
RadiSim – A Fast Digital RF Behavioral Simulator
including Bit Error Rate Assessment

for System Exploration, Validation, and Tuning

Joseph P. Skudlarek
Cypress Semiconductor Corporation

9125 SW Gemini Drive Suite 200
Beaverton, Oregon 97008
Jskud@cypress.com

Abstract
RadiSim is a fast, functional, and accurate RF (radio fre-
quency) system simulator which estimates system perfor-
mance, including bit error rate (BER), in minutes instead of
hours or days. Since RadiSim simulates the entire transmit-
through-receive path quickly, we were able to search a large
design space while creating our commercial radio chip. We
describe the background and motivation; chip system mod-
el; fundamental design decisions; a novel way to estimate
minimum Eb/N0 given maximum BER; optimal aggregation
of BER estimates; our validation strategy and results; and
some essential chip improvements enabled by RadiSim.

1. Background and Motivation
Bluetooth

TM
is a wireless digital communication standard

transmitting binary data at 1 Mb/s employing Gaussian Fre-
quency Shift Keying (GFSK), with a nominal deviation of
160 KHz on 79 carriers spaced 1 MHz apart, starting at
2.402 GHz. [1]

Designing a complete RF system requires numerous trade-
offs, including filter widths and circuit complexity. To ex-
plore the design space and validate the architecture for the
receive path of our Bluetooth chip, we were using analog
and mixed-signal simulation technologies. However, they
had two drawbacks; they took too long to run, and they
could not determine the BER (the fraction of bits received
in error) directly.

To address these issues, we decided to create a fast simu-
lator based on digital signal processing techniques, to embed
the bit error rate calculations within it, and to construct the
system simulation model from a small set of modular com-
ponents. The result is RadiSim, a fast system level simulator
for digital radio.

The primary design goals for RadiSim were accuracy, speed,
and flexibility. Most of the simulator development effort was
spent not on implementation, but on validation. We needed
to know that the simulator predictions were accurate enough
to support fundamental design decisions, decisions which in-
cluded using simpler circuitry and removing unneeded func-
tionality.

Given the size of the design space we needed to explore,

we had to perform hundreds of experiments, most involving
hundreds of thousands of transmitted bits. On a 500 MHz
processor, RadiSim can simulate over 10,000 samples a sec-
ond, end-to-end; when sampling at 37× the bit rate, the
throughput is 280 bits per second, which is hundreds of times
faster than conventional analog simulation, and more than
30× faster than a simplified subset of the system (no lim-
iters or filters) simulated in SPICE with behavioral models
at baseband. Nonetheless, we consumed over 500 hours of
CPU time running RadiSim in the first 6 months alone.

The chip architecture, while stable, was not final. Aspects
such as filter widths, frequency offsets, and subsystem im-
plementations were changing. In short, the design was still
evolving; and RadiSim had to be flexible enough to handle
the revisions.

2. Chip System Model

+ +

Onchip
noise

Limiter
filter

1011... Slicer

Onchip

Post-detect
filter

Detector

Channel
noise

IF Noise
filter

Figure 1: System model of chip receive path.

The chip’s transmit path is implemented with mixed sig-
nal techniques, while the receive path is pure analog. Radi-
Sim uses DSP techniques to model both paths. Because the
goal of RadiSim was to explore the receive path, we use a
simple behavioral model of the modulator circuit.

The (random) bits to be transmitted start out as square
pulses, either +1 or -1, each of duration Tb. The pulse
train is Gaussian filtered to reduce the bandwidth, produc-
ing m(t), which is scaled by the constant 2πfdeviation and
integrated producing φ(t). φ(t) is used to modulate a carrier,
producing a real-valued signal which is transmitted through
the channel. The channel combines additive white Gaussian
noise (AWGN), and possibly an interfering signal, with the
desired signal.



The system model of the chip’s receive path is shown in
Fig. 1. The physical signal is received with a conventional
low-IF (low intermediate frequency) image reject mixer [2],
using high side injection to produce two related channels,
the in-phase I and quadrature Q channels, on a 2 MHz in-
termediate frequency. RadiSim models the signal coming
from the image reject mixer degraded by noise and inter-
ference with a complex exponential at baseband, ejφ(t), to
which it adds AWGN and optional interference.

