
Issues in MEMS Macromodeling

Gary K. Fedder
Department of Electrical and Computer Engineering

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA USA 15213

Abstract
AHDL modeling of MEMS components for system simula-
tion is slowly maturing, however many issues remain regard-
ing interoperability and composability. A discussion of
MEMS natures, hierarchy and model partitioning helps to
introduce the issues. Specific conventions for interoperabil-
ity include choice of component reference frame and associ-
ated reference directions. A composite discipline extension
to AHDLs is proposed to enable a single-port representation
of micromechanical connection points in 2-D and 3-D space.

I. Introduction
Microelectromechanical Systems (MEMS) are components
with micron-scale moving parts made from the materials and
processes of microelectronics fabrication. They convey the
advantages of miniaturization, multiple components and
microelectronics, and enable on-chip integration of electron-
ics, microstructures, microsensors and microactuators.
MEMS are increasingly playing a key role in linking infor-
mation technology more directly with the physical world.
However, time-efficient component design is a key bottle-
neck to realizing the commercial potential of MEMS.
Accurate dc simulation of MEMS requires accurate model-
ing of the effects from mechanical forces, electrostatic forces
and intrinsic stresses. Transient and ac simulations require
additional modeling of inertial and damping forces. Other
physical effects, such as heat transfer, thermal expansion,
piezoelectric stresses and piezoresistive effects, are needed
for specific applications. The list of possible effects is so
long that many are deemed negligible and not included in
MEMS models, even at final design verification. Poor design
decisions may result from a reliance on this ad hoc modeling
approach.
One of the central concepts of electronic circuit design is
hierarchy, which also applies well to MEMS. MEMS design-
ers partition microstructures into functional elements, such
as flexural springs, electrostatic actuators and capacitive sen-
sors. Today, pre-formed models for the exact topology of
interest rarely exist, and so the modeling effort usually
accounts for the greatest amount of time within a design
cycle. Design reuse with verified model libraries that contain
all physical effects is rarely used, but sorely needed.
Taking the analogy to electronic circuit design further, the
next generation of MEMS system designers are starting to

use composable MEMS models. That is, models that provide
physically correct and accurate simulation results when con-
nected together in an arbitrary manner. The most current
work in forming composable MEMS models is SUGAR
from UC Berkeley [3], Coventor ARCHITECT [1] [2] and
NODAS from Carnegie Mellon [4][5]. ARCHITECT and
NODAS use Analog hardware description language (AHDL)
descriptions, while SUGAR has its models written in MAT-
LAB. 
To take full advantage of AHDL descriptions, conventions
must be adopted by the designer to ensure interoperability
between module instances so that design by structural com-
position is reduced to interconnection of MEMS cells from
pre-made libraries. Unlike electric circuits, the first-order
behavior of MEMS usually depends on the shape and loca-
tion of the devices and on geometrical interactions between
the devices and moving boundaries. Incorporating these
effects into models in a self-consistent and comprehensive
way is necessary.

II. Natures and Disciplines
MEMS models involve mechanical disciplines, where the
choice of the natures are a potential source of confusion. The
potential term in simulations of micromechanical transla-
tional motion can be defined as velocity, absolute position or
displacement from a reference (“mechanical ground”) state.
The product of the potential (voltage) and flow (current) in
the electrical discipline provides a conservative physical
quantity (power). This same logic motivates the use of
velocity as potential and force as flow, where the veloc-
ity×force product, mechanical power, is conserved by the
simulator. However, it is equally valid to choose displace-
ment as potential and force as flow so that mechanical work
(i.e., energy) is conserved. Therefore, this choice of mechan-
ical discipline for model ports is primarily dependent on ease
in interpretation and analysis of simulation results.
In a majority of cases, translational and angular displace-
ments are the critical variables of greatest interest in analysis
of MEMS. Access to only translational and angular veloci-
ties as the across variables would require integration and
combining of across variables to determine displacements,
which is not likely to be a user-friendly post-simulation step.
The displacement calculations end up having to be imple-



