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Abstract

The verification of a number of mixed-technology and
mixed-signal designs (RF circuits, for instance) often re-
quires frequency-domain simulations of nonlinear systems
in the presence of signals that are best characterized as
having continuous frequency spectra. This paper de-
scribes a new frequency-domain simulation algorithm for
the computation of the response of nonlinear systems to
band-limited signals with continuous spectra. The algo-
rithm is based on an orthogonal series expansion of the
signals in the frequency domain, and does not rely on
a linearization of the system equations. Signal spectra
are obtained from the solution of a system of nonlinear
algebraic equations, and windowing techniques are used
to eliminate the Gibbs phenomenon and to improve the
spectral accuracy of the results. For this purpose, the
performance of a number of windows is compared on the
basis of a newly introduced characteristic function, the
windowing error kernel. Numerical results obtained from
the simulation of an optical amplifier that are represen-
tative of the algorithm’s performance are presented.

Introduction

Recent technological advances in a number of areas
(MEMS and wireless communications, for instance) have
renewed the interest in the development of algorithms
and tools for the verification of mixed-signal and mixed-
technology designs. Among them, frequency-domain sim-
ulation methods have acquired increased importance, be-
cause they are often better suited to assess the perfor-
mance of particular types of systems, such as RF circuits
[1].

Most frequency-domain analysis methods developed so
far [2, 3, 4, 5] are based, either explicitly or implicitly,
on a linearization of the system equations. Hence they
cannot be used in those cases where the nonlinearities in
the system response cannot be ignored.
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The only existing frequency-domain simulation methods
that can fully handle nonlinearities rely on the princi-
ple of harmonic balance [6], and a number of algorithms
based on this approach have been published [7, §]. In
harmonic balance, the solution to the system equations
is expressed as a periodic or quasi-periodic Fourier series
in the time domain. The drawback intrinsic in this ap-
proach is that, by construction, it can only handle signals
with discrete frequency spectra. There are many situa-
tions, however, in which it is necessary to simulate the
behavior of a system in the presence of signals that do not
satisfy this requirement. For instance, the successful de-
sign of mixed-signal integrated circuits, in which analog
and digital components are fabricated on the same chip,
requires the assessment of the impact of digital noise on
the performance of the analog portions of the system.
The noise generated by digital circuits is best character-
ized as having a continuous frequency spectrum.

This paper presents a new frequency-domain simulation
algorithm developed specifically to compute the response
of nonlinear systems to band-limited signals having con-
tinuous spectra. The algorithm is based on a truncated
Fourier series expansion of the signals in the frequency
domain. Thus it can be considered, in a sense, the dual
approach to frequency-domain simulation with respect
to harmonic balance. Windowing techniques are used
to eliminate spurious oscillations in the computed spec-
trum caused by the Gibbs phenomenon. A quantitative
comparison of various windows is presented, based on a
newly introduced function associated with the window,
named the windowing error kernel. Results obtained
from numerical simulations with and without windowing
are compared.

Nonlinear frequency-domain simulation

Consider a nonlinear system (e.g. an integrated circuit)
that is described by the following system of equations:

%f[x(t), ]+ glx(t). ] = u(t). (1)
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Fig. 1. Continuous frequency spectrum

In addition to lumped-constant electrical networks, this
equation describes many other types of dynamical sys-
tems, with the variables taking on various physical mean-
ings.
In the frequency domain, equation (1) can be expressed
as [6]:

JWFX(w)] + GIX(w)] = Uw), (2)

where X(w) and U(w) represent the Fourier transforms of
x(t) and u(t). The traditional approaches to frequency-
domain analysis, which are based on harmonic balance,
perform sinusoidal expansions of the signals in the time
domain. This type of expansion, however, is applicable
only to signals that have discrete spectra. It will now
be shown that a dual approach, based on a sinusoidal
expansion of the signals in the frequency domain, can be
used to solve (1) (or, equivalently, (2)) when the signals
involved have continuous spectra.

