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Abstract 

Radio-frequency (RF) receiver circuits have operating 
characteristics that make them difficult to simulate using 
traditional SPICE transient analysis. Their gross operation 
alone, running at gigahertz frequencies, where cycle-by-cycle 
simulations will overwhelm the fastest computers and the 
results will rapidly fill disks. Another bottleneck is sifting 
through that data. 
 
For system design work, these problems can be overcome by 
using Verilog-A behavioral models to remove the high-
frequency carrier signal from the simulation. Based on the 
same concepts as the baseband-equivalent models (available in 
Cadence�s �rfLib� library) but extended to handle interference, 
the �spectral model� is based on an algebraic formula derived 
to model nonlinear amplification of multiple signals. 
 
To handle frequency-dependent response, filtering, and 
impedance matching, equivalent models for linear devices are 
used like their baseband-equivalent counterparts to achieve 
correct results. This approach, wrapping a nonlinear power-
series model with linear frequency-dependent components, is 
an equivalent-circuit alternative to the generally accepted need 
to use Volterra series for an accurate �black box� nonlinear 
model. 
 
With a bit of math (and no Verilog-A code), the spectral model 
for an amplifier is developed and compared with the traditional 
approach for simulation speed and accuracy in reproducing the 
effects of blocking, intermodulation, and cross modulation. 
 
 

Baseband-Equivalent Amplifier Model 
The general form of a modulated signal is 
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a real-valued signal, where I(t) and Q(t) are the in-phase and 
quadrature components of the baseband signal, respectively. 
Geometrically speaking, this represents a signal that is in a 
fixed reference frame, with an instantaneous magnitude and 
phase applied to the carrier frequency ωc. Likewise, the 
baseband-equivalent signal represents the same signal in a 

reference frame that �rotates� with the carrier frequency, and 
has a complex value 
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A transfer function of a memory-less nonlinear block, such as 
an amplifier, can be expressed as a Taylor series 
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where the second and higher-order terms account for the 
nonlinearity. Using a trigonometric relation and its special case 
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a narrowband input to this block 
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provides a narrowband output at the fundamental, amidst the 
binomial pattern of harmonics generated, found by summing 
the same frequency terms and ignoring all harmonic 
frequencies (which would be filtered out by bandpass filters 
and the limited frequency response of the circuit) 

 
0

3 53 5
0 1

2 12 1
0 2

0

2 1

cos( ) 3 10
4 16

cos( )
2

ω ω

ω
∞

++

=

+

 = + + +  

 =  
 ∑

!

kk
k

k

k
k

c cy t c A A A

c
t A

 (6) 

and recalling the definition of a binomial coefficient, 
sometimes written ( ; )n k  
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which is the number of ways of choosing k objects from a 
collection of n distinct objects without regard to order. Note 
that in (6), with only one modulated carrier, only odd-ordered 
terms contribute to nonlinearity at the fundamental frequency. 
 
Repeating the development of (6) using a baseband 



representation gives 
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Baseband modeling, in effect, discards the cosine factor from 
(6) and uses only the remaining series for the model (and of 
that, only the very first, few terms are needed for accuracy). 
Note how the complex part of this result is contained entirely 
in the leading term and is a factor for the series, which 
simplifies extracting the modulation terms to 
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where 
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Summary: In this section, we developed a Taylor-series 
approximation of the distortion imposed by amplifier 
nonlinearity on the in-phase and quadrature components of a 
modulated signal with the carrier suppressed. This is the basis 
of the baseband-equivalent model for the amplifier. 
 
 

Baseband-Equivalent Models for Common Devices 
Even in a system-level design, it is convenient to employ a 
simple device like the lowly resistor. A two-terminal device 
normally, the resistor would need to transform into a four-
terminal device (two pairs of terminals) to account for the in-
phase and quadrature components of the voltage across and 
current through the device, which we derive as 
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To find the baseband-equivalent signals, we simply write the 
traditional equations in exponential form, eliminate the 
exponential, then separate the real and imaginary parts, for 
example 
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This suggests that, beyond the mathematical convenience of 
working with I and Q as factors of the actual signal, we can 
also treat them as real signals in the simulator to calculate the 
components of the resulting current. As shown in Fig. 1, the 
�black box� of the baseband-equivalent four-terminal resistor 
is simply a pair of identical resistors, one for each the I-signal 
path and Q-signal path.  
 
