
Improving Analog Simulation Speed using Selective Matrix Update

Sameer S. Kher, Harold W. Carter
Distributed Processing Laboratory
ECECS, University of Cincinnati

Cincinnati, OH – 45221-0030, USA
{kherss, hcarter}@ececs.uc.edu

Abstract – Dynamic systems of nonlinear differential
algebraic equations (DAE) are used to model a large class of
engineering and biological systems. The two most time
consuming processes in the direct method for analysis of
nonlinear DAE sets are found to be the Jacobian matrix
formulation and the linear system solution. Methods are
presented in this paper to significantly reduce Jacobian matrix
formulation times, and hence improve simulation speeds, by
selective update of the Jacobian matrix.

Introduction

Most physical systems exhibit varying behavior depending on
current values of various parameters in the system. Modeling
such discontinuous dynamic behavior requires different sets
of DAEs, where the behavior of the system is determined by
the current DAE set, which in turn is determined by the
current variable values. As an example, a transistor is
commonly modeled with three behavioral regions where the
DAE sets differ for each region (1).

Contemporary simulators rely on a hierarchy of equation sets.
At each simulation cycle, a path through this hierarchy is
traversed to form the current DAE set. Simulators perform an
incremental analysis over time on these dynamic DAE sets by
dividing the simulation time into time steps and solving the
DAE sets at each time step (2).

The commonly-used direct method for analysis of the
nonlinear DAEs performs repeated iterations each involving
the following steps. First, the equations are integrated using
implicit integration methods to convert the nonlinear DAE set
into a set of nonlinear algebraic difference equations (AE).
The AE’s are then linearized, typically using an iterative
Newton-Raphson (NR) method, The NR method involves
calculating the Jacobian Matrix and the right hand side (RHS)
vector, to form a linear system, represented as Ax=b, where
A represents the Jacobian matrix, x is a vector of the
unknowns and b is the RHS vector. Finally the equation
Ax=b can be solved by some form of Gaussian Elimination.

Research has shown the two most time consuming processes
in the direct method to be the Jacobian matrix formulation
and the linear system solution (3). Simulators that rely on
built-in mathematical models of a fixed set of circuit
components, such as SPICE, have relatively fast Jacobian

matrix build times since the Jacobian does not need to be
explicitly calculated. However, higher level modeling
languages allow the modeler to specify arbitrary differential
and algebraic equations. Formulation of the Jacobian matrix
for such dynamic arbitrary systems requires some sort of
symbolic or automatic differentiation (4) (5). In addition,
typically, due to the dynamic nature of the system, the
Jacobian matrix and the RHS vector have to be rebuilt for
every iteration of the NR method. Thus, the Jacobian matrix
build times for simulators for these languages are found to
contribute a significant portion of the total simulation time.
Hence, simulation speeds can be significantly improved by
reducing matrix formulation time.

Previous work includes (3), where matrix build and solve
times were compared for an analog circuit simulator with
built-in models and (6) and (7), which demonstrated Jacobian
matrix build speed improvements where the entire DAE set
can be classified. We extend this effort to include individual
equation types for which the number of calls to the automatic
differentiator can be reduced and to handle dynamic systems
by mapping the hierarchical path to the best possible solution.
Similar concepts are addressed in (8) but we more
specifically exploit linearity and time-variance to support
reduced build times.

The methods were implemented for SIERRA-2.01 and
resulting improvements in simulation times are reported here.
We report results for two types of scalable models; the first
type consists of models with 1000 components and varying
percentages of linear/nonlinear and time-variant/time-
invariant equations and the second type is the input stage of a
multi-channel data acquisition system.

System Overview

Fig. 1 shows the simulation method traditionally used for
continuous-time simulation in case of a mixed-mode system.
The input to the simulator is the elaborated set of equations as
well as any discontinuity conditions. The DC operating point
is calculated to obtain initial values for all dependent
variables.

1 VHDL-AMS simulator under development at the University of Cincinnati

The transient simulation is then started with the current time
set to 0. Initialization discontinuities are processed and values
are set accordingly. The current set of DAE’s is then
determined by tracing the appropriate path through the
elaborated hierarchical data structure of equations. In addition
to the set of equations specified by the modeler, systems
often also obey some conservative structural laws. For
example, electrical systems obey Kirchoff’s current law
(KCL). These laws give rise to an additional set of equations,
which are required to completely describe the behavior of the
system and are also loaded into the Jacobian matrix.

