemen
which use the parameter.

The temperature pre-calculation routine is specified
the temperatureEqns block. Here, the reference volt-
age parameter,VREF, is calculated using the current simu
lation temperature,TEMPERATURE

Finally, the equivalent circuit element equations a
specified in theelementEqns blocks. The reference
voltage at nodeVv is established by passing a current o
VREFthrough a one ohm resistor. These elements are
parallel, and can be described with one equivalent eleme
Iv . The reference voltage is nulled out when the supp
voltage,Vsup , is less than the drop-out voltageVDO.

Macro ISGT {X Y} {
 ISGT = 0.5*(1-signum(Y-X))
}
Constant Tabs 273.16

compact-model bg {
 componentSpecs {
 family bg
 component bg
 version 1.0
 }
 nodeSpecs external {
 v "bandgap reference voltage"
 h "high reference"
 l "low reference"
 }
 branchSpecs {
 Vsup h l
 Vv v l
 Vq v h
 }
 elementSpecs {
 Iv v l
 Qv v h
 }
 parameterSpecs process {
 {VF 1.2 0.5 2 V "flat voltage"}
 {TF 65 -50 125 C "flat temperature"}
 {A1 0 -20 20 # "temperature coefficient 1"}
 {A2 50 0 200 # "temperature coefficient 2"}
 {A3 50 0 200 # "temperature coefficient 3"}
 {VDO 2.0 0 20 V "drop-out voltage"}
 }
 parameterSpecs temperature_derived {VREF}
 temperatureEqns {
 tn = (TEMPERATURE-TF)/(TF+Tabs)
 VREF = VF*(1+1e-3*(A1+(-A2+A3*tn)*tn)*tn)
 }
 elementEqns Iv {Iv = Vv-VREF*ISGT(Vsup,VDO)}
 elementEqns Qv {Qv = Vq*1e-13}
}
eval amc-compile $argv
exit 0

Figure 4. Bandgap reference circuit compact-model AMC
description.

Figure 5. Output reference voltage versus temperatur
from circuit simulation of bandgap reference compac
model. Three circuits representing typical, slow-proces
ing, and fast-processing case corners are shown (so
lines). The original bandgap post-layout simulations a
also shown (circles).

We characterized an actual bandgap reference circuit
using this model. To do this, a series of computer simula-
tions of the actual bandgap reference circuit were per-
formed over temperature. The compact model was then
used to fit the bandgap voltage versus temperature data.
The compact model was incorporated into a circuit simula-
tion program and, using the resulting model parameters,
played back over temperature. A comparison between the
actual reference and the compact model is shown in Figure
5. The compact model can be used in place of the actual ref-
erence circuit, with no sacrifice in accuracy. When using
the compact model, no start-up time is required, saving a
significant amount of overhead time required to simulate a
circuit incorporating the bandgap reference.

Flip-flop compact model

Figure 6 is the listing of a reset-able D-flip-flop AMC
compact model description. The flip-flop model can be
used to build up dividers and more complex circuitry. The
model is derived as shown in Figure 7. The basic high-level
flip-flop circuit consists of a master and slave section, each
with a monitoring controlled sourceVmandVs, respective-
ly, a hold capacitor,Cm andCs, respectively, and a switch
to sample the monitored voltages,GmandGs, respectively.
Vmmonitors theD input, whileVs monitors the output of
the master section,V(m) . In the master section, we trans-
form the series connected controlled sourceVm and
switch conductanceGminto a Norton equivalent parallel-
connected current sourceIm and switch conductanceGm.
The current source and conductance are further combined
into a single current sourceIm , as shown in Figure 7(b).

In the model description, we use a hyperbolic tangent
transformation for sampling the digital inputs. This is im-
plemented in theDig macro at the top of the description
file. Rather than a sharp transition between 0 and Vdd, the
transformation is a smooth function of the data, clock and
reset inputs.

The master monitor supplyVm, from Figure 7(a) is

(1)

where Vdd is the supply voltage, V(d) is the voltage at
the data input. The master switch conductance is

(2)

where Gon and Goff are the on and off switch conduc-
tance, respectively, and V(c) is the voltage at clock input.

In Figure 7(b), the current source is

(3)

In the compact model description, Im is turned around,

Vm Vdd Dig V d()()⋅=

Gm Gon Dig V c()()⋅ Goff 1 Dig V c()()–()⋅+=

Im Vm V m()–() Gm⋅=

Flip-Flop compact model

Macro Dig {v vdd} {
 b = v-vdd*0.5
 s = signum(b)
 u = exp(-460.5*s*b)
 Dig = 0.5*(1+s*(1-u)/(1+u))
}
Constant Glow 1e-8

compact-model ff {
 componentSpecs {
 family ff
 component ff
 version 1.0
 }
 nodeSpecs external {
 c "clock"
 d "data"
 r "reset"
 q "noninverted output"
 b "inverted output"
 h "high reference"
 l "low reference"
 }
 nodeSpecs internal {
 m "master output"
 s "slave output"
 }
 branchSpecs {
 Vsup h l
 Vc c l
 Vd d l
 Vr r l
 Vm m l
 Vs s l
 Vqu q h
 Vqd q l
 Vbu b h
 Vbd b l
 }
 elementSpecs {
 Im m l
 Is s l
 Iqu q h
 Iqd q l
 Ibu b h
 Ibd b l
 Qm m l
 Qs s l
 Qc c l
 Qd d l
 Qr r l
 }
 parameterSpecs instance {
 {DELAY 1e-9 1e-12 100 s "clock to Q delay"}
 {CIN 1e-14 0 1e-9 F "input capacitance"}
 }
 elementEqns Im {
 chi = Dig(Vc,Vsup)
 rhi = Dig(Vr,Vsup)
 gr = rhi+(1-rhi)*Glow

