
A New VHDL-AMS Simulation Framework in MatlabTM

M. Zorzi, N. Speciale, G. Masetti
DEIS, University of Bologna

Viale Risorgimento 2 40136 Bologna, Italy
phone: +390512093777 fax: +390512093779

e-mail: mzorzi@deis.unibo.it

Abstract

In this paper we present SAMSA, a new tool for the
simulation of VHDL-AMS systems in MatlabTM. The
goal is the definition of a VHDL framework in which
analog/digital systems can be designed and simulated
and new simulation techniques can be studied, exploit-
ing both the powerful MatlabTM functions and Tool-
boxes.

Keywords: VHDL-AMS, Circuit simulation, Be-
havioral Modeling.

1 Introduction
Although analog blocks typically constitute only a

small fraction of the components in modern mixed-
signal ICs and systems-on-a-chip (SoC) designs, there
is a strong need for CAD tools in order to increase the
design speed and productivity, improving the qual-
ity of analog integrated circuits for telecommunica-
tions, consumer, computing and automotive applica-
tions. This claim is mainly due to the increase level
of integration available in silicon technology and the
growing requirement for digital systems to communi-
cate with the continuous-valued external world.

The development of analog and mixed-signal hard-
ware description languages [1][2][3] was just intended
to provide a unifying tool to link the various analog
design automation tasks in a coherent framework that
supports a more structured design methodology, from
the first rough idea to the manufacturing stage. These
languages provide a link between the analog and digi-
tal domains and allow for the definition of higher levels
of abstraction to describe and simulate analog circuits,
by using model paradigms and languages from the dig-
ital world. By so doing, macro, behavioral and func-
tional simulation levels have been developed for analog
circuits besides the well known circuit level and new
simulators have been introduced in modern industrial
design practice to cope with systems containing a mix

of analog blocks described at different levels and in
different domains.

To allow an easy exchange of these models across
different simulators and users, standardized hard-
ware description languages are used to describe these
higher-level models and to provide a consistent way
of representing and sharing design information across
different design tasks and hierarchy, linking the vari-
ous tools in a global analog CAD system.

Modern electronic circuits are characterized by a
large number of components which can have different
natures, such as MEMS systems where mechanical and
electrical devices are mixed together. The key to man-
aging this increased designed complexity while meet-
ing the shortening time-to-market factor is certainly
the use of computer-aided design and verification sys-
tems.

In this work we present SAMSA, a new tool de-
veloped to make possible VHDL-AMS simulations in
MatlabTM [4], a powerful scientific tool for numeri-
cal analysis, along with its associated complete set of
Toolboxes. The purpose of SAMSA is to have a sole
VHDL framework where analog/digital systems can
be designed and simulated and new simulation tech-
niques can be studied as well. This is possible because
the solver can be changed, or the user can implement
and test its own.

The paper is organized as follows: in the next Sec-
tion we introduce SAMSA, giving a brief description
of the most important aspects of this tool. Section 3
describes two examples: a memory cell and a micro-
electromechanical system. Finally, conclusions will be
drawn in Section 4.

2 System Description

2.1 Overview

The simulation tool SAMSA is schematically de-
scribed by the diagram in Figure 1. The tool is basi-
cally composed by a JavaTM [5] compiler and a solver.



TOOLBOX1

TOOLBOX2

TOOLBOX3

WORKSPACE
VARIABLE

OUTPUT
FILE

VHDL−AMS COMPILER

MATLAB

COMMAND
FILE

LIBRARIES

TM

SAMSA

SOLVER
(Analog/Digital)

Figure 1: SAMSA general architecture and depen-
dences with other MatlabTM Toolboxes.

The VHDL-AMS file can be compiled and linked with
models defined in an external library and Toolboxes
functions, and then simulated using a command file.

Using a VHDL compiler written in JavaTM and
loaded as a MatlabTM java class, two functions are
generated from the VHDL-AMS file:

1. a setup-function, used to initialize the simulated
system;

2. a run-function, which is called during the simula-
tion to update some workspace vectors and vari-
ables.

These functions are compiled with a C compiler, linked
with other objects (i.e. instanced entities) and, finally,
two dynamically linked functions are generated.

