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Abstract

Thispaper presentsa new techniquefor automatically creating
analog circuit models. The method extracts piecewise linear
models from trained neural networks. A model is a set of lin-
ear dependenciesbetween circuit performancesand design pa-
rameters. The paper illustrates the technique for an OTA cir-
cuit for which models for gain and bandwidth are generated.
As experiments show, the obtained models have a simple form
that accurately fits the sampled points. These models are use-
ful for fast simulation of systemswith non-linear behavior and
performances.

1 Introduction

The need for mixed analog-digital designsis predicted to dra-
matically increase over the next years [1] [9]. The digital part
of mixed-signal systemscan be efficiently designed with alow
effort using modern high-level, logic-level and physical-level
design automation tools. In contrast, thereis alack of system-
atic design methodsand efficient general -purposesynthesisen-
vironments for analog circuits [1] [9]. Asaresult, analog de-
signs continue to seize a considerable portion of the total de-
signtimefor mixed-signal systems[8] [9]. Thereisapersistent
need for developing improved methods and tools to level the
design productivity and quality of analog circuits. This paper
presents an original analog circuit modeling method that can
be efficiently employed for both circuit design and synthesis.

Analog circuit models(macromodel s) expressmathematical re-
lationships between significant electrical and geometrical pa-
rameters of a circuit (like device sizes, layout parasitics, sig-
nal frequencies, noise etc) and specific performance attributes (
such ascircuit gain, bandwidth, power consumption, slew rate,
harmonic distortion etc) [9]. For example, it is customary to
formulate mathematical equationsfor an op amp gain and band-
width asfunctions of transistor sizesand the value of the com-
pensating capacitor [13]. Modelsare key componentsfor both
manual design and automated synthesis of analog circuits. A
designer usescircuit modelsto capture the relevant dependen-
ciesin adesign, andthen findthe design parameters(i.e. device
sizes) according to the performance reguirements that need to
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be satisfied [13]. Circuit synthesis tools use circuit models to
improvethe effectivenessof theexploration processand speed-
up their convergence towards optimal solutions [14] [20]. In
both cases, modelsmust accur ately capturethe behavior of cir-
cuits without increasing the complexity of their mathematical
expression [14].

Circuit models are very important for speeding up the conver-
gence of simulation-based circuit synthesistools. It has been
reported that one of the important challengesis the large num-
ber of optimization variablesthat must be simultaneously tack-
led [11] [14]. This poseschallengesto traditional exploration-
based synthesis methods, which need avery long time to com-
plete their search, or might even not converge towards a good
solution [11]. A solution to this problem is to use models to
speed up synthesisby guiding the search towards attractive so-
lution space regions[6]. Most of the time, models are used to
quickly find the performance attributes of the explored designs.
Periodically, exhaustive circuit simulations are performed to
correct the inaccuracies introduced by the models. Even for
very sensitive designs such as RF mixer circuits, it has been
shown that performance estimation through a combined circuit
model evaluation and circuit simulation offers good accuracy
levels while significantly reducing synthesistime [20].

Another important application of circuit modelsisfor top-down
design and synthesis of analog systems[5]. Top-down system
synthesis proceeds in two steps [5]: the first step (called ar-

chitecture generation) explores alternative architectures for a
system expressed at an abstract level. The second step (named

constraint generation) allocates performance constraintsto each
block inan architectureso that the overall system performances
are optimized. Note that an abstract perspective on the analog

circuits is maintained during both synthesis steps. As a result

the constraints allocated to a block might be very difficult to

be obtained with real analog circuits (for example large gains
for large circuit bandwidths, high slew rates etc). Also, impor-

tant aspects such as noise and layout parasitics are neglected
during system design. Circuit models help eliminating these
limitations by providing knowledgeon (1) circuit performance
trade-offs, (2) feasibility ranges for circuit performances, and

(3) impact of physical-level elements such as noise and layout
parasitics on circuit performances.