mented by the model in any case in order to calculate spring
forces.
Moving micromechanical structures are displaced with
respect to the initial positions that are described by the lay-
out. Displacement, rather than absolute position, is a more
natural choice for across variable because:
• The layout location of a microstructure is a natural refer-

ence, with displacement from the layout position describ-
ing its motion. Displacements will be zero when the
system is at rest, i.e, when all external and internal forces
are turned off, as shown in Figure 1(a). In contrast, posi-
tions will not be zero at rest, leading to an extra step in
extracting the motion from the simulation output if they
are chosen as the across variables.

• If position is used, a reference coordinate frame needs to
be defined. If an off-chip reference is used, and the chip
itself is moved, then the potential difference between two
displaced structures on the same chip may involve the
subtraction of large numbers leading to numerical accu-
racy limitations, as shown in Figure 1(b). A more practi-
cal example is the simulation of a MEMS accelerometer
in a car that moves several kilometers, while the beams
within the MEMS accelerometer may move less than a
nanometer.

The standard discipline definitions in Verilog-AMS do not
fully account for the above reasoning for MEMS applica-
tions. MEMS models can be implemented using the existing
standards, however the naming of the natures and access
functions do not precisely correspond to the modeling intent,
and may lead to misunderstanding if code is propagated to
other groups for reuse. Therefore, a proposed set of MEMS
disciplines and natures that are consistent with the modeling
intent is given in Listing 1. Disp and Phi are used as access
functions for translational and angular displacements,
respectively, to distinguish from and not conflict with the

standard position and angle natures. The velocity and
angular_velocity disciplines are created to handle the signal
flow state variables internal to the MEMS models.
Absolute tolerances (abstol) in Listing 1 are set to values
appropriate for a majority of MEMS applications. “Large”
displacements in MEMS are usually on the order of microns,
while sub-nanometer motions are common in inertial sensors
and RF resonators. Therefore, a displacement abstol of 1 pm
is appropriate. Although this size of motion is smaller than
the atomsmaking up a microstructure, time-averaged picom-
eter displacements are possible to detect. The design “sweet
spot” for MEMS flexural-mode resonators is in the kHz
range, so the velocity abstol is set at 1 nm/s, which is 1000
times higher than the displacement abstol. Although mN
scale forces are achievable in MEMS, most actuators deliver
less than several µN. In surface probe applications, nN level
forces are of interest. Therefore, a 1 pN abstol is appropriate.
Angular displacements and forces are not common MEMS
design variables, except in rotational actuators (e.g., second-
ary actuators for disk-drives) and in angular accelerometers.
The abstol values are somewhat arbitrarily set to 1 µrad and
1 µrad/s and 1 pN/m.

Figure 1: Reference frames of microstructures. (a) Position and displace-
ment at rest in chip frame of reference (x, y). (b) Position and displacement
in inertial (X, Y) and chip frames of reference after acceleration moving
chip 1 m in X.

y

x

(b)

(a)

Y

X

chip position:
(x,y) = (100 µm,150 µm)

 chip displacement:
(dx,dy) = (0 µm,0 µm)

y

x

100 µm

150 µm

1 m

chip position:
(x,y) = (90 µm,149.01 µm)

 chip displacement:
(dx,dy) = (-10 µm,-10 nm)
inertial position:
(X,Y) = (1000090 µm,

149.01 µm)

Listing 1: Abbreviated list of disciplines and natures proposed for use in
composable MEMS models.