The system simulation is a three step process: first
SAMSA reads a spice-like command file, which de-
scribes the simulation that should be performed, the
variables that should be printed and some other op-
tions. Then the solver calls the setup-function for the
specified design unit, and creates a structure which
describes the system to be simulated in the MatlabTM

workspace. Finally the run-function is called, and
an output is produced as a workspace variable, or a
file in the work directory. Output data can be post-
processed or used within a particular Toolbox, making
the system very flexible.

2.2 The compiler

We chose to develop the VHDL-AMS compiler de-
picted in Figure 2 in JavaTM to exploit the capability

VHDL−AMS
FILE

PARSER

C RUN 

C COMPILER

RUN.DLL SETUP.DLL
OBJN

OBJ2

OBJ1

C SETUP

SOLVER

COMPONENTS

Figure 2: SAMSA compiler structure.

of directly load java classes into the workspace. After
the file parsing and symbols loading from included li-
braries, the design unit is analyzed. Two C functions
are generated and then compiled as mex functions us-
ing the MatlabTM default C compiler, but the user
can choose any C compiler (for example GCC from
GNU). After the compilation two dynamically linked
functions will be available in workspace. We use C lan-
guage because these functions performs a numerically
expensive task, and a purely MatlabTM implementa-
tion would be very slow. If the VHDL-AMS system
have instances of different components, these will by
statically linked into the run- and setup-function as
shown in Figure 2.

2.3 The analog solver

The analog solver can solve generic problems of the
form

G(t, y, y′) = 0

The solver is a function call of the form
f(y0, y

′
0, Co, F, Ia), where y0 and y′

0 are the initial con-
ditions vectors for the system of DAE being solved, Co

is an array of control options, F is the pointer to the
run-function and Ia is used as temporary array for
sharing information. Several control options can be
set by the user: the relative tolerance, the max step
allowed during transients, the simulation initial and
end time. The interface allows the user to implement
its own solver, making the tool very flexible and defin-
ing a framework where new simulation algorithms can
be tested, leaving unchanged the way the system is



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−7

−1

−0.5

0

0.5

1

1.5

2

time(s)

V
a(

V
)

with Ig model
Vg
w/o Ig model

Figure 3: Comparison between transient simulation
results of a memory cell with and without gate tun-
neling current model.

described. To perform this task, it is only necessary
to understand how the setup- and run-function work.

The setup-function includes three major blocks:

1. the system tree, where the hierarchy informa-
tion about the simulated system, free and branch
quantities related to the different component in-
stances are stored;

2. the simulation workspace, used to store the
value of the system unknowns;

3. the simulation flags, to keep track of the simu-
lation behavior, and some other variables like the
gmin used during electrical simulation.

The run-function takes the system structure as in-
put and modifies the simulation workspace block ac-
cording to the value of simulation flags. During this
phase, the user should only know what happens to
the system structure and no extra informations are
needed.

Finally, a basic library of components was de-
fined: presently it includes mechanical and passive el-
ements together with advanced MOST device models,
as BSIM4, EKV and MM11.

3 Implementation examples
Exhaustive testing was performed by using test

models [6] and different kind of systems were success-
fully simulated.

As an example, in the following paragraphs we show
results concerning two different applications: an ad-
vanced compact model and a MEMS structure.

3.1 Gate tunneling current effects

Figure 3 reports electrical simulation results of a mem-
ory cell based on a advanced MOS model transistor [7].
The purpose of this simulation was to observe the ef-
fects of different gate tunneling current models on the
stored voltage waveform in a memory cell.

As show in Figure, the application of a square im-
pulse to the gate when IG �= 0 produces remarkable
effects. Internal node remains at a steady voltage due
to the current injection from the gate (straight line)
while it gradually decreases as a function of time when
gate current is ignored (dashed line).

3.2 A MEMS resonator

A beam, used to build a low frequency MEMS res-
onator [8] in an RF system was also successfully sim-
ulated. The beam model depicted in Figure 4 has six

PHIA

YA

XA

PHIB

YB

XB

B
H

A

W

L

air viscosity : REAL :=17.9u;

Figure 4: Low frequency MEMS resonator diagram,
showing beam terminals and applied force stimuli.

terminals: a displacement and a force as across and
through quantity for XA, Y A, XB, Y B terminals re-
spectively, angle displacement and torque as across
and through for PHIA and PHIB terminals. These
terminals are used to represent the position at the
edges A and B and to apply a force or a torque to
the beam.