Circuit modeling techniquesfall into two categories: (1) phys-
ical modeling methods and (2) mathematical modeling tech-
niques [14]. Physical modeling methods simplify a circuit to
areduced sub-circuit that includes only the dominant devices



in the circuit. Such models are useful in offering a qualitative
insight into the circuit but are limited in offering also a quanti-
tative perspective. Models can be successfully used for circuit
analysisbut not for devicesizing, circuit optimization and syn-
thesis. Mathematical models capture quantitative relationships
between the parameters and performances of acircuit. How-
ever, these models might not have any connection to the phys-
ical structure of the circuit. Non-linear regression methodsare
traditionally usedto produce mathematical models[10] [3] [4].
The main limitation isthat for alarge number of data points, it
is very difficult to find a single mathematical formula that ac-
curately fitsall points [14].

This paper presents a new technique for extracting piecewise
linear modelsfrom trained neural networks. A model isaset of
linear dependencies between circuit performances and design
parameters. Dependenciesare valid over arangeof the param-
eters. Section 5 presentsfor an OTA circuit [13] the extracted
models for gain and bandwidth as functions of frequency and
layout parasitics. As experiments show, the produced piece-
wise linear models have a simple form that accurately fits the
sampled points. Moreover, piecewiselinear modelsareapromis-
ing method for approximating nonlinear behavior and perfor-
manceswith asmall error [12]. There are powerful simulation
methods that use piecewise linear modelsto quickly calculate
system performances[12]. Our work addressesthe need for a
method to systematically create piecewise linear models used
for simulation [12].

The model generation techniques starts with the step of train-
ing aneural network. A backpropagationalgorithm isused for
training until the desired accuracy is obtained at the output of
thenetwork. Next, apruning method isapplied to eliminate the
neuronswith insignificant contributionsto the model. Thesize
of the network is thus reduced without significantly affecting
the modeling accuracy. Then, the sigmoidal activation func-
tion of each neuron is approximated with a piecewise linear
function that includesthreelinear segments. Finally, the piece-
wise linear functions for input, hidden and output neurons are
composedtogether to generate the final model of acircuit. The
function composition algorithm is based on automatically ex-
pressing linear equationsandinegqualitiesfor the neurons. Equa-
tions are then solved to find the feasibility (input) domain for
each linear segment in the model.

Thepaper includessix sections. Section 2 presentsrelated work
on modelingwith neural networks, and highlightsthemain con-
tributions of this paper. Section 3 offers atheoretical descrip-
tion of the modeling problem. Section 4 presentsthe algorithm
for extracting piecewise-linear modelsfrom trained neural net-
works. Section 5 illustrates the models generated for an OTA
circuit. Finally, we put forth our conclusions.

2 Related Work on Modeling with Neural Networks

Neural networks have been successfully used in various types

of problems, including classification and function approxima-

tion. They areableto learnany typeof nonlinear mapping based
on their well known property of universal approximators. The

main problem of neural networks consistsin their opaque rep-

resentation of the knowledge embedded in the parameters of

the model. Dueto the nature of processing that takes place in

a neural network - parallel distributed processing among con-

nected neurons - it is very difficult to interpret what a neural

network does.

Extracting symbolic knowledge out of a neural network would
make the interpretation of the solution much easier. Several
methods have been proposed for extracting rules from trained
neural networks [19, 7, 2, 18] (for a review see [19]). Most

techniqueswere devel opedfor classification problems, and very
few have been proposed for regression or function approxima-

tion problems[18, 16]. Previous extraction methodsfor classi-

fication problems attempt to translate a neural network model

into aset of if-then rules. Rule extraction methods differ in the

type of neural networks on which they are designedto work, in

the type of rulesthey extract, in the complexity of the extrac-

tion algorithm and in the easinessof the rule interpretation.

Recently a new technique has been proposed to extract linear
models for regression problems [16]. The method is similar
to the one we use here. A neural network is first trained and
pruned. Then, the activation function of each hidden neuronis
substituted with a piecewise linear function with three or five
regions. For each nonempty combination of hidden neuron re-
gionsalinear model isgenerated. Thecoefficientsof themodel
depend on the weights of the network. The number of linear
modelsthat are generated is equal to the number of linear re-
gionsfor the activation function of ahidden neuronto the power
of the number of hidden neurons. The output neuron hasalin-
ear activation function. Thelimits of the constraints which de-
fine such aregion are fixed and correspond to the valuesdelim-
iting the piecewiselinear regions of the activation function.