The physical I and Q channels are filtered with a single
1.2 MHz complex bandpass filter; each channel is hard lim-
ited to remove amplitude modulation and reduce noise; the
pair is complex bandpass filtered again to remove the har-
monics introduced by hard limiting and to reduce onchip
noise, then fed to a complex detector which reproduces a
noisy version of m(t) which is lowpass filtered and fed to
a slicer. The receive path circuitry introduces additional
noise, which RadiSim models with input-referred AWGN in-
troduced just before the hard limiters.

3. RadiSim Design Decisions
The major RadiSim design decisions are described next.

More general formulations of some of these ideas and effi-
cient alternatives can be found in [3], [4], and [5].

DSP Techniques, FFT-based FIR Filters RadiSim is
built around sampled signal values processed primarily with
finite impulse response (FIR) filters efficiently implemented
via the Fast Fourier Transform (FFT).

Given sufficient sampling rates and filter taps, DSP tech-
niques [6] using FIR filters can approximate bandlimited lin-
ear time-invariant continuous-time systems arbitrarily well
[7, Section 3.4, 7.0], [8, Section 10.1]. Most RF transmit
and receive circuits are bandlimited linear time-invariant;
and with care, the non-linear portions can also be modeled
with DSP techniques.

Since the chip architecture has no feedback between blocks,
and since we had ready access to machines with a minimum
of 256 MB of main memory, each block can efficiently pro-
cess its entire input sequence in isolation.

Complex Representation at Baseband Consider a
carrier, cos(ωt), which is amplitude, frequency, and/or phase
modulated to create a signal v(t). The signal can be ex-
pressed as v(t) = I(t) ∗ cos(ωt)−Q(t) ∗ sin(ωt). Define the
complex envelope g(t) = I(t) + jQ(t); if the modulations
are not too fast relative to the carrier, then the informa-
tion content of the signal is contained in g(t) [9, page 56],
[10, page 151]. “In digital computer simulations of band-
pass signals, the sampling rate used in the simulation can
be minimized by working with the complex envelope, g(t),
instead of with the bandpass signal, v(t), because g(t) is the
baseband equivalent of the bandpass signal.” [11]

Direct BER Determination given Eb/N0 The BER
for a given signal-to-noise ratio (SNR) is a key figure of
merit for digital communications. SNR is often expressed in
the modulation independent manner of Eb (energy per bit)
divided by N0 (noise power spectral density), or Eb/N0 [12,
p. 118]. Many of the Bluetooth specs are expressed in BER.
In order to determine BER, one must compare transmitted
bits with received bits, something which is not that easy to
do in, say, SPICE. Also, it is difficult to introduce AWGN in
a SPICE simulation. RadiSim addresses both of these issues
by directly computing BER, given Eb/N0.

Configurable, including Oversampling Rate Numer-

ous aspects of the models and simulation run are config-
urable. Parameters include: number of data bits to simu-
late, oversampling rate (number of samples per the 1µs bit
time), frequency deviation, IF carrier frequency, filter widths
and offsets, noise and interference levels and offsets, models
to use, amplitude limiter settings, and slicer settings.

Initially, oversampling at 16× was expected to be suffi-
cient. The most direct way to validate that claim was to
vary the oversampling rate, and demonstrate that 16× was
sufficient. We discovered that oversampling at 32× (when
simulating at baseband) gave better, more stable, results.
We also needed to prevent the hard limiter’s odd harmonics
from being aliased into the passband. Our default over-
sampling rate at baseband is 37×, and we often oversample
at 60× or higher when simulating with a non-zero IF or with
adjacent channel interference.

Sweep Design Space, Repeat Runs, Log Results
Consider the incoming noise limiting filter in the receiver.
If it is too narrow, then much of the intended signal will be
filtered out. If it is too wide, then too much noise will be
admitted. We sweep the design space to determine (or con-
firm) the best filter width. In addition to filter widths and
offsets, RadiSim can also automatically sweep oversampling
rate, slicer location, frequency deviation, IF carrier frequen-
cy, and noise levels.

For each run, RadiSim logs the simulator version and the
settings of all parameters. We can archive every version of
the simulator, and the output of every run. This provides
an audit trail from which we can reproduce any experiment,
and re-examine the details used to make crucial decisions.