nature Displacement
units = “m”;
access = Disp;
ddt_nature = Velocity;
abstol = 1e-12;

endnature

nature Force
units = “N”;
access = F;
abstol = 1e-12;

endnature

nature Velocity
units = “m/s”;
access = Vel;
ddt_nature = Acceleration;
idt_nature = Displacement;
abstol = 1e-9;

endnature

nature Angular_Displacement
units = “rad”;
access = Phi;
ddt_nature = Angular_Velocity;
abstol = 1e-6;

endnature

nature Angular_Force
units = “N/m”;
access = Tau;
abstol = 1e-12;

endnature

nature Angular_Velocity
units = “rad/s”;
access = Omega;
ddt_nature = 

Angular_Acceleration;
idt_nature = Angular_Velocity;
abstol = 1e-6;

endnature

discipline kinematic_translational
potential Displacement;
flow Force;

enddiscipline

discipline kinematic_rotational
potential Angular_Displacement;
flow Angular_Force;

enddiscipline

discipline velocity
potential Velocity;

enddiscipline

discipline angular_velocity
potential Angular_Velocity;

enddiscipline



III. Hierarchy
MEMS hierarchy is exemplified in Figure 2 for a micro-
structure with a crab-leg suspension and two electrostatic
comb-drives. Mass-spring microstructures, similar to this
crab-leg example, are commonly used for material property
test structures, microresonators, inertial sensors and gravi-
metric vapor sensors. The resonator may be partitioned into
functional-level elements including a shuttle mass, crab-leg
springs and electrostatic comb drives, then further decom-
posed into “atomic-level” elements including beams, plates
and electrostatic gaps. Atomic-level beams and plates are
similar to the kinds of lumped elements supported by com-
mercial finite-element tools. Models at this lowest level have
broad applicability at the expense of creating larger system
matrices for simulation.
The number of degrees of freedom (DOF) required for accu-
rate simulation usually will affect the choice of the behav-
ioral model. As an example, an electrostatic comb
microactuator can have multiple vibrational modes, even
vibrations of the individual comb fingers. In this latter case,
the mechanical DOF relative to finger deflection must be
included. An atomic-level representation of the microactua-
tor may be built through structure using interconnected beam
models and electrostatic gap models, and includes DOF for
motion of each finger. An equivalent functional-level behav-
ioral model is possible, but requires custom encoding of
equations of motion for all DOF.

IV. Crab-Leg MEMS Model Example
Symmetric “crab-leg” suspensions, such as those illustrated
in Figure 3 are commonly used in resonators and simple
platforms. The crab-leg design alleviates nonlinear stiffening
and buckling from axial stress found in fixed-fixed suspen-
sions. 
A simple 1-D model for the y-directed center displacement
of the topology in Figure 3(a) is shown in Listing 2. It is
straightforward to implement the additional kinematic DOF

for the center point to form a 2-D or 3-D model. Effects of
higher-order vibrational modes and nonlinear elastic effects
can be added to the model, of course with increased effort in
figuring out the physics. 
Although the model in Listing 2 has geometric parameters, it
is limited in design reuse to a single topology. Likewise, the
model as a MEMS building block is restricted to mechanical
connections to the center point of the plate that maintain the
simple y-directed motion. For example, if an electrostatic
actuator was to be attached to the left and right sides of the
plate, as in Figure 2, the resonator model would need to be
overhauled to accommodate connections on its sides, or a
special actuator model would have to be made.
In an attempt to provide more model reuse, the individual
crab-leg spring, one located at each of the plate’s four cor-
ners in Figure 3, can be modeled at the corresponding “func-
tional” level. However, external forces in the x direction and
moments around the z axis affect the behavior in the y direc-
tion. Therefore, a y-directed spring model that allows arbi-
trary boundary conditions at its ends is impossible to
implement if only the single DOF is accessible. A reusable
micromechanical model that accounts for arbitrary boundary
conditions must include access to all generalized displace-
ments and forces (for 2-D in-plane: dx, dy, φz and Fx, Fy, Mz). 