Themain differences between our method and [16] consistsin
the way linear models are generated and in the way the set of
constraints - which define the region where a linear model is
valid - are extracted. In our approach alinear model is gener-
ated only when a region in the input spaceis valid, meaning
that is has a nonempty solution set. Moreover, the constraint
limits are adjusted until they represent the smallest possiblere-
gion. Also, the constraint set is reduced by eliminating redun-
dant information. In thisway, we minimize the number of gen-
erated linear models and the number of constraints that define
alinear model’s valid region. The latter aspect is necessary to
improve the understandability of the generated rules.

3 Problem definition

The task is to approximate the nonlinear function represented
by atrained feedforward neural network with a piecewiselin-
ear mapping. The neural network considered here has three
layers: an input layer Z, ahidden layer ‘H and an output layer
O. The goal of the extraction method is to find a set of L lin-
ear models each of thefollowing form: £ = {a}z1 + abzs +
.+ dfzr, 1=1...L, af, € R}, where z; isthe output
of aneuronintheZ layer. Theregion in the input space where
model ! isvalid is defined by a set of constraints of the follow-
ing form: ' = {¢el + cF'we + ... + T2 {<, <, >
, >} d™, o m=1...M", ¢ d™ € R}, where M' isthe
number of constraintsfor model .

The model 1 is active if al the constraints in ' are satisfied
for aset of input values: {z1,...,z;} and inactiveif at least
one of the constraintsisviolated. Theregionin theinput space
where a constraint set ' is satisfied is called the valid region
of model {. All constraint sets C' must satisfy the following
reguirements:

1. Thevalid regions of any pair of linear models must not
intersect in any point in the input space: C* N C" = 0,
forp # r.

2. Theset of constraintsin C' isminimal. By removing any
constraint, the valid region for model ! changes.



4 Model Extraction Method

Theneural networksconsidered here are three layer feed-forward
networks. Thereare N input neuronsinthe 7 layer, H hidden
neurons in the H layer and O output neurons in the O layer.
The weight matrix between the input and the hidden layer is
WIH = Jwy,5=1...H, i=1...N 4+ 1}, where w,; is
theweight of the connection betweentheinput neuron: and the
hidden neuron 5. Theinput layer and the hidden layer are aug-
mented with abias neuron. Theweight matrix betweenthehid-
den and the output layer isW7° = {w;;,k=1...0, j =
1...H + 1} with wy; the strength of the connection between
output neuron & and hidden neuron j.

Theactivation function of the hidden and output neuronsisthe
sigmoidal functioné(z) = ym—y, With0 < A < 1. The

weighted sum at the input of a hidden neuron and at the input
of an output neuron are respectively:

N H
h; :Zwﬂxi’ hi :Zwkﬂﬁr (1)
=1 k=1

where z; isthe output of theinput neuron . The output of the
hiddenneuron j is: z; = ¢(h;), and the output of the z . neu-
ronis: ¢ = ¢(hx).

First, the network istrained with the backpropagational gorithm
[15] until the desired mean squareerror on thetraining and val-
idation data setsisreached. Second, a pruning techniqueisap-
plied to eliminate the insignificant weights.

The pruning repeatedly removes the most insignificant weight
from the remaining weights until a stopping criteria is satis-
fied. The significance of aweight is proportional with the re-
duction in accuracy on both training and validation data. The
accuracy reduction is measured iteratively as: AMSE(r) =
MSE(r—1)— MSE(r), where M S E(r) isthemean square
error on the traininig and validation data of the neural network
at step r of the pruning process. The weight that producesthe
least reductionin accuracy at each stepiseliminated. Thestop-
ping criteriaisthetotal loss of accuracy, which hasto besmaller
than a maximum limit. If a weight between a hidden and an
output neuronis eliminated then the hidden neuron and all the
weights between the input layer and the hidden neuron are also
eliminated. Thepruningisnecessary in order to reducethenum-
ber of liner models.

