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 Abstract 
 
During the past years, a lot of works have been done about 
behavioral models and simulation tools. But a need of modeling 
strategy still remains. This paper presents a possible strategy of 
modeling multi-technological (electric and non-electric) systems 
by using VamSpiceDesigner, created by GET/ENST, 
containing free tools as a hierarchical schematics, a VHDL-
AMS compiler and a SPICE simulator. In the introduction, the 
VamSpiceDesigner tool is described. The next sections shows 
three examples which represent different aspects of multi-
technology: micro-electronics, mechatronics and colorimetry.   
 
 
 Introduction 
A. Principle of the Schematic Design 
The design of systems according to the top-down methods and 
bottom-up can be undertaken advantageously with VHDL-
AMS while considering its capability to model at different 
abstraction level (figure 1) (1). 
 

Fig. 1 : Top-down and bottom-up design 
methodology with VHDL-AMS 

 
The suggested hierarchical schematic design methodology 
allows: 
- to be able to go down, while following the process going 
down (top-down), in the various abstraction levels required by 
the project of design,  
- to go up, while following the process going up (bottom-up). 

It is summarized in figure 1: 
An optimization between the rising and falling approaches to 
provide a coherent model could be found between its physical 
level and its functional level. 
For that, 

- The system is divided into various behavioral 
subsystems, 

- Performance indicators for each level of 
modeling are provided,  
- indicators impacts of performance are gradually 
reflected towards the complete system. 
 
B. From VHDL-AMS to SPICE  
The passage from VHDL-AMS to SPICE OPUS (2), the 
chosen SPICE simulator, is represented on the figure 2. 
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Fig. 2 : VamSpiceDesigner and the passage from 

VHDL-AMS to SPICE OPUS 
. 
C. VamSpiceDesigner 
VamSpiceDesigner is a set of tools (figure 2) : 
- Working on Windows. (9x/ME/NT/2000/XP), 
- Associating with VamSpice (3) compiler and with the SPICE 
OPUS simulator, 
 - A schematic ELECTRICTM  (4). 
 
C.1. VamSpice compiler 
VamSpice (VHDL-AMS/SPICE) (2) is a compiler that 
translates a VHDL-AMS model to SPICE OPUS, figure 2 
shows this passage. The compiler/translator generates 
principally two files cfunc.c that contains the body of the 
VHDL-AMS model and ifspec.c that contains the ports and 
the generics declarations. Once these two files are compiled 
with the GNU tools and libraries and linked with SPICE 



OPUS libraries, we obtain a DLL (Dynamic Link Library) file. 
This file can link up to SPICE OPUS. 
 
C.2. SpiceOpus simulator (= SPICE3 + XSPICE + Nutmeg ) 
SpiceOpus (3) is a circuit simulator with optimization utilities. 
It is a recompilation of the original Berkeley's source code 
(SPICE3F5). XSPICE mixed-mode simulator was added to the 
Berkeley code. The Giorgia Tech Institute XSPICE code 
model feature was enhanced so that code models can be loaded 
from DLL files (.cm files). The DLL is generated from 
VamSpice compiler. The graphic part (Nutmeg) program was 
rewritten for adapted it to the Windows. and Linux 
environment. The second part, the device model (.MODEL) is 
defined, through which, parameter values (VHDL-AMS 
generic) can be changed. 
In a schematic view « {sch} », are drawn the outline of the 
circuit test of the component, while calling the icon that is 
defined in top. Next, power supplies, analyses types and 
outputs to be displayed are added and simulation can be run. 
ELECTICTM

 generates automatically an analogical netlist to be 
used by SPICE OPUS simulator. 
 
C.3. Macro-component, icon and hierarchy 
Macro-components can be obtained while transforming circuit 
in icon. An icon is a rectangle in which one cannot see a sub 
circuit, but only the name of the macro-component. The 
important property of this icon is to be able to appear as a 
component itself in circuits thanks to hierarchy order climbing 
or descending. 

 
A micro-electronic application 

 
This first example shows the use of VamSpiceDesigner for 
applying the methodology on a very simple case : MOSFET 
behavioral modeling. Figure 3 represents the upper view of the 
test circuit. The MOSFET equivalent circuit can be seen in 
typing successively on the MOSFET symbol and on Ctrl+D (for 
Down Hierarchy)  (Figure 4: amos{sch}).  
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Fig. 3 : Test circuit of the functional  MOSFET. 
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Fig. 4 : Equivalent circuit of the functional MOSFET. 

