
Sampling rate and quantification density control in VHDL-AMS

 Yannick Hervé, Sébastien Snaidero

 CNRS-ERM/PHASE
 Boulevard Sébastien Brand
 67400 Illkirch-Graffenstaden
 herve@erm1.u-strasbg.fr
 sebastien.snaidero@ensps.u-strasbg.fr

 Abstract

VHDL-AMS allows designers to describe a system with time
dependent equations. If they want to plot a curve y=f(x), it
becomes hard to ensure the sampling rate and the
quantification density of x and y values. This paper submits a
very simple method to control it using a little utility model
written in VHDL-AMS, called the "Q_fier".

 Introduction

The simulators associated with VHDL-AMS, as for other
languages, allow the designers to control only a few
parameters to insure the correctness of the simulation. There
are principally the maximum and minimum time steps, the
integration algorithm, and the accuracy (or error). Algorithms
implemented in simulators have to find the best time step
between the limit steps according to a convergence criterion.

The "accuracy" parameter which is often accessible through a
single value is composed of a relative value and an absolute
value. This setting allows the simulator to define whether an
ASP (Analog Simulation Point) is correct or not. As it is hard
to know how the two components are computed, the user is
not given to use this parameter to force a good quantification.

When the model is composed of a set of temporal equations it
is relatively easy to choose suitable values of time steps that
ensure a bounded variation of the quantities amplitudes
between each ASP. However it becomes quite impossible to
choose the right settings that ensure a sufficient quality of
quantification when the interesting result is, for instance :

 x(t) = f(y(t)) (1)

As an example, we wished to model a B(H) magnetic curve.
We knew the H(t) signal and we designed a model that
computed the hysteretic non-linear B(t) signal with a Preisach
approach. Then we had to face the problem: how to choose
the right time step that would allow to mesh properly the B(H)
plan? It becomes even worst when the same model is used in
a complete system: the global voltage u(t) is set and the
simulator computes the current i(t) through H(t) and B(h)
which are calculated according to the derivative of u(t).

To control the quality of the amplitude "quantification", it is
possible to impose a temporal step according to the maximum
slope that can be admitted for the quantities in the model. In
many cases this value is difficult to get. In the approach
presented below, the solution is to turn the variable time step

algorithm into a pseudo time-driven simulator. This piece of
model can be inserted anywhere in a testbench, with
"time_driven" a boolean signal:

 time_driven <= me_driven not ti

 after time_step;
 break on time_driven;

These lines forces the simulator to compute an analog point
each time there is an event on the "time_driven" signal.
However, this device is only a maximum boundary for the
time variations between two consecutive edges of the
"time_driven" signal and the simulator settings can therefor
lead to the insertion of additional ASP. In such a case, the
user has no control on the minimum variations of the
simulated quantities between two analog simulation points,
but increasing the minimum time step of the simulator.

 Presentation of the "Q_fier"

The method we submit is based on a VHDL-AMS model, the
"Q_fier" (quantifier), that gives a simple solution to this
problem. This model can be instanciated anywhere in the
testbench to with the following interface:

 uut : entity (beh) Q_fier

ap (time_step,ampl_step) generic m
port map (constrained_quantity);

This sub model is built not to interfere with the one in which it
is instanciated. It just forces the simulator to compute an
analog simulation points considering the evolution of the
"constrained_quantity" quantity according to the "time_step"
and "ampl_step" that bounds the time elapsed and the
amplitude variation since the last time and amplitude reference
point. If the simulator computes time steps or value variations
lesser than constraints, the tool is asleep (Fig. 1).

It is possible to instanciate more than one "Q_fier" to
constraint several quantities. Note that the computation
architectures of actual simulator, based on a single sampling
time for all quantities, let the more constrained Q_fier drives
the simulation rate bound.

mailto:herve@erm1.u-strasbg.fr
mailto:sebastien.snaidero@ensps.u-strasbg.fr

 Examples

time_step

am
pl

_s
te

p

Ref.
point

Fig. 1.A. The ASPs
submitted by the
simulator (end of dash
lines) are accepted as
they are in the boxe.

Fig. 1.B. A first ASP
has been validated and
the following ones (end
of dash lines) are out of
the box. Then they
are rejected and
the "Q_fier" imposes
new ASPs (ie. Fig. c).

Fig. 1.C. The points
imposed by the
"Q_fier" match the
border of the box
and are the new
references points for
the next "Q_fier"
boxes.

To illustrate our purpose about the "Q_fier", we will use a
quite simple example based on a set of three connected
functions:

 x(t) == α.sin(2.π.β.t)
 y(t) == x(t)^4
 z(t) == γ.cos(y(t))^2

All the simulations that follow were lead with the Mentor
Graphics software ADVance MS 1.4_1.2.