Abstract and Derived Models We needed to explore
the design space to help guide the circuit design, so we had
to use abstract models initially. We used a collection of ideal
and less than ideal models. For example, we implemented
ideal two and three pole Bessel filters. But to model expect-
ed behavior, we implemented a gain-limited differentiator
with two pole roll off, with one pole at 10 MHz, and the
other pole 4 MHz below fmax.

Another reason to provide ideal models is to aid valida-
tion. We compared RadiSim’s results with different theories,
some of which use ideal circuit elements; cf. Section 6.

To better estimate the implemented circuit’s behavior,
RadiSim also incorporates models derived from SPICE cir-
cuit simulations; these models incorporate artifacts of im-
plementation, including amplitude ripple and tilt, and non-
constant group delay.

“The filters and differentiator are all analog circuits. In
order to represent these circuits accurately with RadiSim,
a SPICE AC (small signal) simulation is performed to gen-
erate a point-by-point complex transfer function in the fre-
quency domain. The resulting equally spaced real and imag-
inary pairs cover the relevant frequency response up to +/−
10 MHz. Since the filters are complex, they must be sim-
ulated in two steps to acquire both the positive and neg-
ative frequency responses. This is done by first sweeping
with a −90 degree phase relationship between the I and
Q channels, followed by the same frequency sweep with a
+90 degree phase offset. The resulting two sets of frequency
response data are combined in the proper order, interpolat-
ed based on the sample rate of the RadiSim simulation [and
passed through an inverse discrete Fourier transform] to cre-
ate an FIR filter.” [Mark Gehring, personal communication,
September 2001].



Visualization and Monitoring In order to diagnose
problems and understand how the system is behaving, Radi-
Sim provides a number of optional outputs. One of the most
important is a standard eye diagram [13] of the input into
the slicer, as shown in Fig. 2.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2: Simulated Eye Diagram at BER=1e-3.

Additionally, the Gaussian filtered binary data signal (the
input to the modulator), the output of the modulator, the
input to the demodulator, and the output of the demodula-
tor can all be displayed, either as separate I and Q channels
over time, or as an eye diagram. In all cases, the original
data is displayed with the intermediate data to provide a
reference. The average power and the power spectral den-
sity for the signal at most intermediate stages can also be
reported. Lastly, results from multiple simulation runs are
manually extracted and used to create plots.

Most of the RadiSim building blocks have unit tests and
optional debugging modes. For example, filter construc-
tion can optionally display the filter’s frequency response,
its group delay, and its impulse response.

Development and Run Environments GNU/Linux1

[14], [15] is a free, full-featured, readily available develop-
ment environment which works well with few restrictions.
Octave [16] is a free, robust, feature-rich MATLAB2 clone,
which runs under many operating systems, including Linux,
Solaris, and Windows.

RadiSim (including test scaffolding and proofs of concept)
is composed of 20,000 lines of code in dozens of M-files, and
runs under Octave. Our primary development environment
is GNU/Linux running on a laptop. Most of our experiments
are run on our laptop, or on dual processor servers running
Linux; we also run experiments under Solaris and Windows.

4. Estimating Eb/N0, given BER
Simulations usually predict bit error rates based on Eb/N0.

Fig. 3 shows the predicted bit error rate, as well as the
sample standard deviation associated with the predictions,
based on simulating 9 trials (of 20K bits) at each value of
Eb/N0. Note that the graph uses log-log axes, so the error
bars are distorted.

But sometimes we need to invert this relationship. Re-
call that Bluetooth performance requirements specify the

1Linux is a registered trademark of Linus Torvalds.
2MATLAB is a registered trademark of The Mathworks, Inc.

1e-06

1e-05

0.0001

0.001

0.01

0.1

8 10 12 14 16 18 20

B
E

R
 (

lo
gs

ca
le

)

Eb/N0 (dB)

Figure 3: BER vs. Eb/N0 in dB for our Bluetooth
receiver, based on simulating 9 trials of 20K bits at
each Eb/N0 value; error bars are one sample stan-
dard deviation around the mean.

required BER and the minimum signal-to-noise ratio need-
ed to achieve it. In order to determine the margin in the
system, one needs to determine the minimum Eb/N0 which
delivers that BER.

Simulating the bit error rate is similar to determining the
fairness of a coin based on repeated flips of the coin. A fair
coin will not always produce exactly half as many heads as
tails; there is inherent variance in the outcome of a set of
trials—it’s a noisy process.