In the simulation we performed (Figure 5), the
beam was anchored at the A edge, and a time depen-
dent force was applied to the B edge. As the result
of this stimulus, the beam starts to oscillate, with a
motion that depends on different parameters, as the
beam width and length and the air viscosity.

The simulation command file is shown in Figure 6:
with the UNIT keyword we define the entity name
and architecture of the system that we simulate; LI-
BRARY defines the path where unit file is placed;
TRAN keyword tells the solver to perform a tran-
sient simulation, with a start and stop time and a
print step size.

It is also possible to assign a value to the model
parameters using the word SET, like the magnitude
of the force applied and the position of the beam, and



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−2

0

2

4

6

8

10

12
x 10

−7

time(s)

F
or

ce
(N

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−3

−2

−1

0

1

2

3

4
x 10

−7

time(s)

D
is

pl
ac

em
en

t(
m

)

Figure 5: Simulation results showing the beam dis-
placement due to applied force impulse.

* Unit name

UNIT beam behav

* entity architecture

* Simulation type

TRAN 0 10e−5 0.01e−5

* Start Stop Print

* Library name, where the Unit is stored

LIBRARY work

* Setup parameters

* force angle parameters

SET beam.f1.force = 1e−6

SET beam.f1.t delay = 1e−6

SET beam.f1.angle = 90

* beam parameters

SET beam.t1.angle = 0

SET beam.t1.yb = 0

* trace output

TRACE beam.T1.yb beam.T1.xb beam.T1.txb

beam.T1.tyb

Figure 6: Command file for the simulation of a beam
with SAMSA.

finally the TRACE keyword save the specified vari-
ables to the output file or to the MatlabTM workspace.
The beam structure and its physical model were en-
tirely written in VHDL-AMS.

4 Conclusions
The introduction of behavioral description lan-

guages provides a unified tool to link different design
tasks and to allow an easy exchange of information
across different simulators and users. Within this sce-
nario we propose a software for VHDL-AMS system
simulation in MatlabTM. The presented program is
currently on-going and is part of a larger project de-
voted to device modeling [9] [10] and mixed-mode sim-
ulation.

We plan to extend the proposed approach to de-
velop full VHDL-AMS models and to allow for both
digital and non-digital functions to be modeled within
MatlabTM environment or in an industrial IC design
flow.

Acknowledgments
The authors would like to thank Dr. R. Gaddi

and Dr. F. Mancarella for help, work and sugges-
tions about the MEMS resonator and advanced com-
pact models code.

5 References
[1] “IEEE Standard VHDL Analog and Mixed-

Signal Extensions”, IEEE Std 1076.1-1999.
[2] “SPECTRE HDL Reference”, Cadence Design

Systems, 1998.
[3] “Verilog Reference Manual”, Cadence Corpora-

tion.
[4] “Matlab Reference Documentation”, Ver. 6,

Mathworks.
[5] “Java 2 SDK, Standard Edition Documentation”,

Ver. 1.3.1, Sun Microsystems, 2002.
[6] http://www.vhdl-ams.de.
[7] C. H. Choi, K. H. Oh, J. S. Goo, Z. Yu and

R. W. Dutton “Direct Tunneling Current Model
for Circuit Simulation”, Proc. of IEDM 99, pp:
735-738.

[8] J. E. Vandemeer, M. S. Kraus, G. K. Fedder “Hi-
erarchical Representation and Simulation of Mi-
cromachined Inertial Sensors”, Proc. of MSM98.

[9] M. Zorzi, N. Speciale, G. Masetti “Automatic
Embedding of a Ferroelectric Capacitor Inside the
Circuit Simulator Eldo”, Proceedings of BMAS
2001, Santa Rosa, California, 10-12 october 2001,
pp. 97 -101.

[10] M. Zorzi, F. Franzè, N. Speciale “I.M.A.GE.: a
new CAD Tool for Device Modeling in Spice”,
Proc. of ECCTD01, 28-31 August 2001, Espoo,
Finland, pp 241–244.