It will be assumed that both the input u(t) and the so-
lution x(t) have a frequency spectrum that has a finite
upper bound wys, as shown in Fig. 1. In practice, this
condition can always be satisfied by choosing wj; suffi-
ciently large. Moreover, it will also be assumed that the
spectra of f[x(t),t] and g[x(t), ] satisfy the same condi-
tion.

In many instances, u(t) and x(¢) contain a DC compo-
nent, which creates a spike! in their spectra at w = 0.
The presence of spikes makes it problematic from a nu-
merical standpoint to obtain an orthogonal series expan-
sion of the spectrum. For this reason, it is more conve-
nient to rewrite (1) so that the DC component is sep-
arated from the signals. For this purpose, let ug, Xq, fy
and gy be the DC components of u(t), x(t), f[x(t),t] and
g[x(¢),t], respectively, and define the following quanti-
ties:

Ax(t) = x(t) — xo,
) = u(t) —u,
Af )t = flxo+ Ax(t),t] — fo,
Ag[Ax(t),t] = g[xo+ Ax(t),t] — go.
Since up = U(0) and gg = G[X(0)], setting w = 0 in (2)

ITheoretically, a Dirac impulse.

shows that gg = ug. Therefore the following equation is
equivalent to (1):
d
dt
Note that this is not a linearization of (1) around the
DC component of the signals: it is easy to verify that
x(t) = x¢ + Ax(t) solves (1) exactly, if Ax(t) is the
solution of (3).
By assumption, the spectra of all the terms in (3) are
contained in the interval [—wps, wps]. Therefore they can
be expanded in an orthogonal series over that interval.
For example:

Af[Ax(t),t] + Ag[Ax(t), 1] = Aut).  (3)

AUW) = Y U_pe " (a), (4)

k=—o0

where @ = mw/wys and r, (@) is defined as:

m@={ g

Taking the inverse Fourier transform of (4) yields the
following series expansion for Au(t):
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Au(t):wTM i U_sinclwn(t — t1)/7],  (5)

k=—o00

where: sincz = sinmz/(7wx), and ¢, = kv /wys. Evaluat-
ing this expression at ¢ = t,, shows that coefficients Uy
in (4) are related to the values of Au(t) by the following

relationship:
w

Au(t,) = TMU_,L. (6)
Equations (5) and (6), taken together, express the well-
known sampling theorem [9].
A similar series expansion can be obtained for the left-

hand side of (3):

& AFAX(1), 1] + DglAx(1) 1

— Z (Af[AX(tk),tk:] + Ag[AX(tk)7tk]) :

k=—o0

sinclwas (t — tg) /7],

where: Af[Ax(t1), tr] = %Af{AX(t),t] Conse-

t=ty,
quently, in order for (3) to be satisfied the following
equality must hold at all points tx:

AF[AX (1), ] + Ag[Ax(tr), t] = Au(ty).  (7)
An expression for Af[x(ty),t;] can be obtained starting

from the following series expansion:

Af[Ax(t), 8] = > Af[AX(t;), ti] sinclwp (t — t;) /7).

1=—00



Differentiating both sides of this equation yields:

Af[AX(ty), tr]

oo

- W7M Z Af[Ax(t;), ti] sinc’[was (tx — t;) /7).