Figure 2: Design hierarchy of a resonator with a crab-leg suspension and
symmetric electrostatic comb drives. Components are shown in layout
view.

top level

functional level

atomic level

resonator

crab-leg spring comb drive

beam gap plate

Figure 3: Three selected layout topologies of crab-leg suspended micro-
structures.

dy_c

w

Lb

La

Lp

Lp

y

xφz

(b)

(c)(a)

module crableg1D (dy);
inout dy;
kinematic_translational dy;
velocity vy;
parameter real La = 1e-5;
parameter real Lb = 1e-4;
real density = 2330, E = 165e9, viscosity = 1.79e-5, deff = 2e-6;
real h = 2e-6, w = 2e-6, Lp = 1e5;
real m, b, k;
analog begin

m = density*h*(Lp^2+4*w*La);
b = viscosity*Lp^2/deff;
k = E*h*(w/Lb)^3*(4*Lb+La)/(Lb+La);
Vel(vy) <+ ddt(Disp(dy));
F(dy) <+ m*ddt(Vel(vy)) + b*Vel(vy) + k*Disp(dy);
end

endmodule

Listing 2: 1-D, 1-DOF behavioral model of a crab-leg resonator.



An example functional-level schematic of a 2-D crab-leg
resonator is given in Figure 4 with partial model code in
Listing 3 Each 2-D spring element has three terminals on
each of its two ends, contributing six DOF to the system
matrix. (A 3-D spring element would have six terminals on
each end, corresponding to dx, dy, dz, φx, φy, φz and 12 DOF.) 
In micromechanics, branch flow is not necessarily equal on
both sides of the element. For example, the flow variables
corresponding to moment (Tau(phi_za) and Tau(phi_zb) in
Listing 3) will normally not be equal and opposite on the two
sides of a spring element. Although the sum of moments act-
ing on an element must be zero, any translational forces act-
ing over a distance contribute to this sum. Unless the
external forces are imposed in a way that creates zero
moment, the moment flow variables on the two sides will
have different values that do not sum to zero. Contributions
to each side must be assigned separately in the model code.
The 2-D crab-leg spring model may be reused to form model
definitions of other topologies such as the crab-leg platforms
in Figure 3(b) and (c). The crab-leg model can be further
decomposed into a structured model from two intercon-
nected atomic beam elements. The composable beam model
provides the maximum design reuse for springs. No matter
what level in the hierarchy is modeled behaviorally, proper
port connection characteristics between module instances
must be enforced, as discussed next. 

V. Interoperability
Port interoperability at the functional and atomic levels is
essential for general composition of devices. A meaningful
interconnection between ports must meet three basic require-
ments. First, the disciplines must match, as is required of all
port connections in AHDLs. Second, the physical directions

associated with each connected port must match. That is, the
global reference frames of the models must match their
intended orientation when connected. Third, the models
must adopt a uniform convention for associated reference
directions for potential and flux of each port. This attention
to interoperability is perhaps the most critical, and some-
times the most frustrating, issue in MEMS behavioral mod-
eling, assuming the model physics is already understood.

A. Model Reference Frame

Consider a structured 2-D model for the crab-leg platform in
Figure 3(c). Four crab-leg spring models are to be connected
to the central plate, however, the orientation of each adjacent

Figure 4: Example of MEMS composition. (a) crableg_spring2D symbol.
(b) plate_2D symbol. (c) anchor (ground) symbol. (d) Schematic of a crab
leg microstructure. Alpha, beta, and gamma are Euler angles to specify
component oreientation. The crableb_spring_2D symbols are flipped, cor-
responding to the angle parameters, to make a more readable schematic.

gamma = 0°
beta = 0°
alpha = 0°

gamma = 0°
beta = 0°
alpha = 180°

gamma = 180°
beta = 0°
alpha = 0°

gamma = 0°
beta = 180°
alpha = 0°

dx_ul, 

dx_ll, 

dxa, dya, phi_a

dxb, dyb, phi_b dy_ll, 
phi_ll

dy_ul, 
phi_ul

dx_ur, 

dx_lr, 
dy_lr, 
phi_lr

dy_ur, 
phi_ur

(a) (b)

(c)