One way to determine the Eb/N0 value for a given BER
value is to sweep out the BER versus Eb/N0 curve as was
done in Fig. 3, and calculate where the curve crosses the
desired BER line. However, sweeping out the BER versus
Eb/N0 curve can consume a lot of simulation cycles. For
example, RadiSim took about 2 hours 15 minutes on a 500
MHz processor to create Fig. 3, from which we can estimate
Eb/N0 corresponding to BER=1e-3 by linear extrapolation
with about 0.6% standard error.

Rather than sweeping out the entire curve, RadiSim con-
tains a novel iterative solver with improved speed and com-
parable accuracy that handles the variance inherent in Monte
Carlo simulation. It took about 6 minutes to determine the
Eb/N0 value which produced the target BER of 1e-3, with
about 1% standard error. That is a simulation speedup of
over 20X, with a minor decrease in accuracy. The speed im-
provement is a factor of 10 when the solver is compared with
a simple sweep (using 80K bit samples at each Eb/N0 value)
which also produces an Eb/N0 estimate with 1% standard
error at BER=1e-3.

The RadiSim solver iterates through a series of trials, per-
forming simulation at each trial; 5 trials are sufficient in
most cases. The multiple simulations reduce the number of
bits required in each simulation, and the directed simula-
tions reduce the number of simulations required.

The curve of log(BER) versus Eb/N0 in dB is fairly linear
if Eb/N0 does not vary too widely; see Fig. 4. The Radi-
Sim solver uses every trial outcome to update a linear least
squares fit of log(BER) versus Eb/N0. To establish a solid
pair of points for the initial linear fit, it uses a user-supplied
guess for Eb/N0 in dB, call it ξ1, and computes ξ0 = ξ1 − 2;
the RadiSim solver then performs trials at ξ0 and ξ1. The
result of the simulation at ξ0 has a larger BER with less
variance, and helps to anchor the fitting process. After trial



0.001

0.01

13.5 14 14.5 15 15.5 16 16.5

B
E

R
 (

lo
gs

ca
le

)

Eb/N0 (dB)

 1

 2

3 

4 
5 

 6
 7

8 

Figure 4: BER versus Eb/N0 curve, overlayed with
initial linear fit; directed trials are indicated by iso-
lated points, labeled by order of prediction.

n the solver sets ξn to the updated forecast of the Eb/N0

solution, allowing ξn to change by at most 4 dB for each
successive trial. Note how this procedure concentrates the
trials in the region which is predicted to yield the desired
bit error rate.

The application of this procedure is illustrated in Fig. 4.
The experimentally determined BER versus Eb/N0 curve
based on 180K simulated bits for each value of Eb/N0 is
shown; just above it is the initial linear fit, based on sim-
ulations run with Eb/N0 set equal to 13.7 and 15.7. This
line was extrapolated to predict the intersection with the
BER = 1e-3 line, a forecast of Eb/N0 = 15.95. However,
the simulation at that point produced a BER estimate of
7.98e-04, below target. ξ0, ξ1, and ξ2 were then used to
fit another straight line, which predicted the intercept at
Eb/N0 = 15.79, and the process continued. The first 8 trials
are illustrated.

Note that the simulated bit error rate is not deterministic:
the 8th trial is well placed on the Eb/N0 axis, yet the result
is very noisy. Since the simulated bit error rate is not deter-
ministic, the RadiSim solver is more than traditional root
finding. There is inherent noise in each observation; there-
fore unlike simple bisection search or a Newton-Raphson
solver, the solution technique must take these (random) vari-
ations into consideration.

Fig. 5 illustrates the convergence, robustness and accu-
racy of the solution technique, using 13.70 dB as the initial
guess. Similar results are obtained using initial starting val-
ues of 10.50 dB and 14.50 dB [17].

5. Average is Maximum Likelihood Estimator
To validate the simulator and tune the simulator parame-

ters, we need to have an accurate representation of the shape
of the error curve. One way to generate such a representa-
tion is to perform numerous simulations at each different
value of Eb/N0, and combine the results.

One can combine multiple trials for a fixed Eb/N0 value
and a fixed number of transmitted bits to estimate the stan-
dard deviation of the underlying process. Simulating a fixed
number of transmitted bits also makes the simulation run
time deterministic.

