
BEHAVIORAL MODELING OF MUTI-TECHNOLOGICAL SYSTEMS
WITH VHDL-AMS AND SIMULATING WITH SPICE

 Some applications by using VamSpiceDesigner

 Sabeur Jemmali, Ali Nehme and Jean-Jacques Charlot

 GET/ENST, dept COMELEC
 46, rue Barrault, 75013 Paris, France
 sabeur.jemmali@enst.fr

 Abstract

During the past years, a lot of works have been done about
behavioral models and simulation tools. But a need of modeling
strategy still remains. This paper presents a possible strategy of
modeling multi-technological (electric and non-electric) systems
by using VamSpiceDesigner, created by GET/ENST,
containing free tools as a hierarchical schematics, a VHDL-
AMS compiler and a SPICE simulator. In the introduction, the
VamSpiceDesigner tool is described. The next sections shows
three examples which represent different aspects of multi-
technology: micro-electronics, mechatronics and colorimetry.

 Introduction
A. Principle of the Schematic Design
The design of systems according to the top-down methods and
bottom-up can be undertaken advantageously with VHDL-
AMS while considering its capability to model at different
abstraction level (figure 1) (1).

Fig. 1 : Top-down and bottom-up design
methodology with VHDL-AMS

The suggested hierarchical schematic design methodology
allows:
- to be able to go down, while following the process going
down (top-down), in the various abstraction levels required by
the project of design,
- to go up, while following the process going up (bottom-up).

It is summarized in figure 1:
An optimization between the rising and falling approaches to
provide a coherent model could be found between its physical
level and its functional level.
For that,

- The system is divided into various behavioral
subsystems,

- Performance indicators for each level of
modeling are provided,
- indicators impacts of performance are gradually
reflected towards the complete system.

B. From VHDL-AMS to SPICE
The passage from VHDL-AMS to SPICE OPUS (2), the
chosen SPICE simulator, is represented on the figure 2.

VHDL-AMS
model VamSpice

SPICE OPUS
(Spice3f5)

Norme
VHDL-AMS

Schematic
ELECTRICTM

VamSpiceDesigner

Fig. 2 : VamSpiceDesigner and the passage from

VHDL-AMS to SPICE OPUS
.
C. VamSpiceDesigner
VamSpiceDesigner is a set of tools (figure 2) :
- Working on Windows. (9x/ME/NT/2000/XP),
- Associating with VamSpice (3) compiler and with the SPICE
OPUS simulator,
 - A schematic ELECTRICTM (4).

C.1. VamSpice compiler
VamSpice (VHDL-AMS/SPICE) (2) is a compiler that
translates a VHDL-AMS model to SPICE OPUS, figure 2
shows this passage. The compiler/translator generates
principally two files cfunc.c that contains the body of the
VHDL-AMS model and ifspec.c that contains the ports and
the generics declarations. Once these two files are compiled
with the GNU tools and libraries and linked with SPICE

OPUS libraries, we obtain a DLL (Dynamic Link Library) file.
This file can link up to SPICE OPUS.

C.2. SpiceOpus simulator (= SPICE3 + XSPICE + Nutmeg)
SpiceOpus (3) is a circuit simulator with optimization utilities.
It is a recompilation of the original Berkeley's source code
(SPICE3F5). XSPICE mixed-mode simulator was added to the
Berkeley code. The Giorgia Tech Institute XSPICE code
model feature was enhanced so that code models can be loaded
from DLL files (.cm files). The DLL is generated from
VamSpice compiler. The graphic part (Nutmeg) program was
rewritten for adapted it to the Windows. and Linux
environment. The second part, the device model (.MODEL) is
defined, through which, parameter values (VHDL-AMS
generic) can be changed.
In a schematic view « {sch} », are drawn the outline of the
circuit test of the component, while calling the icon that is
defined in top. Next, power supplies, analyses types and
outputs to be displayed are added and simulation can be run.
ELECTICTM

 generates automatically an analogical netlist to be
used by SPICE OPUS simulator.

C.3. Macro-component, icon and hierarchy
Macro-components can be obtained while transforming circuit
in icon. An icon is a rectangle in which one cannot see a sub
circuit, but only the name of the macro-component. The
important property of this icon is to be able to appear as a
component itself in circuits thanks to hierarchy order climbing
or descending.

