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 Abstract 
 
VHDL-AMS allows designers to describe a system with time 
dependent equations.  If they want to plot a curve y=f(x), it 
becomes hard to ensure the sampling rate and the 
quantification density of x and y values.  This paper submits a 
very simple method to control it using a little utility model 
written in VHDL-AMS, called the "Q_fier". 
 
 Introduction 
 
The simulators associated with VHDL-AMS, as for other 
languages, allow the designers to control only a few 
parameters to insure the correctness of the simulation.  There 
are principally the maximum and minimum time steps, the 
integration algorithm, and the accuracy (or error). Algorithms 
implemented in simulators have to find the best time step 
between the limit steps according to a convergence criterion. 
 
The "accuracy" parameter which is often accessible through a 
single value is composed of a relative value and an absolute 
value.  This setting allows the simulator to define whether an 
ASP (Analog Simulation Point) is correct or not.  As it is hard 
to know how the two components are computed, the user is 
not given to use this parameter to force a good quantification. 
 
When the model is composed of a set of temporal equations it 
is relatively easy to choose suitable values of time steps that 
ensure a bounded variation of the quantities amplitudes 
between each ASP.  However it becomes quite impossible to 
choose the right settings that ensure a sufficient quality of 
quantification when the interesting result is, for instance : 
 
 x(t) = f(y(t)) (1) 
 
As an example, we wished to model a B(H) magnetic curve.  
We knew the H(t) signal and we designed a model that 
computed the hysteretic non-linear B(t) signal with a Preisach 
approach.  Then we had to face the problem: how to choose 
the right time step that would allow to mesh properly the B(H) 
plan?  It becomes even worst when the same model is used in 
a complete system: the global voltage u(t) is set and the 
simulator computes the current i(t) through H(t) and B(h) 
which are calculated according to the derivative of u(t). 
 
To control the quality of the amplitude "quantification", it is 
possible to impose a temporal step according to the maximum 
slope that can be admitted for the quantities in the model.  In 
many cases this value is difficult to get.  In the approach 
presented below, the solution is to turn the variable time step 

algorithm into a pseudo time-driven simulator. This piece of 
model can be inserted anywhere in a testbench, with 
"time_driven" a boolean signal: 
 
 time_driven  <= me_driven not ti

   after time_step; 
 break on time_driven; 
 
These lines forces the simulator to compute an analog point 
each time there is an event on the "time_driven" signal.  
However, this device is only a maximum boundary for the 
time  variations between two consecutive edges of the 
"time_driven" signal and the simulator settings can therefor 
lead to the insertion of additional ASP.  In such a case, the 
user has no control on the minimum variations of the 
simulated quantities between two analog simulation points, 
but increasing the minimum time step of the simulator. 
 
 Presentation of the "Q_fier" 
 
The method we submit is based on a VHDL-AMS model, the 
"Q_fier" (quantifier), that gives a simple solution to this 
problem.  This model can be instanciated anywhere in the 
testbench to with the following interface: 
 
 uut : entity (beh)  Q_fier

ap (time_step,ampl_step) generic m
port map (constrained_quantity); 

 
This sub model is built not to interfere with the one in which it 
is instanciated.  It just forces the simulator to compute an 
analog simulation points considering the evolution of the 
"constrained_quantity" quantity according to the "time_step" 
and "ampl_step" that bounds the time elapsed and the 
amplitude variation since the last time and amplitude reference 
point. If the simulator computes time steps or value variations 
lesser than constraints, the tool is asleep (Fig. 1). 
 
It is possible to instanciate more than one "Q_fier" to 
constraint several quantities. Note that the computation 
architectures of actual simulator, based on a single sampling 
time for all quantities, let the more constrained Q_fier drives 
the simulation rate bound. 
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 Examples 
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Fig. 1.A. The ASPs 
submitted by the 
simulator (end of dash 
lines) are accepted as 
they are in the boxe. 

Fig. 1.B. A first ASP 
has been validated and 
the following ones (end 
of dash lines) are out of 
the box. Then they  
are rejected and 
the "Q_fier" imposes 
new ASPs (ie. Fig. c). 

Fig. 1.C. The points 
imposed by the 
"Q_fier" match the 
border of the box 
and are the new 
references points for 
the next "Q_fier" 
boxes. 

 
To illustrate our purpose about the "Q_fier", we will use a 
quite simple example based on a set of three connected 
functions: 
 
 x(t) == α.sin(2.π.β.t) 
 y(t) == x(t)^4 
 z(t) == γ.cos(y(t))^2 
 
All the simulations that follow were lead with the Mentor 
Graphics software ADVance MS 1.4_1.2. 
 