But:

sinc’[way (ty — t:) /7] =

TEDR i #£ k.
Therefore:
; _wu N (=D
AF[Ax(ty), tr] = = i;wAf[Ax(tl),tz] — (8
ik

where the value i = k is excluded from the summation.
Substituting this expression for Af[Ax(ty), tx] in (7), and
truncating the infinite series to a finite number of terms
(which is dependent upon the accuracy that one wishes
to achieve), yields the following equation:
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+ Ag[Ax(tk), te] = Au(te). (9)
This is a set of 2N + 1 algebraic equations in the 2N + 1
unknowns Ax(t_n), Ax(t_n+1), ..., Ax(tn), which can
be solved using Newton’s method. The spectrum of
Ax(t) can then be computed from relationships analo-
gous to those in (4) and (6):

N
AXy(w) = —— 3 Ax(ti)e ™ r (@) (10)
L —
As an example, consider a simple first-order low-pass RC
circuit with a 3-dB frequency of 128 kHz and an input sig-
nal with a uniform frequency spectrum between —512kHz
and 512 kHz (white noise). If this circuit is simulated us-
ing the algorithm described above, the spectrum of the
output signal, as given by (10) with N = 128, is shown in
Fig. 2. While its overall shape matches that of the filter’s
transfer function, as expected, a spurious superimposed
oscillation is also clearly visible in the graph. This is a
well-known effect, which is caused by the abrupt trun-
cation of an infinitely long signal to one of finite length
(Gibbs phenomenon). One way to reduce or eliminate
this unwanted effect is to use windowing techniques [10].
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Fig. 2. Output spectrum of RC low-pass filter

Windowing

Given a sequence {zj}, finite or infinite, its Discrete
Fourier Transform (DFT) is defined as:

+oo
X(@) = Z xpe Ik,

k=—o00

(11)

The technique known as windowing consists of multiply-
ing term-by-term the sequence {x} by a finite sequence
of weights {wy} before computing the DFT:

N
Xw((:)): Z wkmke_Jk‘”.
k=—N

(12)

Truncation of the infinite series in (11) to a finite number
of terms is a special case of windowing, corresponding to
W_N =W_N4t1 = ... =wy = 1; this particular choice of
weights is known as the rectangular window.

A comparison of (10) with (12) shows that, for
w € [~wn, wum], AXy(w) = (7/wp)Xw (@), where
Xw (@) is obtained by applying the rectangular window
to the theoretically infinite sequence z, = Ax(tx). It
will be shown in the remainder of this section that using
other windows to compute AX y(w) leads to a significant
improvement in the simulation results.

A well-known theorem of Fourier analysis [9] states that:

T

! L " Xoyw - o) s,

Xiw (@) = 5= X (@)« W(@) = %[

where W () is the DFT of {wy}:

N
W(w) = Z wye IR,
k=—N
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Xw(@) = X(—mIw(@+7)—-X(m)Iw(©—m7)

+ [" X0 - 0)do.
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Furthermore, it is easy to verify that:

X(om) + X(m) | 1

/ . ~
5 5 X'(0) sign(w — 0) db.
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Therefore the difference between Xy (©) and X () is
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where K(©) = Iy (&) — 1/2sign(®). Ew (&) represents
the error introduced by windowing in the computation of
the DFT.

Equation (13) can be simplified if wg = 1. This condi-
tion is satisfied by all windows that are used in practice,
because it ensures that Ew (w) = 0 whenever X (@) is
a constant. Assuming wo = 1, the following equalities
hold:

Iy (w+m) —

S = (@ —m) + 5 = Kw(® )
and (13) becomes:
Bw(@) = [X(-m)— X(r)]Kuw (& - )

" X0y Kw (@ — ) do.

—T

(14)

The last term on the right-hand side of this equation
is the convolution of X’(®), the derivative of the DFT
of the original sequence, with Ky (@), a function that
depends on the window used. If X (&) has a discontinuity
at @p, then: X'(&g) = [X(&f) — X (&g)]6(@ — o). The
presence of this Dirac impulse in the convolution integral
generates a term equal to [X (&g) — X (&g )] Kw (& — o)
in the expression for Eyw ().