The extraction algorithm starts with the pruned network. The
ideaisto approximate the nonlinear sigmoidal activation func-
tion with a piecewiselinear function. One way to do thisis by
dividing the input space into three regions. for small x values
¢(z) isapproximately 0 —the constant region O, for large val-
ues ¢(z) isclose to 1 — the constant region 1 and for values
in between ¢(«) can be approximated with alinear function —
thevariableregion. The correspondinglinear mapping ¢(«) is
shown in Figure 4 and is defined as follows:

0 r < =7
glz) =4 H+ —v<e<y 2
1 >y

wherey isareal valuethat separatesthe constant regimesfrom
thevariableone. Thelinear function of the variableregionisa
first order approximation of the Taylor series decomposition of
¢(z)forz = 0. Thevalueof v ischosensuchthat it minimizes
the error between the sigmoidal function ¢(z) and the linear
mapping g(z ). Thelinearization of the sigmoidal function can
be donein other ways as well. One possibility to improve the
accuracy of thelinearization is by increasing the number of lin-
ear regions. Inthe caseof g(z) the number of linear regionsis
R=3.

Figure 1: The graph of the sigmoidal function (¢(z)) and of
the approximated piecewiselinear mapping (g(z))

The next step consistsin finding the the linear models and the
regions in the input space where they are valid. For each re-
gion, a linear function in the input variables is generated by
substituting thesigmoidal activation function ¢z ) withthelin-
ear one g(z) in ¢ = ¢(hx). The coefficients of the linear
functions depend on the weight values:
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The main steps of the linear model extraction method are as
follows:

1. Linearization of the hidden neurons. Extract and refine
the sets of constraintsC’", h = 1...H,r = 1... R,
with R the number of linear regions of g(«). A set C?"
representstheregion where the output of the hidden neu-
ron j isgivenby z; = g,(h;), with ¢,(.) the r branch
of thelinear function g(z). Therefining process of a set
of constraints C’" is described below.

2. Evaluatation of theweighted suminput to the output neu-
rons (k). Find all valid combinations of linear regions
in the hidden neurons of the following form:
OF = {7 ek .oel ), 2 e {1, 2, ..., R}and
p = 1... R¥. For each such combination, the output
of all hidden neuronsis completely specified, and there-
fore hy can also be evaluated. The region in the input
space where combination OF is valid is defined by the

constraintset: C» = €1 1 €>2 1 ...nC7"H. The
process of intersecting sets of constraintsis detailed be-
low. A combination OF is valid if its constraint set C*
delimits anonempty region in theinput space. Thevalid
constraint setsC? arerefined asin step 1.

3. Linearization of the output neuron. For each valid com-
bination region defined by C?, expressthe output of the
network as a linear combination of input variables. De-
pending ontherangeof valuesfor A% - theweighted sum
Input to output neuron & for combination p - the activa-
tion function of the output neuron can be split into oneor
more linear regions (- (%7)). The maximum number of

linear models that can be generated is R+, The set
of constraints that define the validity region of alinear



model isobtained asfollows: C*" = C* N C", whereC”
isthe inequality constraint for the r branch of the linear
function g, () (relation (2)). The set of constraints for
each linear model CP" isrefined using the same method-
ology asin step 1. Thelinear modelsareexpressedusing
relation (3), with g(.) substituted with the right branch

gr ().

The process of refining a set of linear inequality constraintsis
now detailed and ilustrated for one of the hidden neurons. For
example, the initial set of constraints for which hidden neuron
J isintheconstantregion 0 (z; = ¢1(k;) = 0) consistsof the
following (C’*1):

N
SN wpn < =
T S M1
o = noozom @)
T < M
Tr > ms

where M; and m; arethe maximum and respectively minimum
valuesof theinput neuron ;. The set of constraints (C??) corre-
sponding to the variable region is composed of the same con-
straints, except for the first one, which is substituted with two:
Zfil wjim; > —, and Zfil wyiz; < . Theset ¢’° corre-
spondingto the constant region 1 isdefined similarly. Thetotal
number of CY" setsisequal to H R.