The step eliminating the exponential is less trivial for a 
reactive component. With an inductor, for example we have to 
differentiate using the chain rule and collect terms before 
canceling the exponential. 
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As shown in Fig. 2, inside the �black box� of the baseband-
equivalent four-terminal inductor is a pair of identical 
inductors (no mutual coupling), each in series with a current-
controlled voltage source (transresistance) controlled by the 
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Fig. 1. Baseband-equivalent resistor. 



current through the opposite branch. These cross-coupled 
transresistances form a gyrator1, with a gyration resistance of 

.Lω  
 
Finding a gyrator in the equivalent circuit model for an 
inductor is a consequence of making the abstraction of I and Q 
as electrical signals. The steps we took to remove the carrier 
are equivalent to the geometric transformations Park 
developed in the 1920s for modeling motors, converting from 
a fixed (passband) to a rotating (baseband) frame of reference. 
An inductor is the mechanical equivalent of mass or inertia, 
specifically the rotational inertia of a motor�s rotor. The 
gyrator in the equivalent circuit corresponds to the �speed 
voltage� found in these motor models and the �back EMF� in 
spinning motors. 
 
Likewise, for a capacitor we have to differentiate using the 
chain rule and collect terms before canceling the exponential. 
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As shown in Fig. 3, inside the �black box� of the baseband-
equivalent four-terminal inductor is a pair of identical 
capacitors, each in parallel with a voltage-controlled current 
source (transconductance) controlled by the voltage across the 
opposite branch. These cross-coupled transconductances form 

                                                 
1 A device postulated by Tellegen in 1948. He called it a gyrator, referring to a 
mechanical analogy with spinning flywheels (gyroscopes) such that it �gyrates 
a current into voltage and vice versa.� 

(you guessed it) a gyrator, with a gyration conductance of 
.Cω  

 
From linear system theory, we know that for linear circuits 
each frequency is independent of any other frequency. So each 
I/Q signal pair is a separate circuit operating at its own 
assumed frequency and there is no connection or coupling 
between these signals. If the devices are nonlinear, only then is 
there coupling between frequencies. 
 
Summary: In this section, we developed the notion of treating 
I and Q as real electrical signals. This is an abstraction within 
an abstraction: (a) the baseband-equivalent signal is an 
abstraction of the actual signal, and (b) handling these 
baseband signals as though they are �real� voltages is an 
abstraction for employing the simulator, via Kirchhoff�s laws, 
to calculate baseband currents. 
 
 

Spectral-Equivalent Amplifier Model 
Returning to our Taylor series representation (3) of an 
amplifier and increasing the number of inputs 
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then (3) can be written as 
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The right-most factor for each term on the right-hand side is a 
multinomial expansion, which can be written as 
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where the summation on the right-hand side is over all sets of 
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Fig. 2. Baseband-equivalent inductor. 
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Fig. 3. Baseband-equivalent capacitor. 



non-negative integers (the natural numbers 0, 1, �, ∞) that 
sum to k, which is a �short hand� equivalent to 
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Also, recall the definition of a multinomial coefficient is 
defined as 
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which is the number of ways of putting k distinct objects into 
M different boxes with nm objects in the mth box. When M = 2, 
it becomes the binomial coefficient. 
 
The product in the summation on the right-hand side of (18) 
can be rewritten using Euler�s identities and complex 
conjugates as 
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where , .m m m m m mA I Q A I Q= + = −j j  This can be rewritten 
using a multinomial expansion, rearranged to enumerate the 
sums of the products, and applying the multinomial condition 
(20) gives 
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We can now write (18) in expanded form as 
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which involves frequencies of the form 
 1 1 2 2 M Mω α ω α ω α ω= + + +!  (24) 
where each α is any integer. 
 
The right-hand-side of (23) is the full output of all frequency 
components from the amplifier, whereas we will actually want 
to calculate the output at a particular frequency. Then the part 
that remains when a particular frequency is chosen is 
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from which we extract 
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Now it is time to discard irrelevant terms and simplify the 
equations. The only terms that can contribute to a chosen 
frequency are those for which either 
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When these two conditions for km are used 
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This looks more like an algorithm than an equation. Obviously, 
you could peak ahead to see if the �otherwise� condition 
would happen to avoid wasted calculations. Also, if the 
frequency chosen is DC, use either branch since then both 



conditions are equivalent�in other words, the term only 
counts once, not twice. 
 