First, to illustrate the influence of the "Q_fier" on a temporal
function, we have extracted some graphics corresponding to
different settings of the "Q_fier" placed on the z(t) quantity
(cf. Fig. 2). For those tests, we realized a simulation of 5E-4 s
with the minimum and maximum steps set respectively at 1E-
12 and 1E-3. For those test, we kept the T_step parameter of
the "Q_fier" set on 1E-4. Note that we have shadowed the
areas corresponding to the "Q_fier" boxes on the following
graphics. It means that points not located on the borders of the
boxes are not the fact of the "Q_fier". (α=1.0, β=1000.0,

γ=1.0):

Fig. 1. "Q_fier" principle

 Code explanation

According to the instanciation explanations above, the
interface of the following model works on a specified quantity
and realize the sampling according to the T_step and Q_step
parameters placed as generic data for reusability:

H_min = 1.0E-12 ; H_max = 1.0E-3 ; without "Q_fier"

(a)

entity Q_fier is
 generic (T_step:real:=1.0e-2;
 Q_step:real:=1.0e-2);

port (quantity Q: in real);
end entity Q_fier;

To monitor the specified quantity, the architecture of the
"Q_fier" manages two quantities (Q_diff and T_diff) that
represent the evolution of its two components: time and
amplitude for the last reference point. When those differences
exceed the set up steps, the use of the 'above instruction
theoretically creates a break point at the cross time.

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 1.0 ; T_step = 1.0E-4

(b)

architecture beh1 of Q_fier is
 quantity Q_diff, T_diff : real;
 T_hold : := 0.0; signal real
 Q_hold : = Q; signal real :

signal V_spy : boolean;

 begin

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.5 ; T_step = 1.0E-4

(c)

 break on V_spy;

 Q_diff == (Q - Q_hold); abs
 T_diff == now - T_hold;
 V_spy <= Q_diff'above(Q_step) or

T_diff'above(T_step);

When the break point is reached, an internal signal unlatch a
process that sets new values for the amplitude and time
references:

 New process begin _Memory :
 wait until V_spy; Q_hold <= Q;
 T_hold <= now;
 end process; end architecture;

The final example deals with the z=f(x) representation. The
following graphics were obtained with the same settings as
previously. It shows how the "Q_fier" dynamically mange the
sampling to get a minimum resolution:

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.3 ; T_step = 1.0E-4

(d)

H_min = 1.0E-12 ; H_max = 2.0E-5 ; without "Q_fier"

(a)

H_min = 1.0E-12 ; H_max = 1.0E-3 ; Q_step = 0.1 ; T_step = 1.0E-4

(e)

H_min = 1.0E-12 ; H_max = 2.0E-5 ; Q_step = 0.4 ; T_step = 1.0E-4

(b)

Fig. 2. z(t) sampling and quantification evolution with a "Q_fier"

Fig. 2 does well show that it is possible to control the
sampling rate of the simulator taking into account the
evolution of the amplitude of the signal.

Fig. 4. z=f(x) representations

If the time constraint is correctly relaxed, the "Q_fier" will not
create any point where it is not required, as in Fig. 3. For
those tests, the simulator settings are exactly the same as
before, except the maximum time step which is 1E-4. The z(t)
function has been dilated for a better view (γ=5.0), and it has
been phased out for better representation:

The representation is definitely better on Fig. 4.b. That could
allow to locate some anomaly in models that may not be
detected in other ways.

 A scheduler

Another use of this model is to make up for the
PROCEDURAL instruction which is not available on current
simulators.

H_min = 1.0E-12 ; H_max = 1.0E-4 ; without "Q_fier"

(a)

A first idea to replace this missing instruction could be to use
a PROCESS scheduled on each ASP. Unfortunately, there is
no signal returned by the simulators which notifies an ASP
has been computed. Such a signal can not be returned in the
current standard due to portability difficulties.

A solution to this problem is to use a "Q_fier". Indeed when
you want to compute y=f(x) with some complex
dependencies, you would like too associate a value to y for
each ASP on x. With the "Q_fier", this can be done at each
time the update process is engage. In this way, the y quantity
remains constant between two of those steps. In the hysteretic
problem mentioned in the introduction, the nonlinear relations
were responsible of fluctuating precision on B(t). As shown
bellow, the use of the "Q_fier" helped to get more regular
sampling and better representation of B(H).

H_min = 1.0E-12 ; H_max = 1.0E-4 ; Q_step = 0.4 ; T_step = 1.0E-4

(b)

 Fig. 3. z(t) selective action demonstration

Hysteresis cycle computation without (a) and with (b) a "Q_fier" (B(H))

(a) (b)

Magnetization computation without (a) and with (b) a "Q_fier" (B(H))

(a) (b)

Fig. 5. Illustration of the "Q_fier" as a scheduler

 Conclusion

 References

[1] Y. Hervé, "VHDL-AMS : Applications et enjeux industriels"

Dunod éditeur, 2002.
[2] 1076.1-1999 IEEE Standard VHDL Analog and Mixed-siggnal

Extensions (Language Reference Manual [LRM])
[3] E. Christen et al, "Tutorial VHDL-AMS", 36e, Design Automation

Conference, New Orlean, june 21-25, 1999.

	Abstract
	Introduction
	Presentation of the "Q_fier"
	Code explanation
	Examples
	A scheduler
	Conclusion
	References