A micro-electronic application

This first example shows the use of VamSpiceDesigner for
applying the methodology on a very simple case : MOSFET
behavioral modeling. Figure 3 represents the upper view of the
test circuit. The MOSFET equivalent circuit can be seen in
typing successively on the MOSFET symbol and on Ctrl+D (for
Down Hierarchy) (Figure 4: amos{sch}).

{I(p,m)}

PLOT

Vss

-

+
Vgg

-

+

Vdd

-

+

DC

amos

let id3 = -i(vvdd)[662,992]
let id2 = -i(vvdd)[331,661]

let id5 = -i(vvdd)[1324,1654]
let id4 = -i(vvdd)[993,1323]

let id1 = -i(vvdd)[0,330]

plot id1 id2 id3 id4 id5

PLOT PRINTLET RD

1

Fig. 3 : Test circuit of the functional MOSFET.

gg

ddss
Rs

50

Rd

50

Ids

Fig. 4 : Equivalent circuit of the functional MOSFET.

Typing again on the current generator symbol and Ctrl+D
makes appear the basic icon of the current generator (Figure 5
:ids{ic}). From this icon, the skeleton of a VHDL-AMS model
file can be built automatically and has to be filled by the user
as shown on figure 6. The equation of the drain current is here
empirical giving to the MOSFET a functional behavior with
few parameters for a future use in big circuits.

vt=?;def=2.001

pf1=?;def=1.001e-006
l=?;def=1.001e-006

pf2=?;def=1.001e-006

lamda=?;def=0.001

vgsmax=?;def=4.001

kp=?;def=0.001

w=?;def=1.001e-006

A$(node_name) $(dd) $(gg) $(ss) m$(node_name) \n .model m$(node_name) ids \n + w=$(w) l=$(l) pf1=$(pf1) pf2=$(pf2) vgsmax=$(vgsmax) vt=$(vt) kp=$(kp) lamda=$(lamda)

Ids

dd

gg

ss

Fig. 5 : The basic icon of the current generator.

-- VHDL-AMS automatically generated from facet ids{ic}
ENTITY ids IS
 GENERIC (w : real:= 1.001e-006; kp : real:= 0.001; pf2 : real:=
 1.001e-006; l : real:= 1.001e-006; vt ::real:= 2.001; vgsmax : real:=
 4.001; lamda :real:= 0.001; pf1 :real:= 1.001e-006);
 PORT (TERMINAL dd, gg, ss: Electrical);
END ids;
ARCHITECTURE ids_BODY OF ids IS
-- ****************** tanh function ***********************
 function ftanh(x1 : real) return real is
 variable y1:real;
 begin
 y1 := (exp(2.0 * x1) - 1.0) / (exp(2.0 * x1) + 1.0);
 return y1;
 end ftanh;
--***
quantity vds across ids through dd to ss;
quantity vgs across gg to ss;
BEGIN
 ids == pf1 * kp * (w/l) * vgs * ftanh(vgs) * (1.0 - exp(-pf2 * vds * (vgsmax +
vt - vgs))) * (1.0 + lamda * vds);
END ids_BODY;

Fig. 6 : VHDL-AMS model of the MOSFET.

Going back to the test circuit by typing Ctrl+U (for Up
Hierarchy) twice on the last icon ids{ic}, the SPICE OPUS
simulation can then be run (figure 7 and figure 8).

0.0

2.0 m

4.0 m

6.0 m

8.0 m

10.0 m

0.0 500.0 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 Id
s

(A
)

 Vds (V)

W = 1um
L = 1um

Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

Vgs = 0.5V

Fig. 7 : Static characteristic : Ids = F(Vds)

0.0

2.0 m

4.0 m

6.0 m

8.0 m

10.0 m

12.0 m

0.0 500.0 m 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 Id
s

(A
)

 Vgs (V)

W = 1um
L = 1um

Vds = 2.5V
Vds = 2.0V

Vds = 1.5V

Vds = 1.0V

Vds = 0.5V

Fig. 8 : Static characteristic : Ids = F(Vgs)

A mechatronic application

This example is inspired from the one extracted from (5). It
analyses the behavior of the elevation of a seat in a car. Figure
10 represents the bloc diagram containing the different blocks
of the system: DC motor, gear, velocity converter and pinion-
rack. Figures 11, 12 show the icon corresponding to the DC
motor and the pinion-rack. From pinion-rack icon the skeleton
of the VHDL-AMS model is automatically generated and
completed (Figure 9).