What’s the best way to combine multiple trials of constant
size when estimating the bit error rate with simulation? One
obvious method is to combine all the trials, and compute the

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

0 2 4 6 8 10 12 14 16 18 20

E
b/

N
0 

(d
B

)

trial number

Figure 5: Estimated Eb/N0 in dB at BER=1e-3
versus trial number; first trial (not shown) at
Eb/N0=13.70 dB. Bounds are 1% above and below
final trial’s mean value of 15.84 dB.

grand average bit error rate; but how good is that? In this
section, we show that the grand average is the maximum
likelihood estimator (MLE) for an underlying Poisson pro-
cess; therefore, in the absence of any other information, this
is the best one can do.

Maximum Likelihood Estimation refers to determining
the values of parameter(s) most likely to have produced the
observations; by that criterion, they are the best estimates
of the underlying process. See, for example, [18, Chapter
15].

Consider T trials, where trial i simulates n bits and pro-
duces ti errors. If the underlying Poisson process has pa-
rameter λ, the likelihood of observing t1, t2, ..., tT errors is

T
∏

i=1

e−λλti

ti!

which we can rewrite as

e−λT

T
∏

i=1

λti

ti!

Call the grand average c; that is, c = 1
T

∑T

i=1 ti; then the
equation can be rewritten

e−λT λcT

∏T

i=1 ti!

To determine the MLE, we maximize over all λ; therefore,
the denominator, a constant, drops out, and we’re left with

max
λ>0

(

e−λλc
)T

T is a fixed positive integer, so to maximize the expression,
we can maximize e−λλc; to solve for λ, set the derivative
equal to 0

e−λ(−1)(λc) + e−λ(cλc−1) = 0

since e−λ is non zero

(cλc−1
− λc) = 0

and dividing both sides by λc−1 gives

c = λ

which was to be proved.



6. Simulator Validation
By far, the most difficult task in developing RadiSim was

to validate the results. As part of the ongoing development,
almost every claim about the system model or the simulation
techniques was challenged and verified. This ongoing vali-
dation was key to developing a solid model and simulator; in
particular, many mistaken assumptions were discovered ear-
ly, avoiding inaccurate simulations, erroneous conclusions,
and bad decisions. In addition, we unit tested the building
blocks, interactively checked intermediate results, and relied
on the following techniques.

Classic Coherent and Noncoherent Theory The the-
ory for optimal coherent and noncoherent detection of FSK
signals is well established [12] [19] [9] [10]. Initially, Radi-
Sim only modeled and simulated at baseband. To allow a
comparison with these theories, we added non-zero-IF capa-
bilities and both coherent and noncoherent matched filters;
we used the existing flexibility to bypass unused portions of
the system, such as Gaussian filtering of the incoming digital
signal. As illustrated in Fig. 6, our simulations were consis-
tent with theory, which indicated that the basic infrastruc-
ture, including noise generation and BER evaluation, was
working.

One subtle issue is that noncoherent detection theory does
not apply when using moderate carriers—the theory is pred-
icated on transmitting narrow-band bandpass signals, for
which the carrier frequency is much greater than the data
rate, so that the complex correlation coefficient defined as

ρ =
1

2E

∫ T

0

s̃1(t)s̃
∗

2(t) dt

[9, p. 202] is a valid approximation, where s̃(t) is the base-
band equivalent of s(t). In our experiment, we transmitted
binary data at 1 MHz using 160 KHz deviation on a 20 MHz
carrier, and oversampled at 60×.

1e-05

0.0001

0.001

0.01

0.1

1

6 8 10 12 14 16 18 20

B
E

R
 (

lo
gs

ca
le

)

Eb/N0 (dB)

Figure 6: Lower line is simulated BER vs. Eb/N0

in dB for chip design; upper lines are noncoherent
matched filter simulation results and noncoherent
theory prediction.

Consistent Results at Baseband and IF The most
direct way to demonstrate fidelity of baseband simulation is
to compare it with the simulated non-zero-IF results. Table
1 displays the strong consistency of the computed minimum
Eb/N0 required to achieve BER=1e-3 for an earlier version
of the system using an ideal FM discriminator.