(d)

module crableg_spring2D (dxa, dya, phi_za, dxb, dyb, phi_zb);
inout dxa, dya, phi_za, dxb, dyb, phi_zb;
kinematic_translational dxa, dya, dxb, dyb;
kinematic_rotational phi_za, phi_zb;

...
// Layout rotation angles of component
parameter real alpha = 0.;
parameter real beta = 0.;
parameter real gamma = 0.;
parameter real La = 1e-5;
parameter real Lb = 1e-4;
analog begin

...
cos_a = cos(alpha*‘M_PI/180.);
cos_b = cos(beta*‘M_PI/180.);
cos_g = cos(gamma*‘M_PI/180.);

...
// Transform displacements in chip frame to component local frame
dx_l = cos_b*cos_g*(Disp(dxb)-Disp(dxa)) + 

cos_b*sin_g*(Disp(dyb)-Disp(dya));
dy_l = -cos_a*sin_g*(Disp(dxb)-Disp(dxa)) + 

cos_a*cos_g*(Disp(dyb)-Disp(dya));
dphi = Phi(phi_zb) - Phi(phi_za);
//Calculate spring forces and moments
Fkx_l = 3/(La+Lb)*

((4*La+Lb)/La^3*dx_l-3/La/Lb*dy_l-(2*La+Lb)/La^2*dphi);
Fky_l = 3/(La+Lb)*(-3/La/Lb*dx_l+(La+4*Lb)Lb^3*dy_l+3/b*dphi);
Mkz_b = 1/(La+Lb)*

(-3*(2*La+Lb)/La^2*dx_l+3/Lb*dy_l+(4*La+3*Lb)/La*dphi);
...

Fx_bl = Fmx_bl+Fbx_bl+Fkx_l; // Fm are inertial forces
Fy_bl = Fmy_bl+Fby_bl+Fky_l; // Fb are damping forces
Fx_al = Fmx_al+Fbx_al-Fkx_l;
Fy_al = Fmy_al+Fby_al-Fky_l;
// Transform forces to chip frame of reference
F(dxb) <+ cos_b*cos_g*Fx_bl - cos_a*sin_g*Fy_bl;
F(dyb) <+ cos_b*sin_g*Fx_bl + cos_a*cos_g*Fy_bl;
F(dxa) <+ cos_b*cos_g*Fx_al - cos_a*sin_g*Fy_al;
F(dya) <+ cos_b*sin_g*Fx_al + cos_a*cos_g*Fy_al;
Tau(phi_zb) <+ Mm_b + Mb_b + Mkz_b;
Tau(phi_za) <+ Mm_a + Mb_a - Mkz_b - La*Fkx_l - Lb*Fky_l;
end
endmodule

Listing 3: Partial code for a linear 2-D behavioral model of the crab-leg
spring.



spring instance changes by 90°. How one correctly connects
the mechanical ports will depend on the underlying reference
frame in the model code. The two logical choices for model
reference frame are 1) a local frame of reference or 2) a
“chip” frame of reference. 
The local frame refers to a coordinate system aligned with
the internal geometric features of the component, regardless
of layout orientation. For example, the 2-D crab-leg spring
model may have its local x axis oriented along the beam of
length Lb and the y axis oriented along the beam of length La
as defined in Figure 3(a). For the platform in Figure 3(c), the
dx, dy and φz ports will be connected directly together when
connecting the top and bottom spring module instances to
the plate module. However, the dx and dy ports will be
swapped when connecting the left and right spring module
instances. With external ports referenced to the local frame,
the burden of knowing when to swap connections is placed
upon the user during schematic generation, and is thus prone
to error. Furthermore, the simple swapping of ports does not
work if the force-displacement behavior of the spring is dif-
ferent in its positive and negative directions (e.g., from non-
linearities under large deflection).
A better solution is to create models that use a chip frame of
reference, named after the assumed rigid chip upon which
the microstructures are fabricated. All modules using the
chip frame as their coordinate system have a consistent defi-
nition for the direction of their mechanical ports. Therefore,
the connections between module instances will always be dx
to dx, dy to dy and φz to φz, eliminating a source of confusion
for the user. The internal physical equations for the model
behavior are still written in a local frame of reference. How-
ever, any static rotation of the element layout, such as the
90° rotation of the crab-leg spring instance, must now be
accomplished internally within the model. 
Layout orientation around the chip frame’s x, y, and z axes
may be expressed as Euler angle parameters (α, β, γ). In
MEMS created in the plane of the substrate, the first two
Euler angles, α and β, equal 0° or 180° to flip the compo-
nent. Using this implementation, the layout position and
Euler angle orientation for each module instance are speci-
fied by the user as fixed parameter values, and are not
dynamically changing during simulation. The rotation matri-
ces that relate the local frame variables internal to the ele-
ment to the chip frame port signals have static values.

