
Improving Analog Simulation Speed using Selective Matrix Update 
 

Sameer S. Kher, Harold W. Carter 
Distributed Processing Laboratory 
ECECS, University of Cincinnati 

Cincinnati, OH – 45221-0030, USA 
{kherss, hcarter}@ececs.uc.edu 

 
Abstract – Dynamic systems of nonlinear differential 
algebraic equations (DAE) are used to model a large class of 
engineering and biological systems. The two most time 
consuming processes in the direct method for analysis of 
nonlinear DAE sets are found to be the Jacobian matrix 
formulation and the linear system solution. Methods are 
presented in this paper to significantly reduce Jacobian matrix 
formulation times, and hence improve simulation speeds, by 
selective update of the Jacobian matrix.   
 
 

Introduction 
 
Most physical systems exhibit varying behavior depending on 
current values of various parameters in the system. Modeling 
such discontinuous dynamic behavior requires different sets 
of DAEs, where the behavior of the system is determined by 
the current DAE set, which in turn is determined by the 
current variable values. As an example, a transistor is 
commonly modeled with three behavioral regions where the 
DAE sets differ for each region (1).   
 
Contemporary simulators rely on a hierarchy of equation sets. 
At each simulation cycle, a path through this hierarchy is 
traversed to form the current DAE set. Simulators perform an 
incremental analysis over time on these dynamic DAE sets by 
dividing the simulation time into time steps and solving the 
DAE sets at each time step (2).   
 
The commonly-used direct method for analysis of the 
nonlinear DAEs performs repeated iterations each involving 
the following steps. First, the equations are integrated using 
implicit integration methods to convert the nonlinear DAE set 
into a set of nonlinear algebraic difference equations (AE). 
The AE’s are then linearized, typically using an iterative 
Newton-Raphson (NR) method, The NR method involves 
calculating the Jacobian Matrix and the right hand side (RHS) 
vector, to form a linear system, represented as Ax=b, where 
A represents the Jacobian matrix, x is a vector of the 
unknowns and b is the RHS vector. Finally the equation 
Ax=b can be solved by some form of Gaussian Elimination.   
 
Research has shown the two most time consuming processes 
in the direct method to be the Jacobian matrix formulation 
and the linear system solution (3). Simulators that rely on 
built-in mathematical models of a fixed set of circuit 
components, such as SPICE, have relatively fast Jacobian 

matrix build times since the Jacobian does not need to be 
explicitly calculated. However, higher level modeling 
languages allow the modeler to specify arbitrary differential 
and algebraic equations. Formulation of the Jacobian matrix 
for such dynamic arbitrary systems requires some sort of 
symbolic or automatic differentiation (4) (5). In addition, 
typically, due to the dynamic nature of the system, the 
Jacobian matrix and the RHS vector have to be rebuilt for 
every iteration of the NR method. Thus, the Jacobian matrix 
build times for simulators for these languages are found to 
contribute a significant portion of the total simulation time. 
Hence, simulation speeds can be significantly improved by 
reducing matrix formulation time.   
  
Previous work includes (3), where matrix build and solve 
times were compared for an analog circuit simulator with 
built-in models and (6) and (7), which demonstrated Jacobian 
matrix build speed improvements where the entire DAE set 
can be classified. We extend this effort to include individual 
equation types for which the number of calls to the automatic 
differentiator can be reduced and to handle dynamic systems 
by mapping the hierarchical path to the best possible solution. 
Similar concepts are addressed in (8) but we more 
specifically exploit linearity and time-variance to support 
reduced build times.  
 
The methods were implemented for SIERRA-2.01 and 
resulting improvements in simulation times are reported here. 
We report results for two types of scalable models; the first 
type consists of models with 1000 components and varying 
percentages of linear/nonlinear and time-variant/time-
invariant equations and the second type is the input stage of a 
multi-channel data acquisition system.   
 