Assign matrix row to equation during first
iteration at every time point

Clear matrix A

Find partial derivatives with respect to each
independent variable in equation using automatic

differentiation

Find RHS value for current iteration

Load values into matrix A and RHS

Next, the differential equations are integrated to give a set of
nonlinear AEs. These equations are then solved using the
iterative NR method, which involves the building of the
Jacobian Matrix followed by linear system solve, during each
iteration at every time step.

All Equations
loaded?

No

Yes

Continue with simulation

Figure 2: Traditional Jacobian matrix formulation. The NR method iterates until convergence criteria,

determined by desired tolerances, are met. The time step
control then determines the next time step for simulation and
the new equation set is obtained and solved. Simulation
continues until the specified end time.

Fig. 2 shows the traditional Jacobian Matrix formulation
method. The current set of equations is the input to this
method. First, matrix locations are allocated to each term in
each equation. The Jacobian matrix is then cleared at the start
of each iteration. Finally, the AE’s are loaded one by one by
determining the partial derivatives of each equation with
respect to each of its variables by using an automatic
differentiator. This process is slow since it is traditionally
performed at each time step.

Calculate DC solution

Process discontinuities

Form current equation set

Numerical integration to discretize derivatives

 Form Jacobean matrix (Fig. 2)

Approach
 Solve Jacobean matrix

One method of improving Jacobian matrix build times is by
classifying the entire equation set at every time point as either
linear or nonlinear and applying appropriate solution
methods.

Solution
converged?

Yes No

No However, most physical systems exhibit some nonlinear

behavior and classification of the entire system as linear is
rare. Our modification to the traditional algorithm reduces the
time required to build the Jacobian matrix for dynamic
nonlinear systems by exploiting the properties of individual
equations.

Maximum allowed
iterations
exceeded?

Increment time

Is end time
reached?

No Yes

Reduce time step
Yes

 Display results and
exit with success For a nonlinear DAE set, we identify matrix locations that

can remain unchanged by classifying the equations. A
number of attributes are associated with every equation such
as the number of variables in it, whether it is a differential
equation or an algebraic equation, etc. In order to determine
the matrix locations that can remain unchanged between
time-steps, we consider two of the equations’ attributes
namely the linearity and the time variance. These attributes
determine the classification of the DAEs.

Minimum
allowed time

step exceeded?

No

Yes

Report non-convergence
and exit

Figure 1: Traditional continuous simulation method.
Jacobian matrix formulation procedure is shown in Figure 2
(and Figure 4 in improved form)

Classification of Equations:

AEs can be classified as shown in Fig. 3. Algebraic and

Selective matrix update during simulation

imulation occurs in two phases: model compilation and

 the system is nonlinear, we use the classification of

llocation of matrix entries to equations is done during the

 an equation is linear and time-invariant, we calculate the

 an equation is linear and time-variant, we calculate the

onlinear equations are loaded using the traditional method.

Simulatio Results

he proposed algorithm was implemented on the VHDL-

he first set of models was obtained from a 1000-component

DAE Assign matrix elements to
equation only if equation set has

changed

Initialize matrix A and RHS with stored values

Algebraic Differential
Is equation

linear?
NoYes

Linear Nonlinear
Is equation time-

variant?
No

Find partial derivatives
with respect to each

independent variable in
equation

Yes

Time-Variant Time-Invariant First iteration at
current time step?

Yes
Find RHS value for current

iteration

Figure 3: Equation type hierarchy. Thick lines
represent the two equation type combinations
explored thus far and reported here.

No
Load values into matrix A

and RHS

No

All equations
loaded?

Yes

 Continue with
simulation

D
differential linear equations are classified as linear time-
variant or linear time-invariant depending on the presence of
time as a variable in the equation. All other equations are
classified as nonlinear.