If X(w) is considered to be a periodic function of period
27, then: X (7") = X (—n). This allows the first term on
the right-hand side of (14) to be interpreted as the result

of a discontinuity in X (&) at @y = 7. Thus (14) can be
rewritten simply as:

Ew(@)=¢ X'(0)Kw(@—0)do,

2m

(15)

with the understanding that X (@) must be regarded as
a periodic function of period 27, and that discontinuities
in X(©) (including at & = 7) generate Dirac impulses in
X'(), as explained above. Equation (15) shows that the
error introduced by windowing is completely character-
ized by Ky (@); for this reason, Ky (&) will be referred
to as the windowing error kernel.

In particular, the presence or absence of oscillations in
Ky (@) gives a good indication of the presence or absence
of oscillations in Eyw (@), as can be seen by approximating
the integral in (15) with a finite sum:

This approximate equality shows that Ey (&) can be
thought of as the sum of shifted and scaled copies of
Ky ().

All windows that are used in practice are real and sym-
metric (w_j = wy). In this case, both Iy (&) and Ky (©)
are odd functions, Iy (0) = 0, and K(07) = —K(07) =
1/2. The five windows listed below are among those most
frequently mentioned in the literature [9, 10]:

Rectangular:

wy =1, k=-N,...,N
Bartlett:

w, =1—|k|/N, k=-N,...,N
Hanning:

wy, = [1 + cos(km/N)]/2, k=-N,...,N.
Hamming:

wy, = 0.54 4+ 0.46 cos(kw/N), k= —-N,...,N.
Blackmann:

wy, = 0.42 4 0.5 cos(kw/N) + 0.08 cos(2km /N,

k=-N,...,N.

For comparison purposes, Fig. 3 shows the graphs of
Kw (@), with N = 8, for four of them (the graph for
the Hamming window is not shown because it is difficult
to distinguish it from the graph of the Hanning window
in that figure). As a first observation, the pronounced
oscillations in the rectangular window’s graph are absent
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Fig. 5. Normalized windowing error kernel, N = 32

from all the other graphs, indicating that the other four
windows will generate smoother approximations to X ().

—20 dB
N=16 | N=32 | N=64
Bartlett 10.4 5.27 2.65
Hanning 7.49 3.75 1.87
Hamming 7.13 3.56 1.78
Blackmann 9.35 4.67 2.34
—40 dB
N=16 | N=32 | N=64
Bartlett 69.6 48.9 29.5
Hanning 13.8 6.89 3.45
Hamming 10.0 4.97 2.48
Blackmann 13.7 6.84 3.42

Table 1. Values of /7 (in percent) at specified error
kernel attenuations

Furthermore, the rate at which | Ky ()] decays as || in-
creases provides a way to compare the relative accuracy
of the various windows. For this purpose, Figs. 4 and
5 show the graphs of |Kw (&)/Kw (07)|, on logarithmic
scale, for the five windows listed above with N = 32.
An examination of those figures shows that, despite the
absence of oscillations, the Bartlett window is not likely
to produce more accurate results than the rectangular
window, as the corresponding graphs decay at very sim-
ilar rates. The Hamming window’s kernel instead falls
40 dB below its peak value at @ = 0.1x, indicating that
two features (e.g. two peaks) in X () that are separated
by 40 dB or less are likely to be visible in Xy (@), pro-
vided that their distance is at least 10% of wj;. The
graph, however, never decreases below a floor of approx-
imately 50 dB, which means that this window’s separa-
tion resolution is at most 50 dB, and perhaps less. On
the other hand, the amplitudes of the side lobes of the
Hanning and Blackmann windows keep decreasing well
below those of the three other windows, an indication
that they can achieve better separation resolution.