 
System Overview 

 
Fig. 1 shows the simulation method traditionally used for 
continuous-time simulation in case of a mixed-mode system. 
The input to the simulator is the elaborated set of equations as 
well as any discontinuity conditions. The DC operating point 
is calculated to obtain initial values for all dependent 
variables.   
 

                                                 
1 VHDL-AMS simulator under development at the University of Cincinnati  



The transient simulation is then started with the current time 
set to 0. Initialization discontinuities are processed and values 
are set accordingly. The current set of DAE’s is then 
determined by tracing the appropriate path through the 
elaborated hierarchical data structure of equations. In addition 
to the set of equations specified by the modeler, systems 
often also obey some conservative structural laws. For 
example, electrical systems obey Kirchoff’s current law 
(KCL). These laws give rise to an additional set of equations, 
which are required to completely describe the behavior of the 
system and are also loaded into the Jacobian matrix.   

Assign matrix row to equation during first 
iteration at every time point 

Clear matrix A 

Find partial derivatives with respect to each 
independent variable in equation using automatic 

differentiation 

Find RHS value for current iteration 

Load values into matrix A and RHS 

 
Next, the differential equations are integrated to give a set of 
nonlinear AEs. These equations are then solved using the 
iterative NR method, which involves the building of the 
Jacobian Matrix followed by linear system solve, during each 
iteration at every time step.   

All Equations 
loaded? 

No 

Yes 

Continue with simulation 

 
Figure 2: Traditional Jacobian matrix formulation. The NR method iterates until convergence criteria, 

determined by desired tolerances, are met. The time step 
control then determines the next time step for simulation and 
the new equation set is obtained and solved. Simulation 
continues until the specified end time.   

 
Fig. 2 shows the traditional Jacobian Matrix formulation 
method. The current set of equations is the input to this 
method. First, matrix locations are allocated to each term in 
each equation. The Jacobian matrix is then cleared at the start 
of each iteration. Finally, the AE’s are loaded one by one by 
determining the partial derivatives of each equation with 
respect to each of its variables by using an automatic 
differentiator. This process is slow since it is traditionally 
performed at each time step.   

Calculate DC solution 

Process discontinuities 

Form current equation set 

Numerical integration to discretize derivatives  
 

 Form Jacobean matrix (Fig. 2) 

Approach 
 Solve Jacobean matrix 

One method of improving Jacobian matrix build times is by 
classifying the entire equation set at every time point as either 
linear or nonlinear and applying appropriate solution 
methods.   

Solution 
converged? 

Yes No 

 
No However, most physical systems exhibit some nonlinear 

behavior and classification of the entire system as linear is 
rare. Our modification to the traditional algorithm reduces the 
time required to build the Jacobian matrix for dynamic 
nonlinear systems by exploiting the properties of individual 
equations.   

Maximum allowed 
iterations 
exceeded? 

Increment time 

Is end time 
reached? 

No Yes 

Reduce time step 
Yes 

 Display results and 
exit with success For a nonlinear DAE set, we identify matrix locations that 

can remain unchanged by classifying the equations. A 
number of attributes are associated with every equation such 
as the number of variables in it, whether it is a differential 
equation or an algebraic equation, etc. In order to determine 
the matrix locations that can remain unchanged between 
time-steps, we consider two of the equations’ attributes 
namely the linearity and the time variance. These attributes 
determine the classification of the DAEs.   

Minimum 
allowed time 

step exceeded? 

No

Yes 

Report non-convergence 
and exit 

Figure 1: Traditional continuous simulation method. 
Jacobian matrix formulation procedure is shown in Figure 2 
(and Figure 4 in improved form) 

 



 
 
Classification of Equations: 

AEs can be classified as shown in Fig. 3. Algebraic and 

 
Selective matrix update during simulation 

 
imulation occurs in two phases: model compilation and 

 the system is nonlinear, we use the classification of 

llocation of matrix entries to equations is done during the 

 an equation is linear and time-invariant, we calculate the 

 an equation is linear and time-variant, we calculate the 

onlinear equations are loaded using the traditional method.    