B. Associated Reference Directions

The Verilog-AMS LRM indicates that the HDL uses associ-
ated reference directions such that a positive flow enters a
branch through the port marked with the plus sign and exits
the branch through the port marked with the minus sign.
Mechanical systems require additional interpretation, to map
the sign of a potential or flow in a schematic to the coordi-
nate direction of the 2-D or 3-D mechanical system. Consis-

tency of the interpretation of associated reference directions
across component libraries is critical for interoperability. 
In our group’s work, translational and rotational displace-
ments, which are across variables, are interpreted as follows:
• positive valued displacements are in the positive axial

direction
• positive valued angular displacements are counterclock-

wise around the axis
Force and moments, which are through variables, are inter-
preted as follows:
• positive valued force flowing into a pin acts in the posi-

tive axial direction
• positive valued moment flowing into a pin acts counter-

clockwise around the axis
The across variable conventions are relatively straightfor-
ward. However, the flow conventions can take some time to
master. Some physical interpretations of several examples
are given in Figure 5. A beam in tension has positive flow
(force) going from right to left, while a beam in compression
has flow going from left to right. Flow going into both left
and right ports results in a net positive external force acting
on the beam causing it to accelerate to the right. A flow
through the moment ports from left to right, with no transla-

Figure 5: Examples of mechanical nodal conventions. F and M are positive
valued. (a) Beam in tension, Fx,a = -Fx,b = -F. (b) Beam in compression.
Fx,a = -Fx,b = F. (c) Beam accelerating in x. Fx,a = Fx,b = F. (d) Moment
bending beam with positive curvature in y. Mz,a = -Mz,b = -M. 

(a)
Fx,a Fx,b

beam

FF

Fx,a Fx,b
beam

FF FF

(b)

F FF F

F F

F FF F

(c)

(d)

Fx,a Fx,b
beam

F

Fx,a Fx,b
beam

F

Mz,a Mz,b
beam

M

M M



tional forces applied, causes the beam to bend up, while a
flow from right to left causes the beam to bend down.

VI. Extension for MEMS
Each symbol pin in a schematic is normally associated with a
single potential/flow port. A pin can be assigned to an analog
array, used to group potential/flow ports of the same disci-
pline, but there is currently no syntax for grouping ports of
different disciplines in a single pin. 
In MEMS, a single physical connection point has ports for
its translational, rotational, electrical and thermal DOF. The
location of the MEMS symbol and pins on the schematic can
(and usually do) contain important contextual information
for the user. Grouping of all the DOF of a single connection
point into a single pin would simplify schematic construction
by reducing pin count. It also would eliminate the multiple
inout variables in the model, which currently creates code
that can be difficult to read. It also reduces the possibility of
incorrectly connecting pins corresponding to different DOF.
For example, the pin corresponding to x displacement on one
element could be inadvertently connected to y displacement
on another element without generating any warning to the
user. 
The desire for grouping port signals along physical connec-
tion points motivates the ability in AHDLs to define multi-
dimensional, composite, disciplines. One possible proposed
extension of Verilog-AMS for MEMS is shown in Listing 4.
In the example, a mems2D discipline is defined as a group-
ing of port signals declared by kinematic_translational and
kinematic_rotational disciplines. With this multi-dimen-