The first step of the refining process consists in determining

whether aset of constraintsisvalid, meaning that it hasanonempty

solution set. For example, to verify the validity of C’", the
set of constraintsis passedto alinear programming solver with
thefirst constraint as objective function, the optimization type
- minimization (for > or >) or maximization (for < or <), and
the rest of the inequalities as constraints. Any other constraint
could have been chosen for verification of the existence of a
solution. The initial set of variables has to be modified such
that each variable is positive definite [17]. If the linear opti-
mizer returns asolution which inside the limits of the first con-
straint, then the system of linear constraints C?" is valid, oth-

erwise C’7 isinvalid.

The second step of the refining process adjuststhe limits of all

the constraintsinaset C{*). Thegoal isto reducethe region de-
fined by the set of constraints. To exemplify this step we take
avalid set of constraints C’". The limits of each constraint in
the set C’" are adjusted iteratively using the linear optmizer:
at each step, a constraint becomesthe objective function and a
minimization is doneif the inequality type of that constraintis
> or > or amaximization, if theinequality typeis < or <. The
right hand side of the constraint chosen as objective function
isadjusted if the solution of the optimization isinside the limit
(i.e. aminimum valuegreater than theright side coefficient for
inequalities of type > or > or a maximum value smaller than
theright side coefficient for inequalities of type < or <). The
procedurefor adjusting the limits stops when none of the con-
straint limits undergoes any changes.

Next, we detail the process of intersecting sets of constraints.
Thepurposehereisto eliminate redundant information between
the sets of constraints that get combined. To show how this

works, we take a combined set of constraints C¥ = crion
¢z ...nCcTh. Theconstraintsare placedin the set C? in
aniterative processasfollows: first, the set of constraintsfrom
the first hidden neuron (C”f) is added to C”, then each con-

straint from the subsequent setsC’, j = 2. .. H ischeckedfor
similarity against all constraints already in C?. If anew con-
straint is similar to one already in C* then the intersection be-
tween them is placed in the final set CP. If anew constraint is

not smilar to any other in C? then is simply added to the set
CP. Two inequality constraints are similar if they have equal
coefficients in the same input variables and similar inequality
type. For example: z; < 3.0 and 1 < 2.0 aresimilar and the
intersection between them isz; < 2.0. In thisway the num-
ber of constraintsin the combined set C* is kept at minimum.
Oncea set of constraints are intersected, the resulting set C* is
checked for validity and the limits refined in the same way as
shown above.

The first requirement stated in the previous section - that the
solution from any pair of constraints corresponding to two dis-
tinct linear models must be the empty set - iIsalwaystrue. The
reason isthat the set of constraints of each linear model (C?) is
obtained by intersecting C’" constraints for each hidden neu-
ron. Each C’" definesalinear region for a hidden neuron. All
C’" for the samehidden neuron j, but for distinct linear regions

do not intersect: C’"* N €72 = (), withry, r, € 1,... R and
r1 # 72 becausethe R linear regions defined by the function
g(z) donot overlap aswell. The combined sets of constraints

(CP) are obtained by intersecting the C’” of all hidden neurons
for acombination of thelinear regionsgivenin (OF). Two dis-
tinct sets of constraintsC”* and C*2 do not intersect becauseat
least one hidden neuron must be in a different linear region.

5 Results

Themethod for linear model extraction is applied to model the
frequency response of an analog circuit for different parasitic
levels. The data is obtained using SPICE simulations of the
analog circuit for anumber of frequency (#) and parasitic (P)
values: F = 7and P = 9. Correspondingly, there are F' P
gain values.

Thetwoinputs- frequency (f) and parasitics(c)- arefirst scaled:
T, = % with x(.) the average and std(.) the
standard deviation. Similarly the parasiticsinput is also scaled
(z2). Theoutput - the gain (¢) - istranslated (s 4) to fall inside
the range of the sigmoidal activation function.

With thesetransformations, the datais splitinto atraining (85%)
and a test set (15%). A three layer neural network is trained
and the best performance on the training set is obtained for a
neural network with # = 7 hidden neurons. Thereare I = 2
input neuronsonefor fregency (z) and onefor parasitics (z2)
and one output neuron - the gain. Figure 5 shows the simula-
tion gain compared to the unscaled output of the trained neural
network for four values of the parasitics. The network output
approximateswell the simulation data.