Table 1: Simulation Results at Varying Intermediate
Frequencies of Eb/N0 Needed to Achieve BER=1e-3.

run IF (MHz) Eb/N0

run.2001.1009.0448.log 0 15.48
run.2001.1009.0452.log 2 15.50
run.2001.1009.0451.log 3 15.60
run.2001.1009.0450.log 4 15.47
run.2001.1009.0449.log 5 15.89

Comparison with SPICE Generating random inputs,
including noise, for a SPICE transient simulation is prob-
lematic. We compared the simulations of SPICE and Radi-
Sim for a deterministic system: transmitting a chirp data
signal (+1,−1,−1, . . . ) in the presence of a relatively prime
interfering sinusoid.

Narrow-Band Digital FM Error Rate Theory Our
system includes a hard limiter, and so does the system ana-
lyzed in [20]. We extended RadiSim to model that system;
the results of runs with different IFs are summarized in Table
2, where BT is the Bif ∗Tb product, and h is the modulation
index. The theory values were read from the figures in [20],
and are only approximate.

Concurrence appears to degrade with a non-zero-IF; our
assessment is that FM click noise, which in the continuous
case is independent of carrier, but in the discrete case de-
pends on carrier, is a primary contributing factor. We did
not analyze the anomalous results at BT=3, IF=2 MHz and
IF=4 MHz.

Table 2: Narrow-Band Digital FM Error Rate
Theory versus Simulation of Eb/N0 predicted for
BER=1e-3.

BT h theory 0 MHz 2 MHz 4 MHz
1 0.5 10.5 10.29 10.36 10.41
1 0.7 09.2 09.36 09.97 10.14
1 1.0 11.0 10.89 11.37 11.59
2 0.5 11.8 11.81 12.40 12.36
2 0.7 11.1 11.33 12.36 12.36
2 1.0 11.6 11.82 12.63 12.61
3 0.5 13.2 13.23 14.33 14.12
3 0.7 12.7 12.87 14.32 14.08
3 1.0 13.0 13.14 14.63 14.22

Dead Reckoning of Noise Levels Many theories use
Eb/N0, while many specifications use SNR. Assuming the
incoming signal is fed through a bandpass filter of width Bif

which passes the entire signal, N0 ∗ Bif is the noise power,
and Eb/Tb is the signal power. Therefore, at the output of
the filter,

Eb/Tb

N0 ∗ Bif

=
Signalpower

Noisepower

This simple sanity check was instrumental in uncovering a
basic flaw in our modeling. We erroneously decided that the
signal would be modeled with a complex exponential, forcing
the average signal power to be 1, while requiring that N0 be
set to match the environment. The problem was that we
discarded half the signal power by ignoring the portion of
the signal translated above 4 GHz by the image reject mixer.
Therefore, adjusting N0 within RadiSim was parameterized,
allowing it to be increased by 3 dB so that Eb/N0 would be
correct.



7. Chip Design Revisited
RadiSim provided quick and conclusive analysis that en-

abled us to simplify and correct the implementation after
the chip design was well underway.

Remove Filter Centering Circuitry According to the
Bluetooth specification, the transmitter can initially be up
to 75 KHz from center at the start and drift up to an addi-
tional 40 KHz during transmission, resulting in a net offset
of 115 KHz from the nominal carrier. To help ensure good
reception in this worst case, a centering mechanism was de-
signed for the initial noise limiting bandpass filter. However,
the addition of this centering circuitry increased the design
and layout time, consumed die area, and reduced the filter’s
linearity. In about an hour with RadiSim, we were able to
sweep the noise filter offset and determine that the system
performance did not start to degrade appreciably until the
transmitter was off center by 150 KHz (Fig. 7). Therefore,
we decided to remove the centering circuitry. In addition to
time, area, and linearity benefits, staying centered at nomi-
nal also avoided increasing adjacent channel interference.

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4

0 50 100 150 200

E
b/

N
0 

(d
B

)

Carrier Offset (KHz)

Figure 7: Estimated Eb/N0 yielding BER=1e-3 ver-
sus carrier offset, for nominal deviation of 160 KHz.

Replace AGC Circuit with Hard Limiters Many FM
detection techniques, including the one we are using, depend
on having constant amplitude signals. We designed an auto-
matic gain control circuit to help meet this need. However,
Bluetooth has a relatively short preamble, making the AGC
settling time requirements stringent; we needed to have the
circuit settle in less than 1 µs, but current designs were tak-
ing about 1.5 µs. One classic solution which requires no
feedback or settling time is to pass a sinusoid through a
limiting amplifier to produce a square wave of constant am-
plitude, and lowpass filter the result to recover a sinusoid
of constant amplitude. Could we independently hard limit
each of the I and Q channels and still meet spec? With
RadiSim, it was easy to add an amplitude limiting amplifier
to each channel and demonstrate an acceptable degradation
of 0.62 dB in overall system performance for a BER of 1e-3.
Therefore, we abandoned the AGC circuit in favor of hard
limiting and bandpass filtering.