 
Typing again on the current generator symbol and Ctrl+D 
makes appear the basic icon of the current generator (Figure 5 
:ids{ic}). From this icon, the skeleton of a VHDL-AMS model 
file can be built automatically and has to be filled by the user 
as shown on figure 6. The equation of the drain current is here 
empirical giving to the MOSFET a functional behavior with 
few parameters  for a future use in big circuits. 
 

vt=?;def=2.001

pf1=?;def=1.001e-006
l=?;def=1.001e-006
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Fig. 5 : The basic icon of the current generator. 

 
-- VHDL-AMS automatically generated from facet ids{ic} 
ENTITY ids IS  
 GENERIC (w : real:= 1.001e-006; kp : real:= 0.001; pf2 : real:= 
 1.001e-006; l : real:= 1.001e-006; vt ::real:= 2.001; vgsmax : real:= 
 4.001; lamda :real:= 0.001; pf1 :real:= 1.001e-006); 
 PORT (TERMINAL dd, gg, ss: Electrical); 
END ids; 
ARCHITECTURE ids_BODY OF ids IS 
-- ****************** tanh function *********************** 
  function ftanh(x1 : real) return real is 
    variable y1:real; 
  begin 
    y1 := (exp(2.0 * x1) - 1.0) / (exp(2.0 * x1) + 1.0); 
    return y1; 
  end ftanh;  
--********************************************************* 
quantity vds across ids through dd to ss; 
quantity vgs across gg to ss; 
BEGIN 
  ids == pf1 * kp * (w/l) * vgs * ftanh(vgs) * (1.0 - exp(-pf2 * vds * (vgsmax + 
vt  - vgs))) * (1.0 + lamda * vds); 
END ids_BODY; 

Fig. 6 : VHDL-AMS model of the MOSFET. 
 

Going back to the test circuit by typing Ctrl+U (for Up 
Hierarchy) twice on the last icon ids{ic},  the SPICE OPUS 
simulation can then be run (figure 7 and figure 8). 
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Fig. 7 : Static characteristic : Ids = F(Vds) 
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Fig. 8 : Static characteristic : Ids = F(Vgs)  

 
A mechatronic  application 

 
This example is inspired from the one extracted from (5). It 
analyses the behavior of the elevation of a seat in a car. Figure 
10 represents the bloc diagram containing the different blocks 
of the system: DC motor,  gear, velocity converter and pinion-
rack. Figures  11, 12 show the icon corresponding to the DC 
motor and the pinion-rack. From pinion-rack icon the skeleton 
of the VHDL-AMS model is automatically generated and 
completed  (Figure 9). 
 
-- VHDL-AMS automatically generated from facet pinionrack{ic} 
ENTITY pinionrack IS  
 GENERIC (tau :real:= 0.1; posmin :real:= 0.02; posmax :real:= 0.1; 
 radius :real:= 0.1); 
 PORT (TERMINAL pinion, gndmec: Mecanical; QUANTITY position: OUT 
 Real); 
END pinionrack; 
ARCHITECTURE pinionrack_BODY OF pinionrack IS 
 quantity apos, pos1 : real; 
 quantity piangle across pos through pinion to gndmec; 
BEGIN 
 apos == radius * piangle; 
 pos1 == 0.9*posmax; 
 if (apos < posmin) USE 
    pos == posmin; 
 else if (apos > pos1) use 
          pos == 0.9 * posmax + 0.1 * posmax * (1.0 - exp((0.9 * posmax - apos) / 
tau)); 
       else  pos == apos; 
       end use; 
 end use; 
 position == pos; 
END pinionrack_BODY;     

Fig. 9 : VHDL-AMS model of pinion-rack 

 
The position of the seat is calculated and limited by a minimum 
position and a maximum position (which is reached smoothly 
with an exponential expression). Figure 13 presents the elevation 
of the seat versus the voltage applied to the DC motor. 
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Fig. 10 : Test circuit of a seat elevator 