Im =(chi+(1-chi)*Glow)*(Vm-Vsup*Dig(Vd,Vsup))+gr*Vm
 }
 elementEqns Is {

Is =((1-chi)+chi*Glow)*(Vs-Vsup*Dig(Vm,Vsup))+gr*Vs
 }
 elementEqns Iqu {
 shi = Dig(Vs,Vsup)
 gq = shi+(1-shi)*Glow
 gb = (1-shi)+shi*Glow
 Iqu = gq*Vqu
 }
 elementEqns Iqd {Iqd = gb*Vqd}
 elementEqns Ibu {Ibu = gb*Vbu}
 elementEqns Ibd {Ibd = gq*Vbd}
 elementEqns Qm {Qm = DELAY*1.5*Vm}
 elementEqns Qs {Qs = DELAY*1.5*Vs}
 elementEqns Qc {Qc = CIN*Vc}
 elementEqns Qd {Qd = CIN*Vd}
 elementEqns Qr {Qr = CIN*Vr}
}

eval amc-compile $argv

exit 0

Figure 6. Flip-flop compact-model description.

to

es-
,
l

,
a-

al

-

-
.

.

it
and a reset switch is also added. Capacitors Qm and Qs are
used to implement the specified clock to Q delay.

We performed a computer simulation of two instances
of the ff D-flip-flop compact model hooked up as a ripple
counter, as shown in Figure 8. The output waveforms are
shown in Figure 9, whereDiv2 andDiv4 are the outputs
of the first and second flip-flop. When the circuit first starts
up, no initial condition was applied, and since the dividers
have not been reset, they start at half supply voltage.

In Figure 9(b), a close-up is shown at a clock transi-
tion showing the specified clock to Q delay of about 1ns be-
tweenClock andDiv2 , and betweenDiv2 andDiv4.

Conclusions
The Compact Model Compiler methodology and tech-

nology implemented in AMC has been used to develop and
support a wide range of device models for analog circuit
simulation. In this paper we presented one device model
and two high-level models for circuit building blocks. The
high-level models can be used in an analog circuit simula-
tor to speed up transient simulations of moderately sized
modules such as phase-locked loops, which are composed
of many such sub-blocks..The AMC extensible model de-

scription language and compiler provides a framework
develop new models and to support existing ones

 Acknowledgments
The author acknowledges the work, help, and sugg

tions of Kishore Singhal, Sani Nassif, Colin McAndrew
David Lee, Jeffrey Hantgan, Karti Mayaram, Michae
McLennan, Changlin Ma, Averill Bell, Shahriar Moininan
George Howlett, David Goldthorp, Russel Pierce, Marg
ret French, and Kathy Krisch.

 References
[1] Spectre Compiled-Model Interface Reference Manu,
Version 4.3.4, Cadence Design Systems, 1995.
[2] Analog Behavioral Modeling with the Verilog-A Lan
guage, D. Fitzpatrick, I. Miller, 1998, Kluwer.
[3] Modeling with an Analog Hardware Description Lan
guage,H.A. Mantooth, and M. Fiegenbaum, 1995, Kluwer
[4] R.V.H. Booth and C.C. McAndrew, “A 3-terminal
model for diffused and ion-implanted resistors,”IEEE
Trans Electron Devices, volume 44, number 5, May 1997
[5] M. S. Toth and R. V. Booth, “A Designer-Customiz-
able Design Environment for Analog/Mixed-Signal Circu
Design,” presented at theO’Reilly Open-Source Conven-
tion, San Diego CA, July 23-27, 2001.
[6] Tcl-Tk Tools, M. Harrison, ed., O’Reilly, 1997.

(a)

(b)

Figure 7. Formulation of the flip-flop compact model. (a)
Master-slave sample and hold blocks, (b) Combined
Norton-equivalent of master section.

Figure 8. Ripple-counter composed of two ff instances.

(a)

(b)

Figure 9. Ripple-counter simulated waveforms.

	Abstract
	Introduction
	Model Compiler Architecture
	Figure 1. AMC model compiler block diagram.
	AMC description language
	Simple MOSFET transistor model

	Figure 2. Simple MOSFET transistor compact-model AMC description.
	Figure 3. YMOS simplified MOSFET compact model playbacks versus data generated by simulating a 0....
	Bandgap reference circuit compact model

	Figure 4. Bandgap reference circuit compact-model AMC description.
	Figure 5. Output reference voltage versus temperature, from circuit simulation of bandgap referen...
	Flip-flop compact model

	Figure 6. Flip-flop compact-model description.
	Figure 7. Formulation of the flip-flop compact model. (a) Master-slave sample and hold blocks, (b...
	Figure 8. Ripple-counter composed of two ff instances.
	Conclusions

	Figure 9. Ripple-counter simulated waveforms.
	Acknowledgments
	References