Figure 4: Improved Jacobian matrix formulation

If
Jacobian and RHS only for the first NR iteration at each time
point. These values are then stored in the matrix and are
reused for the remaining iterations until convergence at the
current time point.
 S
Nmodel simulation. The equations specified by the modeler are

classified during compilation. During simulation, while
selecting the equations to be included at the current time
point, we determine if the equation set has changed from the
previous iteration. We may also classify the system as linear
or nonlinear depending on the equations to be solved. The
classification may then be used to select one of many solution
methods as suggested by (6).

n

T
AMS Simulator SIERRA-2.0, available from the Distributed
Processing Laboratory, University of Cincinnati.

TIf
model generator (9). The models were generated with the
desired percentages of linear time-invariant, linear time-
variant and nonlinear equations for analysis. Components

individual equations to reduce the build time. Fig. 4 shows
the modified Jacobian matrix formulation method. In
addition to the current equation set, we also indicate if the
equation set has changed from the previous iteration.
 linear, time-invariant:

across quantity == through quantity * constant
A
first iteration and then only when the equation set has
changed in subsequent iterations.

linear, time-varaint
across quantity == (through quantity * constant) + (time * constant)

nonlinear

If across quantity == through quantity * through quantity * constant
coefficients and RHS only for the first iteration at the first
time point. These values are then stored in the matrix and
need not be changed until the equation set changes.

Figure 5: Component model equations used for linear and
nonlinear components in 1000 component model

were modeled as simple simultaneous statements as shown in
Fig. 5.

Table 1 shows the simulation times and the percentage

Table 1: Simulation results or 1000-component model

Selective Matrix Update Traditional Method

odel

Selective Matrix Update Traditional Method

speedup obtained over the traditional method for simulation
on a 1.0 GHz AMD-Athlon processor with 128MB memory
executing Red Hat Linux 7.3.

 f

% Linear
Equations

% Time-

equations)**

Build

(seconds)

Simulation Build

(seconds)

l
Simulation

%
Speedup
in Total (out of

1000)*

variant
Equations

(out of
linear

Matrix Total

Time Time
(seconds)

Matrix Tota

Time Time
(seconds)

Simulation
Time

0 43.87 4.51 52.38 3.01 0.24
0 46.4 78.88 53.44 85.9 8.17

 1 800 47.3 79.01 52.23 4.02 5.96
0 4.76 68.36 53.76 86.91 1.34
0 38.92 70.95 55.47 87.54 18.95

 100 41.27 74.77 54.22 87.01 14.07
0 7.17 43.1 53.6 86.91 50.41
0 3.19 48.4 4.28 87.13 44.45

 1 500 20.49 3.74 53.34 85.5 37.15

0

5

10

15

20

25

30

35

40

0 250 500 750 1000

Number of linear time-variant equations (out of 1000) *

%
 S

pe
ed

up
 in

 to
ta

l s
im

ul
at

io
n

tim
e

0 0 53.46 83.3 53.46 83.3 0.00
25 7 8 1

Figure 7: % Speedup in total simulation time with
respect to number of linear time-variant equations for
1000 component model.
*remaining equations are nonlinear.

 5

50 3 2
 5

100
 5 1 5

* remaining equations are modeled as nonlinear
riant

 each model the remaining percentage of equations were

ig. 6 shows effect of increasing the number of linear time-

Increasing the percentage of linear time-variant equations

Fig. 8 shows the effect of in reasing the number of linear

with respect to linear equations decreases the speedup. This is
because the automatic differentiator is called during the first
NR iteration at every time step instead of only once at the
start of simulation.

** remaining linear equations are linear time-inva c
 time-variant equations with respect to the linear time-

invariant equations on speedup.

In
nonlinear. As expected, a completely linear time-invariant
system gives the highest speedup.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 250 500 750 1000

Number of linear time-variant equations (out of 1000)*

%
 S

pe
ed

up
 in

 s
im

ul
at

io
n

tim
e

F
invariant equations on speedup and Fig. 7 shows effect of
increasing the number of linear time-variant equations on
speedup. Both graphs show increasing speedups for
increasing number of classifiable equations. We also note that
the rate of improvement due to linear time-invariant
equations is greater than that for linear time-variant.