 

krot=?;def=0.5236
re=?;def=1.0001

A$(node_name) $(in0) $(gnd) $(shaft) m$(node_name) \n .model m$(node_name) dcmotor re=$(re) krot=$(krot)
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Fig. 11 : DC motor Icon 
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Fig. 12 : Pinion-rack icon 
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Fig. 13 : Seat elevation position (voltage) 

 
A colorimetric application 

 
As an heteroclite and unexpected example, this one has been 
inspired by our previous work presented in (6). A colored object 
(C1 spectre) is illuminated by a specified illuminant (S) and  
observed through fog of k density at a defined distance. The 
colorimetric system is set up for determining the color rendered 
in a hazy environment (Figure 14). It contains the following 
modules: 
 



1) Illuminant module contains information on the type of 
illuminant, here the normalized D65 illuminant 

2) xfogxyz module calculates the effect of fog and 
distance on the object reflectance for each basic 
stimulus xs, ys and zs  

3)  trisxyz module uses the analogy of color  with 
electricity as discussed in (6) for calculating the 
tristimili X, Y and Z, here by using inductors. It means 
that an integration is done for getting them. 

4) cciexyz module transforms tristimuli X, Y and Z in 
chromatic coordinates x, y and z 

5) XYZTORGB module transforms tristimuli in R, G and 
B fundamental colors according to the screen 
specification on which rendered color has to be 
displayed 

6) WRITE module makes writing results in a  file named 
rawspice.raw that is used for plotting results by 
SPICE NUTMEG and as inputs of  a program for 
displaying effectively rendered colors on a screen (7). 
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Fig. 14 : Bloc diagram of the colorimetric system 

 
The same procedure than the previous one is used for getting 
icons  (Figure 15) from which VHDL-AMS skeleton file are 
automatically generated to be filled by the user. For instance, 
xfog models of xfogxyz module is given by Figure 16.  
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Fig. 15 : XFOG icon. 

 
-- VHDL-AMS automatically generated from facet xfog{ic} 
ENTITY xfog IS  
 GENERIC (d :real:= 100.0; k :real:= 0.0001); 
 PORT (TERMINAL in1, in2, gnd: Electrical; QUANTITY out1: OUT Real); 
END xfog; 
ARCHITECTURE xfog_BODY OF xfog IS 
 quantity vinxyz across in1 to gnd; 
 quantity vinr across in2 to gnd;  
BEGIN 
  out1 == vinxyz * (1.0 - (1.0 - vinr) * exp(-k*d)); 
END xfog_BODY; 

Fig. 16 : Fog model 

XF
OG

XF
OG

XF
OG mx

my

mz

ys

xs

zs

c1

 
Fig. 17 : Fog model for tristimuli X, Y and Z 

 
To rendered colors on a screen depends on the color monitor 
used (8). The characteristics of a color monitor are determined 
by the colors of its guns, its red, green, and blue primaries 
denoted R, G, and B and determined by primary coordinates 
chromaticities (xR, yR), (xG, yG), and (xB, yB). In this example, 
we choice NTSC (9) (National Television System Committee) 
as color system and 1.0 for gamma correction. Gamma 
correction represents a numerical parameter that describes the 
nonlinearity of intensity reproduction.  Figure 18 shows the 
position of the final point of the curve representing the 
rendered color inside of the “CIE horseshoe (10)”.  For that 
case, the fog factor was fixed at k=0.0004m-1 and the distance 
was varied from 1 to 1000m (in figure 18, the distance is fixed 
to 1000m) the rendered color of the object, originally red, is 
quite pink . This corresponds to the well known phenomena: 
color whitening through fog observation .  
 
 Conclusions 
This paper describe a strategy of modeling multi-technological 
systems by using VamSpiceDesigner© GET in three examples. 
In the first example, a micro-electronic application is 
described by modeling a behavioral and functional MOSFET 
in order to present the strategy. In the second, a mechatronic  
application is presented : the elevation of a seat in a car is 
commanded by a voltage. The third example shows the effect 
of fog and distance is modeled on the rendered color of an 
colored object. These three example allow to show the big 
variety of multi-technological domains that can be modeled by 
VHDL-AMS.  
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Fig. 18 : Simulation results of rendered colors.   
The “horseshoe” is CIE (10) 1931 chromaticity diagram – 1931 2° observer.  
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