To account for negated frequencies, the −α branch calculation 
takes the complex conjugate of its terms. This is equivalent to 
the +α branch calculation, so the equation condenses to 
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With this equation the DC case is handled correctly (the 
branch is only used once). 
 
Having accomplished the calculation by rejecting unwanted 
frequencies, it would be efficient to eliminate the �otherwise� 
condition. This is possible by observing that the only terms 
that can really contribute to the chosen intermodulation are 
 2 where 0, 1, 2,m m m mn q qα− = = …  (30) 
Since the order of an intermodulation frequency is defined by 
 1 2 MN α α α= + + +!  (31)  
the multinomial-summation condition can be narrowed further 
to 
 1

1 2 2 ( ) .Mq q q k N+ + + = −!  (32) 
Consequently, the output at a particular order of 
intermodulation frequency is reduced to 
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With further work, we eliminate the branch in the product by 
letting the absolute value function perform this implicitly 
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This is precisely the result given by Sea for amplitude-
modulated signals (without phase, these signals equal their 
own complex conjugate), which simplifies the product terms 

 
1 1
2 22 ( ) ( )

Sea s result... ...including !

p p p p p p p pq q q
p p p

phase

A A Aα α α α α+ + + + −
=

#$%$& #$$$$$%$$$$$&
�

 (35) 

when Im( ) 0, so that .p p pA A A= =  
 
Inspecting the difference with Sea�s result, we see that the 
magnitude of components for each intermodulation product 
remains the same 
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while the phase of these components, which was not part of 
Sea�s work, is simply 
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These factors describe the dreaded cross modulation of 
signals. 
 
We can improve (34) by eliminating the factorials, which 
increase exponentially presenting difficulties in calculation, by 
combining terms to form a multinomial coefficient 
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which represents the multiplier on signal combinations 
creating an intermodulation (IM) product. Then we can rewrite 
the product to separate that which is required in the product 
from that which is constant over the multi-summation 
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that can be move out to the front of the formula. These changes 
produce a formula that elegantly represents how IM products 
are produced. Picking up from (34) 
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where 
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Looking at the multinomial-summation condition (32), we can 
see that the result will be zero if k N−  is not an even, non-
negative integer. This fact represents our �radio knowledge� 
that an intermodulation of order N can only be produced by 
terms in the Taylor series (3) of degree k greater than or equal 
to N, and that k must be even or odd as N is even or odd. 
Combining this fact with (3) we find the total intermodulation 
amplitude to be 
 2 2 4 4 ,N N N N N N Ny c x c x c x+ + + += + + +!  (42) 
which provides our �final answer� of 
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Note how the complex part of the answer is contained entirely 

in the leading term and is a factor for the series, which 
simplifies extracting the modulation terms to 
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where 
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As discussed above, the DC output is 1/2 of these terms and, 
since N = 0, (43) simplifies to 
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This is precisely the result given by Sea (each signal cancels its 
own phase). Another sanity check, (44) and (45) with M = 1 
simplify to (9) and (10) respectively. 
 
Summary: In this section, we have taken the baseband model 
approach and expanded it to include any number of signals, 
assuming each is a modulated carrier. This is the basis for the 
spectral-equivalent model of the amplifier. Because the 
amplifier is nonlinear, the solution shows how cross 
modulation occurs at any output �spectral� frequency. 
 
 

A Small Benchmark 
Assume three CDMA modulated signals at 2GHz, 2.01GHz, 
and 2.02GHz, the desired signal being at 2GHz and the others 
are interference. This setup provides the classic example of 
worst case IM3 interference and cross modulation. 
 