First, to illustrate the influence of the "Q_fier" on a temporal 
function, we have extracted some graphics corresponding to 
different settings of the "Q_fier" placed on the z(t) quantity 
(cf. Fig. 2). For those tests, we realized a simulation of 5E-4 s 
with the minimum and maximum steps set respectively at 1E-
12 and 1E-3. For those test, we kept the T_step parameter of 
the "Q_fier" set on 1E-4. Note that we have shadowed the 
areas corresponding to the "Q_fier" boxes on the following 
graphics. It means that points not located on the borders of the 
boxes are not the fact of the "Q_fier". (α=1.0, β=1000.0, 

γ=1.0): 

 
Fig. 1. "Q_fier" principle 

 
 Code explanation 
 
According to the instanciation explanations above, the 
interface of the following model works on a specified quantity 
and realize the sampling according to the T_step and Q_step 
parameters placed as generic data for reusability: 

H_min = 1.0E-12 ; H_max = 1.0E-3 ; without "Q_fier"

(a)

 
entity Q_fier is 
 generic (T_step:real:=1.0e-2; 
   Q_step:real:=1.0e-2);   

port (quantity Q: in real);    
end entity Q_fier; 
 
To monitor the specified quantity, the architecture of the 
"Q_fier" manages two quantities (Q_diff and T_diff) that 
represent the evolution of its two components: time and 
amplitude for the last reference point.  When those differences 
exceed the set up steps, the use of the 'above instruction 
theoretically creates a break point at the cross time. 

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 1.0 ; T_step = 1.0E-4

(b)

 
architecture beh1 of Q_fier is 
 quantity Q_diff, T_diff : real; 
 T_hold : := 0.0; signal real 
  Q_hold : = Q; signal  real :

signal V_spy : boolean;  
 
 begin 

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.5 ; T_step = 1.0E-4

(c)

  break on V_spy; 
 
  Q_diff == (Q - Q_hold); abs
  T_diff == now - T_hold; 
  V_spy  <= Q_diff'above(Q_step) or 

T_diff'above(T_step); 
 
When the break point is reached, an internal signal unlatch a 
process that sets new values for the amplitude and time 
references: 
 
 New process begin _Memory : 
  wait until V_spy;    Q_hold <= Q; 
  T_hold <= now;  
 end process;  end architecture;  
  



  
The final example deals with the z=f(x) representation.  The 
following graphics were obtained with the same settings as 
previously. It shows how the "Q_fier" dynamically mange the 
sampling to get a minimum resolution: 

 

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.3 ; T_step = 1.0E-4

(d) 

 

H_min = 1.0E-12 ; H_max = 2.0E-5 ; without "Q_fier"

(a)

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.1 ; T_step = 1.0E-4

(e) 

H_min = 1.0E-12 ; H_max = 2.0E-5 ; Q_step = 0.4 ; T_step = 1.0E-4

(b)

 
Fig. 2.  z(t) sampling and quantification evolution with a "Q_fier" 

 
Fig. 2 does well show that it is possible to control the 
sampling rate of the simulator taking into account the 
evolution of the amplitude of the signal. 

 
Fig. 4.  z=f(x) representations 

  
If the time constraint is correctly relaxed, the "Q_fier" will not 
create any point where it is not required, as in Fig. 3.  For  
those tests, the simulator settings are exactly the same as 
before, except the maximum time step which is 1E-4.  The z(t) 
function has been dilated for a better view (γ=5.0), and it has 
been phased out for better representation: 

The representation is definitely better on Fig. 4.b.  That could 
allow to locate some anomaly in models that may not be 
detected in other ways. 
 
 A scheduler 
 
Another use of this model is to make up for the 
PROCEDURAL instruction which is not available on current 
simulators. 

H_min = 1.0E-12 ; H_max = 1.0E-4 ; without "Q_fier"

(a) 

 
A first idea to replace this missing instruction could be to use 
a PROCESS scheduled on each ASP.  Unfortunately, there is 
no signal returned by the simulators which notifies an ASP 
has been computed. Such a signal can not be returned in the 
current standard due to portability difficulties. 
 
A solution to this problem is to use a "Q_fier". Indeed when 
you want to compute y=f(x) with some complex 
dependencies, you would like too associate a value to y for 
each ASP on x. With the "Q_fier", this can be done at each 
time the update process is engage. In this way, the y quantity 
remains constant between two of those steps. In the hysteretic 
problem mentioned in the introduction, the nonlinear relations 
were responsible of fluctuating precision on B(t). As shown 
bellow, the use of the "Q_fier" helped to get more regular 
sampling and better representation of B(H). 

H_min = 1.0E-12 ; H_max = 1.0E-4 ; Q_step = 0.4 ; T_step = 1.0E-4

(b)  
 
     Fig. 3.  z(t) selective action demonstration  



 
 
 

Hysteresis cycle computation without (a) and with (b) a "Q_fier" (B(H))

(a) (b) 

Magnetization computation without (a) and with (b) a "Q_fier" (B(H))

(a) (b) 

 
Fig. 5.  Illustration of the "Q_fier" as a scheduler 

 
 

 Conclusion 
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