60

0

10

20

30

40

50

0 250 500 750 1000

Number of linear time-invariant equations (out of 1000)*

%
 S

pe
ed

up
 o

ve
r t

ra
di

tio
na

l a
lg

or
ith

m

Figure 6: % Speedup in total simulation time with
respect to number of linear time-invariant equations for
1000 component model.
*remaining equations are nonlinear.

respect to increase in number of linear time-variant
equations for 1000 component model.
*remaining equations are linear time-invariant.

Figure 8: % Speedup in total simulation time with

The second set of models represents the input stage of a
multi-channel data acquisition system. Each channel accepts
a time varying sinusoidal signal as input. The input signal is
rectified by a half-wave rectifier and is used to drive a load
resistance. The half-wave rectifier uses a single diode, which
is modeled to exhibit three operational regions - a nonlinear
forward bias region, a linear reverse bias region and a

nonlinear breakdown region. Thus, this stage has three
classifiable equations, a linear time-variant input signal, a
linear time-invariant reverse bias region and a linear time-
invariant load resistance equation.

Table 2 shows the simulation times and the percentage

Table 2: Simulation results for multi-channel input stage for data

Selective Matrix Update Traditional Method

speedup obtained over the traditional method for simulation
on a 1.0 GHz AMD-Athlon processor with 128MB memory
executing Red Hat Linux 7.3.

acquisition system

Number
of Input

Build Time
(seconds)

Si n M
Build Time
(seconds)

Si n

% Speedup

stages
Matrix Total

mulatio
Time

(seconds)

atrix Total
mulatio
Time

(seconds)

in Total
Simulation

Time

1 45.50 0.67 0.75 1.29 1.37

2 1.15 1.26 2.40 2.51 49.84

4 2.19 2.33 4.64 4.79 51.46

8 4.24 4.49 9.34 9.59 53.18

16 8.85 9.34 19.39 19.88 53.03

Conclusions

e draw from the tables and graphs, that it is possible to W
significantly enhance the time and number of updates to the
coefficient matrix and the RHS. In fact we have shown that
speedups of up to 53% in total simulation time are possible
over traditional methods for the benchmarks used. We also
conclude that for systems with the same percentages of
classifiable equations, greater speedups are achieved for
systems requiring more number of iterations for solution
convergence.

Future work will focus on techniques to increase the number
of classifiable equations by using substitutions to convert
nonlinear equations into one of the two classifiable forms.

References

(1) G. Massobrio and P. Antognetti, Semiconductor device modeling with

SPICE, 2ed. McGraw-Hill, Inc., New York, NY, 1993.

(2) J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and

Design, second edition, Van Nostrand Reinhild, New York, NY, 1994.

(3) A. R. Newton and A. L Sangiovannni-Vincentelli, “Relaxation-based

electrical simulation”, IEEE Transactions on Electron Devices, Vol.
ED-30, No. 9, September 1983.

(4) P. Frey, K. Nellayappan, V. Shanmugasundaram, R. S. Mayiladuthurai,

C. L. Chandrashekar and H. W. Carter, “SEAMS: Simualtion
environment fpr VHDL-AMS”, Proceedings of the 1998 Winter
Simulation Conference, Washington, D.C., United States.

(5) Griewank, A., D. Juedes, and J. Utke (1996, September), “ADOL-C: A

Package for the Automatic Differentiation of Algorithms written in
C/C++.” in ACM Transactions on Mathematical Software (TOMS)
Volume 22 , Issue 2 (June 1996).

(6) V. Shanmugasundaram, “A dynamic multiple solution approach to

improve the efficiency of VHDL-AMS simulation”, Master’s Thesis,
University of Cincinnati, 1998.

(7) S. Agarwal, “Optimization approaches for analog kernel to speedup

VHDL-AMS simulation”, Master’s Thesis, University of Cincinnati,
2002.

(8) G. Hachtel, R. Brayton and F. Gustavson, “The sparse tableau approach

to network analysis and design”, IEEE Transactions on circuit theory,
Vol. CT-18, No. 1, January 1971.

(9) S. Bapat, “The performance evaluation of VHDL-AMS simulators by

creating large, scalable VHDL-AMS models”, Master’s Thesis,
University of Cincinnati, 2002.