The trained network is pruned. From the initial set of weights
between the input and hidden neurons (1 + 1) H = 21) eight
weightsareeliminated. Becauseone of the hidden neuronsgets
disconnected completely from the input layer - al its weights
weredeleted - onehidden neuronisremoved. Thelossin accu-
racy for the pruned network is4.19% of the original network
mean square error.

The pruned network is linearized according to the procedure
described in Methods section. First, the sets of constraints -
C?" - for all hidden neurons are found. Not all sets are valid,
meaning that not all hidden neurons have output in all possi-
ble linear regions of g(z). Second, the constraint sets C* are
obtained by intersecting the C’" sets corresponding to combi-
nation of linear regions OF. From the initial number of com-
binations R¥ = 729 only 18 are possible- all hidden neurons
have solutionsin the linear regions specified in each combina-
tion. Then, the 18 combinations are checked for validity and
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Figure 2: The gain frequency response of an analog circuit.
With stars (*) are represented the network outputs and with
circles (0) the SPICE values. The values of the parasitics for
the four plotsare: ¢ = 1nF,C = 10nF, C = 100nF,
C = 100fF. The values of the gain and are in the initial do-
main (unscaled).

out of them 10 haveanonempty solution set. Fromthe 10 valid
combinations 6 generate a single linear model, corresponding
to the variable region (g2 (z)) of the output neuron. The rest
produce two linear models, one in the variable region and the
other in one of the two remaining constant regions of the linear

mapping g(z).

For example, oneof thelinear modelsis: z, = 0.0201723z, +
0.127458z5 + 1.17566. Theregion wherethis output function
isvalid isdefined by the set of 14 constraintswith refined lim-
itsshownin Figure 3. Intotal, thereare 14 linear models, 10 of
them with avariable linear dependency in the input variables
and 4 of them with a constant output.

Figure 4 shows the comparative results obtained with the ini-
tial neural network and with the linear models. The error be-
tween the nonlinear neural network model and the piecewise
linear oneis small in most of the points, but there are some ar-
easwherethe error is bigger. Theseareas correspond to bigger
linearization errors between the sigmoidal functionandthelin-
earized one.

6 Conclusions

A method was devel oped to extract piecewise linear modelsto
approximate the nonlinear frequency response of analog cir-
cuits for different parasitics values. First, a neural network is
trained to approximate the nonlinear mapping of the simulation
points. A method of extracting piecewise linear models from
the neural network is proposed, where the activation function
of the neuronsis approximated with a piecewise linear map-
ping. The number of generated linear models is reduced by
checking the validity of each possible solution. The number of
constraintsthat definesaregion in the input space correspond-
ing to alinear model is also reduced by eliminating redundant
constraints. The extraction method was used to approximate
the gain frequency plots of a simulated analog circuit for dif-
ferent parasitic values. The extracted piecewise linear model

3
Frequency (log10)

Figure 4: The gain frequency response of an analog circuit.
With stars (*) are represented the outputs of the original neural
network and with triangles (A) the outputs of the linear mod-
els. The values of the parasitics for the four plots are: C' =
1nf,C = 10nF,C = 100nF, C = 100fF. Thevauesof
thegain and are in the initial domain (unscaled).

looses a little in accuracy compared to the initial neural net-
work, but it gainsin interpretability. One way to improve the
accuracy of the linear modelsisto useinstead of constant re-
gions0 and 1, variable regionswhere the output varieslinearly
with theinput. Another possibility isto usethe upper and lower
limits of the weighted sum input to a hidden neuron to define
a customized linear mapping for each neuron. It might be that
the weighted sum input to ahidden neuron hasavery restricted
range, in which casetheerror for most input valueswill belarge
if we use afix linearization function. For example, if most of
the time the input to a hidden neuron falls around =+ then the
linearization error will be big. In this caseit is better to find a
more appropriate linearization mapping that reduces the error
for that neuron.
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