-- VHDL-AMS automatically generated from facet pinionrack{ic}
ENTITY pinionrack IS
 GENERIC (tau :real:= 0.1; posmin :real:= 0.02; posmax :real:= 0.1;
 radius :real:= 0.1);
 PORT (TERMINAL pinion, gndmec: Mecanical; QUANTITY position: OUT
 Real);
END pinionrack;
ARCHITECTURE pinionrack_BODY OF pinionrack IS
 quantity apos, pos1 : real;
 quantity piangle across pos through pinion to gndmec;
BEGIN
 apos == radius * piangle;
 pos1 == 0.9*posmax;
 if (apos < posmin) USE
 pos == posmin;
 else if (apos > pos1) use
 pos == 0.9 * posmax + 0.1 * posmax * (1.0 - exp((0.9 * posmax - apos) /
tau));
 else pos == apos;
 end use;
 end use;
 position == pos;
END pinionrack_BODY;

Fig. 9 : VHDL-AMS model of pinion-rack

The position of the seat is calculated and limited by a minimum
position and a maximum position (which is reached smoothly
with an exponential expression). Figure 13 presents the elevation
of the seat versus the voltage applied to the DC motor.

{V(p)}

PLOT

Transient

{V(p)}

PLOT

{V(p)}

PLOT

{V(p)}

PLOT

DC motor

converter

gear

pinion rack

seat

Fig. 10 : Test circuit of a seat elevator

krot=?;def=0.5236
re=?;def=1.0001

A$(node_name) $(in0) $(gnd) $(shaft) m$(node_name) \n .model m$(node_name) dcmotor re=$(re) krot=$(krot)

in0

gnd

shaft

Fig. 11 : DC motor Icon

radius=?;def=0.1

tau=?;def=0.1

posmin=?;def=0.02

posmax=?;def=0.1

A$(node_name) $(pinion) $(gndmec) $(position) m$(node_name) \n .model m$(node_name) pinionrack radius=$(radius) posmax=$(posmax) posmin=$(posmin) tau=$(tau)

position

gndmec

pinion

Fig. 12 : Pinion-rack icon

20.0 m

30.0 m

40.0 m

50.0 m

60.0 m

70.0 m

0.0 2.0 4.0 6.0 8.0 10.0

 p
os

iti
on

 (
m

)

 voltage (V)
Fig. 13 : Seat elevation position (voltage)

A colorimetric application

As an heteroclite and unexpected example, this one has been
inspired by our previous work presented in (6). A colored object
(C1 spectre) is illuminated by a specified illuminant (S) and
observed through fog of k density at a defined distance. The
colorimetric system is set up for determining the color rendered
in a hazy environment (Figure 14). It contains the following
modules:

1) Illuminant module contains information on the type of
illuminant, here the normalized D65 illuminant

2) xfogxyz module calculates the effect of fog and
distance on the object reflectance for each basic
stimulus xs, ys and zs

3) trisxyz module uses the analogy of color with
electricity as discussed in (6) for calculating the
tristimili X, Y and Z, here by using inductors. It means
that an integration is done for getting them.

4) cciexyz module transforms tristimuli X, Y and Z in
chromatic coordinates x, y and z

5) XYZTORGB module transforms tristimuli in R, G and
B fundamental colors according to the screen
specification on which rendered color has to be
displayed

6) WRITE module makes writing results in a file named
rawspice.raw that is used for plotting results by
SPICE NUTMEG and as inputs of a program for
displaying effectively rendered colors on a screen (7).

file=D:\spiceraw.raw
Parameters= x y z r g b

Fi
le

{Parameters}

WRITE

tr
is

xy
z

cc
ie

xy
z

Transient

Parameters=r g b

PLOT

{Parameters}

Parameters=x y z

PLOT

{Parameters}

file=D:\ExportColorI\d65.spi

illumiantzs

ys

xs

file=D:\ExportColorI\rouge.spi

STOP

C1

R
G

B

fogxfogxyz

b

g

r

z

y

x

zz

yy

xx
c1

z1

y1

x1

xs
ys
zs

c1

xs

ys

zs

Fig. 14 : Bloc diagram of the colorimetric system

The same procedure than the previous one is used for getting
icons (Figure 15) from which VHDL-AMS skeleton file are
automatically generated to be filled by the user. For instance,
xfog models of xfogxyz module is given by Figure 16.

k=?;def=0.0001
d=?;def=100

A$(node_name) $(in1) $(in2) $(gnd) $(out1) m$(node_name) .model m$(node_name) xfog k=$(k) d=$(d)

out1

gnd

in2

in1

X
FO

G

Fig. 15 : XFOG icon.