Replace 3-Pole Bessel with 3-Pole Elliptic Filter
We use a complex differentiator in our detector. Differen-
tiators (with their

∨

shaped frequency response) inherently
amplify any adjacent channel noise and interference which
reaches them. Late in the design cycle, we found that we

were about 3.35 dB over the adjacent channel interference
spec using a 3-pole Bessel low pass filter to feed the slicer.
By replacing the 3-pole Bessel with a 3-pole elliptic filter,
we were able to recover more than 4 dB of performance, and
meet spec. The elliptic filter fit in the silicon area formerly
occupied by the Bessel filter.

8. Acknowledgements
Mark Gehring’s initial conception and proposal for simu-

lating the complex signal representation at baseband using
DSP techniques and his ongoing support and creative input
were vital contributions to the design of RadiSim. Lawrence
Ragan, Dick Walvis, and Professor Y. C. Jenq each had ben-
eficial discussions with the author on wireless RF in general,
and RadiSim in particular. Feedback from Alan Mantooth
and anonymous reviewers helped to substantially improve
this presentation.

9. References
[1] Bluetooth specification version 1.1, February 22, 2001.

http://www.bluetooth.com.
[2] Jan Crols and Michel S. J. Steyaert. A single-chip 900 MHz

CMOS receiver front-end with a high performance low-IF
topology. IEEE Journal of Solid State Circuits,
30(12):1483–1492, December 1995.

[3] Gerd Vandersteen, Piet Wambacq, Yves Rolain, Petr
Dobrovolný, Stépahne Donnay, Marc Engels, and Ivo
Bolsens. A methodology for efficient high-level dataflow
simulation of mixed-signal front-ends of digital telecom
transceivers. In Design Automation Conference, pages
440–445, 2000.

[4] Gerd Vandersteen, Piet Wambacq, Yves Rolain, Johan
Schoukens, Stépahne Donnay, Marc Engels, and Ivo
Bolsens. Efficient bit-error-rate estimation of multicarrier
transceivers. In Design, Automation and Test in Europe,
pages 164–168, 2001.

[5] Jess Chen. Extracting and using J-models to estimate
ACPR in direct conversion transmitters.
http://www.cadence.com/datasheets/dat pdf/j ext.pdf.

[6] Richard G. Lyons. Understanding Digital Signal
Processing. Addison-Wesley, 1997.

[7] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time
Signal Processing. Prentice-Hall, Inc., 1989.

[8] Leland B. Jackson. Digital Filters and Signal Processing.
Kluwer Academic Publishers, 1986.

[9] Sergio Benedetto and Ezio Biglieri. Principles of Digital
Transmission with Wireless Applications. Kluwer Academic
/ Plenum Publishers, 1999.

[10] John G. Proakis. Digital Communications, 4th ed.
McGraw-Hill, 2001.

[11] Leon W. Couch, II. Complex envelope representations for
modulated signals. In Jerry D. Gibson, editor, The Mobile
Communications Handbook, 2nd ed., chapter 1. CRC Press
LLC, 1999.

[12] Bernard Sklar. Digital Communications, 2nd ed.
Prentice-Hall, Inc., 2001.

[13] Ferrel G. Stremler. Introduction to Communication
Systems, 3rd ed. Addison-Wesley, 1990.

[14] GNU home page. http://www.gnu.org.
[15] Linux home page. http://www.kernel.org.
[16] Octave home page. http://www.octave.org.
[17] Joseph P. Skudlarek. Estimating bit error rates and noise

margins via simulation.
http://members.dsl-only.net/˜jskud.

[18] William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Numerical Recipes in C:
the Art of Scientific Computing, 2nd ed. Cambridge
University Press, 1992.

[19] Bhagwandas Pannalal Lathi. Modern Digital and Analog
Communications Systems, 3rd ed. Oxford University Press,
Inc., 1998.

[20] R. F. Pawula. On the theory of error rates for narrow-band
digital FM. IEEE Transactions on Communications,
COM-29(11), November 1981.