One way to quantify the relative accuracy of the various
windows is to compute the value of & where the ratio
|Kw (0)/Kw (07)| falls below a certain level. Those val-
ues (expressed as a fraction of 7) are listed in Table 1
for four of the five windows, and for three different val-
ues of N. The figures reported in the table show that the
performances of the Hanning, Hamming and Blackman
windows are essentially equivalent for separation resolu-
tions of 40 dB or less. Figs. 4 and 5, however, show that
the Hanning and Blackmann windows can achieve higher
resolution separation. In fact, among the five windows
considered here the Blackmann window appears to offer
the best overall performance.
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Numerical results

The analysis contained in the previous section shows that
windowing can improve significantly the simulation re-
sults, in terms of both accuracy and appearance of the
computed spectrum. This is illustrated by the following
example, in which the spectrum obtained directly from
(10) (i-e. using the rectangular window) is compared with
the spectrum obtained by applying the Blackmann win-
dow of length 2N + 1 to {Ax(tx)}.

Fig. 6 shows a CMOS optical amplifier. This circuit am-
plifies the output of a photodetector, modeled by a cur-
rent source applied to its input. The amplifier load is
modeled by a 30 k{2 resistor at the amplifier’s output. A
signal having a uniform power spectral density within a
1 GHz bandwidth (white noise) was applied to the am-
plifier’s input, and the spectrum of the output signal was

£ (GHz)

Fig. 8. Output spectrum, rectangular window

— N=128
- - - N=64

0.6 0.8 1
f (GHz)

Fig. 9. Output spectrum, Blackmann window

computed using the algorithm described earlier, with var-
ious values of N. The CPU time required for simulation
on a Sun Ultra 60 workstation running Solaris 8 is shown
in Fig. 7 as a function of N. The slope of the line indi-
cates that the CPU time grows approximately as N3; for
N = 128, it was approximately 32 minutes.

The spectrum of the output signal obtained directly from
(10) for N = 128 is shown in Fig. 8; the ripple caused by
the Gibbs phenomenon is clearly visible in the graph.
Fig. 9 shows the spectrum obtained by applying the
Blackmann window, with N = 128, to the simulation
results. For comparison purposes, the graph correspond-
ing to N = 64 (both for simulation and windowing) is
also shown. No spurious oscillations are visible in either
graph, thanks to the high attenuation (approximately
70 dB) of the side lobes in the Blackmann window’s er-
ror kernel. It can also be seen that the two values of N



give almost identical results: the largest difference (ap-
proximately 2%) occurs at f = 0. This is consistent with
the observation made earlier that appropriate windowing
reduces the error in the results, and thus the value of NV
necessary to attain a given accuracy.

Conclusion

The approach to frequency-domain simulation described
in this paper is, in a way, the dual of the well-known
analysis method based on harmonic balance, in that the
unknown signals are expanded in a sinusoidal series in
the frequency domain, instead of the time domain. Tak-
ing the inverse Fourier transform of the series expansion
transforms the differential equation describing the system
into a finite set of algebraic equations in the time domain.
Just as in harmonic balance, the number of equations is
chosen based on the desired accuracy. Unlike harmonic
balance, however, the algorithm described in this paper
is suitable for handling signals with continuous spectra.
Using the algorithm on even very simple circuits reveals
that the Gibbs phenomenon causes a degradation in the
simulation results. This observations leads naturally to
investigating the use of windowing techniques for the pur-
pose of improving the simulation results. It has been
shown that the error introduced by windowing is related
by a very simple expression (a convolution integral) to
Ky (@), which for this reason has been named the win-
dowing error kernel. Because of this simple relationship,
an analysis based on Ky (@), instead of the more com-
monly used W(®), is more suitable to examine the fea-
tures of a given window, such as its resolution or the cre-
ation of spurious oscillations. Numerical results confirm
the theoretical analysis, and indicate that the algorithm
described in this paper, when combined with windowing,
can be an effective tool for the simulation of nonlinear
systems in the presence of continuous-spectrum signals.
As with harmonic balance, the computational effort re-
quired for the analysis increases with the desired accu-
racy: in this case, the resolution in the computed spec-
trum. This is due mostly to the increase in the size of
the system of equations that must be solved. For this
reason, the use of algorithms to solve systems of equa-
tions that do not require matrix decompositions will be
investigated.
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