-- VHDL-AMS automatically generated from facet xfog{ic}
ENTITY xfog IS
 GENERIC (d :real:= 100.0; k :real:= 0.0001);
 PORT (TERMINAL in1, in2, gnd: Electrical; QUANTITY out1: OUT Real);
END xfog;
ARCHITECTURE xfog_BODY OF xfog IS
 quantity vinxyz across in1 to gnd;
 quantity vinr across in2 to gnd;
BEGIN
 out1 == vinxyz * (1.0 - (1.0 - vinr) * exp(-k*d));
END xfog_BODY;

Fig. 16 : Fog model

XF
OG

XF
OG

XF
OG mx

my

mz

ys

xs

zs

c1

Fig. 17 : Fog model for tristimuli X, Y and Z

To rendered colors on a screen depends on the color monitor
used (8). The characteristics of a color monitor are determined
by the colors of its guns, its red, green, and blue primaries
denoted R, G, and B and determined by primary coordinates
chromaticities (xR, yR), (xG, yG), and (xB, yB). In this example,
we choice NTSC (9) (National Television System Committee)
as color system and 1.0 for gamma correction. Gamma
correction represents a numerical parameter that describes the
nonlinearity of intensity reproduction. Figure 18 shows the
position of the final point of the curve representing the
rendered color inside of the “CIE horseshoe (10)”. For that
case, the fog factor was fixed at k=0.0004m-1 and the distance
was varied from 1 to 1000m (in figure 18, the distance is fixed
to 1000m) the rendered color of the object, originally red, is
quite pink . This corresponds to the well known phenomena:
color whitening through fog observation .

 Conclusions
This paper describe a strategy of modeling multi-technological
systems by using VamSpiceDesigner© GET in three examples.
In the first example, a micro-electronic application is
described by modeling a behavioral and functional MOSFET
in order to present the strategy. In the second, a mechatronic
application is presented : the elevation of a seat in a car is
commanded by a voltage. The third example shows the effect
of fog and distance is modeled on the rendered color of an
colored object. These three example allow to show the big
variety of multi-technological domains that can be modeled by
VHDL-AMS.

 References
(1) S. Jemmali and J.-J. Charlot, "VamSpice Designer, a hierarchical schematic

design tool of multi-technological systems based on VHDL-AMS and
SPICE”, MIXDES’03 June 2003, Lodz, Poland

(2) J.-J. Charlot and S. Jemmali,
 VamSpice © GET/ENST Paris 2002
(3) SPICE OPUS, The University of Ljubljana, Slovenia,
 http://www.fe.unilj.si/spice/welcome.html
(4) ELECTRICTM, http://www.staticfreesoft.com
(5) H. A. Mantooth, M. Fiegenbaum, “Modeling with an Analog Hardware
 Description Language”, Kluwer Academic Publishers, 1995.
(6) J.-J. Charlot, E. Barker, O. Alali, J.-F. Charlot, “Color Rendering in a Hazy

Environment” : Simulation with SPICE3F5/VHDL-AMS”, BMAS’98,
October 1998, Orlando, USA

(7) S.Jemmali and J.-J Charlot, “Colorimetric v1.03”,Created at ENST 2003
(8) Where’s purple ? Or, how to plot colours properly on a computer screen,
 http://casa.colorado.edu/ãjsh/colour/rainbow.html
(9) efg’s Computer Lab, Chine Transation by Hector Xiang,
 “Chromaticity Diagrams Lab Report”, http://www.efg2.com/
(10) Commission Internationale de l'Éclairage,
 http://www.cie.co.at/cie/

http://www.fe.unilj.si/spice/welcome.html
http://www.staticfreesoft.com/
http://casa.colorado.edu/%e3jsh/colour/rainbow.html
http://www.efg2.com/
http://www.cie.co.at/cie/

Fig. 18 : Simulation results of rendered colors.
The “horseshoe” is CIE (10) 1931 chromaticity diagram – 1931 2° observer.

	A. Principle of the Schematic Design
	B. From VHDL-AMS to SPICE
	C. VamSpiceDesigner

	C.1. VamSpice compiler
	C.2. SpiceOpus simulator (= SPICE3 + XSPICE + Nutmeg)
	
	
	C.3. Macro-component, icon and hierarchy

	A micro-electronic application
	A mechatronic application