sional discipline, the signals associated with a particular
physical connection point may be declared in a single vari-
able. In Listing 4, new disciplines dx, dy and phi are derived
from existing base disciplines, where the syntax extension is
borrowed from that of derived natures. Although it is illegal
in Verilog-AMS to change the access function for derived
natures, this is done in the proposed code to create unique
access functions for each DOF. The resulting model code is
compact and simple to understand.
If such a structured discipline definition were possible, it is
likely that custom disciplines for MEMS would emerge that
would group various DOF of interest. For example, a
mems3D discipline would include z translation and φx and φy
rotation. Other disciplines may group the 2D or 3D kinemat-
ics with electrical and thermal signals that are associated
with the same connection point.

VII. Conclusion
MEMS behavioral modeling has advanced greatly with the
maturation of AHDLs, however the MEMS community has
yet to accept AHDL simulation as the preferred starting
point for MEMS design. MEMS 2-D and 3-D mechanical
models in AHDLs are proven to be as accurate as their finite-
lumped-element counterparts. There are still research issues
in forming composable atomic-level electrostatic models,
however sufficiently accurate models do exist for many
design spaces of importance to MEMS.
A open standard cell library of 2-D and 3-D MEMS models,
particularly at the atomic level in the hierarchy, will help
promote advantages of behavioral modeling to the MEMS
designers and provide templates upon which to extend the
models or to build custom models. Standard conventions of
disciplines and associated reference directions will help pro-
mote interoperability across the entire MEMS community.

VIII. References
[1] Coventor Architect: http://www.coventor.com/coventor-

ware/architect/
[2] G. Lorenz, A. Morris, I. Lakkis, “A top-down design

flow for MOEMS,” Proc. of the SPIE - 4408, Design,
Test, Integration, and Packaging of MEMS/MOEMS,
April 25-27, 2001, Cannes, France, pp. 126-37.

[3] J.V. Clark, A. Agogino, et al., “Addressing the Need for
Complex MEMS Design,” Proc. MEMS ’02, Jan. 20-
24, 2002, Las Vegas, NV, USA, pp. 204-209.

[4] Q. Jing, Modeling and Simulation for Design of Sus-
pended MEMS, Ph.D thesis, Dept. of ECE, Carnegie
Mellon University, 2003.

[5] G. K. Fedder and Q. Jing, “A hierarchical circuit-level
design methodology for microelectromechanical sys-
tems,” IEEE Trans. on Circuits and Systems-II, vol. 46,
no. 10, Oct. 1999, pp. 1309-1315.

multidiscipline mems2D
discipline dx : kinematic_translational

potential.access = “Dx”;
flow.access = “Fx”;

enddiscipline
discipline dy : kinematic_translational

potential.access = “Dy”;
flow.access = “Fy”;

enddiscipline
discipline phi : kinematic_rotational
enddiscipline

endmultidiscipline

// Example declaration and use
inout a, b;
mems2D a, b;

...
real kxx, kyy, ktaa, ktab, ktbb, kxy, kxt, kyt;
analog begin

...
Fx(a, b) <+ kxx*Dx(a,b) + kxy*Dy(a,b) + kxt*Phi(a,b);
Fy(a, b) <+ kxy*Dx(a,b) + kyy*Dy(a,b) + kyt*Phi(a,b);
Tau(a) <+ kxt*Dx(a,b) + kyt*Dy(a,b) + ktaa*Phi(a) + ktab*Phi(b);
Tau(b) <+ kxt*Dx(a,b) + kyt*Dy(a,b) + ktab*Phi(a) + ktbb*Phi(b);

end 

Listing 4: Proposed Verilog-AMS extension that allows composite disci-
plines to support MEMS modeling.