This schematic in Fig. 4 is a �master� from which parts were 
extracted to perform circuit simulation and obtain run times for 
evaluating the speed-up from using the spectral model. On the 
left side are three CDMA generators, modified from one in the 
Cadence library, that generates I(t) and Q(t) for random data. 
Each generator uses a different seed for the pattern, to create a 
different sequence, but the sequences remain in lock step (that 
is, the chips transition at simultaneously). Then ideal 
multipliers serve as mixers to create the carriers, which are 
summed together. The signal level of the desired signal is set 
to 10mV peak (�30dBm) and the interference signals are both 
set to 100mV peak (�10dBm). The both LNA models are set 
to a voltage gain of 5 (13.98dB) into 50Ω and the IIP3 is set to 
6dBm. For the passband LNA, which is a Verilog-A model 
from the Cadence library, a pair of ideal multipliers mix-down 
the signal, which is then heavily filtered by a 10-pole, low-pass 
Bessel filter �brick wall� with its �3dB point set at the CDMA 
chip rate of 1.2288MHz to eliminate the unwanted signals 



from 10MHz and 20MHz (and various 6GHz harmonics 
mixed to 4GHz and 8GHz). The filter model contains one line 
of Verilog-A, albeit highly parameterized with pole locations. 
Because the group delay of this filter is noticeable, the 
reference signals and outputs from the spectral model have 
similar filters. 
 
The waveforms in Fig. 5 show the CDMA signals. Note the 
scale change for the leftmost plot. There is roughly a 4µs delay 
in CDMA output as the model includes a 48-stage digital filter 
to band limit the signals. 
 
The waveforms in Fig. 6 compare the distorted and ideal I(t) 
and Q(t). Cross modulation is seriously degrading these 
signals. 
 
The waveforms in Fig. 7 compare the �old� passband model 
and �new� spectral model results. On the left, agreement looks 
good. On the right, the differences in the waveforms are 
magnified to show about 1% difference. This turned out to be 
an artifact of the �brick wall� filters, which were leaking the 
envelope of spurious signals offset at 10MHz and 20MHz 
from the passband LNA. In a separate simulation, the 
modulated 2.01GHz and 2.20GHz signals were individually 
amplified by identical passband LNAs and these outputs 
combined before down mixing by 2.00GHz and filtering. The 
output was identical to the difference shown above. This 
demonstrates that the spectral model is providing the truly 
correct response! 
 
The simulation statistics in Table 1 reveal that the number of 
time points evaluated was determined by the carrier oscillators, 
for the �old� passband model, but seems to be set by the 
CDMA source for the �new� spectral model. Even the 
reference circuit, with only the �brick wall� filters, used nearly 
as many points. Another set of runs for 20µs simulated time 
with a 10ps step limit (about 2 million time points) required 
6,235 seconds for the �new� spectral model, but only 1,992 
seconds for the �old� passband model�a third the 
performance in simulation efficiency per time point. By 
simulating at the chip rate of 1.3MHz instead of the 2GHz 

carrier rate, the spectral technique gains a factor of 1,500 in 
reduced workload. A reasonable figure is �500+� for the 
speedup for using the spectral model. 
 
In addition, the conservative runs in Table 1 produced a 2.4G-
byte waveform file for the �old� passband model, and a 
modest 434k-byte waveform file for the �new� spectral 
model�a reduction of over 5,000 in file size and speedup in 
waveform plotting! 
 
Summary: A small benchmark comparing LNA models 
(nonlinear passband model versus spectral model) showed a 
500x simulation speed improvement and a 5,000x reduction in 
output data. The speed improvement ratio is equivalent to 
condensing eight hours into one minute. 
 
 

Conclusion 
We have shown how to extend the baseband-equivalent 
method to model passive devices and explicitly include the 
nonlinear effects of blocking, intermodulation, and cross 
modulation. By mathematically suppressing all carriers, the 
�spectral� model greatly accelerates time-domain simulation. 
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Table 1. Simulation results. 
 

200µs
simulated

accuracy
setting

time points
generated

seconds
used

time points
per second

seconds per
µs simulated "speedup"

conservative 8,288,000 9,880 839 49.4
moderate 4,853,000 6,188 784 30.9
liberal 3,626,000 4,591 790 23.0
conservative 3,897 20.46 190 0.102 705
moderate 3,722 19.56 190 0.098 462
liberal 3,043 15.23 200 0.076 450

reference conservative 2,947 4.88

"old"

"new"

 



 

 
 
Fig. 4. Schematic of �master� benchmark circuit, from which sections are removed to run timing simulations. 



 

 

 

 
Fig. 6. Output modulation I(t) and Q(t), comparing ideal and distorted output signals. 

 
Fig. 5. Input modulation I(t) and Q(t), from left to right, the desired signal and two interference signals. 

 
Fig. 7. Output modulation I(t) and Q(t), comparing �old� passband model and �new� spectral model results. 