Simulatio  Results 
 

he proposed algorithm was implemented on the VHDL-

he first set of models was obtained from a 1000-component 

DAE Assign matrix elements to 
equation only if equation set has 

changed 

Initialize matrix A and RHS with stored values 

Algebraic Differential
Is equation 

linear? 
NoYes 

Linear Nonlinear 
Is equation time-

variant? 
No

Find partial derivatives 
with respect to each 

independent variable in 
equation 

Yes 

Time-Variant Time-Invariant First iteration at 
current time step? 

Yes 
Find RHS value for current 

iteration 

Figure 3: Equation type hierarchy. Thick lines 
represent the two equation type combinations 
explored thus far and reported here. 

No
Load values into matrix A 

and RHS 

No

All equations 
loaded? 

Yes 

 Continue with 
simulation 

D
differential linear equations are classified as linear time-
variant or linear time-invariant depending on the presence of 
time as a variable in the equation. All other equations are 
classified as nonlinear.   
 

Figure 4: Improved Jacobian matrix formulation 

If
Jacobian and RHS only for the first NR iteration at each time 
point. These values are then stored in the matrix and are 
reused for the remaining iterations until convergence at the 
current time point.   
 S
Nmodel simulation. The equations specified by the modeler are 

classified during compilation. During simulation, while 
selecting the equations to be included at the current time 
point, we determine if the equation set has changed from the 
previous iteration. We may also classify the system as linear 
or nonlinear depending on the equations to be solved. The 
classification may then be used to select one of many solution 
methods as suggested by (6).   
 

 
 
n

T
AMS Simulator SIERRA-2.0, available from the Distributed 
Processing Laboratory, University of Cincinnati.   
 
TIf
model generator (9). The models were generated with the 
desired percentages of linear time-invariant, linear time-
variant and nonlinear equations for analysis. Components 

individual equations to reduce the build time. Fig. 4 shows 
the modified Jacobian matrix formulation method.  In 
addition to the current equation set, we also indicate if the 
equation set has changed from the previous iteration.  
 linear, time-invariant: 

across quantity == through quantity * constant 
A  
first iteration and then only when the equation set has 
changed in subsequent iterations.   
 

linear, time-varaint 
across quantity == (through quantity * constant) + (time * constant) 

 
nonlinear 

If  across quantity == through quantity * through quantity * constant 
coefficients and RHS only for the first iteration at the first 
time point. These values are then stored in the matrix and 
need not be changed until the equation set changes.   
 

Figure 5: Component model equations used for linear and 
nonlinear components in 1000 component model 



were modeled as simple simultaneous statements as shown in 
Fig. 5.   
 
Table 1 shows the simulation times and the percentage 

Table 1: Simulation results or 1000-component model 

Selective Matrix Update   Traditional Method 

odel 

Selective Matrix Update   Traditional Method 

speedup obtained over the traditional method for simulation 
on a 1.0 GHz AMD-Athlon processor with 128MB memory 
executing Red Hat Linux 7.3.  
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% Time-
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Build 

(seconds) 

Simulation Build 

(seconds) 
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Simulation 

% 
Speedup 
in Total (out of 

1000)* 

variant 
Equations 

(out of 
linear 

Matrix Total 

Time Time 
(seconds) 

Matrix Tota

Time Time 
(seconds) 

Simulation 
Time 

0 43.87 4.51 52.38 3.01 0.24 
0 46.4 78.88 53.44 85.9 8.17 

  1 800 47.3 79.01 52.23 4.02 5.96 
0 4.76 68.36 53.76 86.91 1.34 
0 38.92 70.95 55.47 87.54 18.95 

  100 41.27 74.77 54.22 87.01 14.07 
0 7.17 43.1 53.6 86.91 50.41 
0 3.19 48.4 4.28 87.13 44.45 

  1 500 20.49 3.74 53.34 85.5 37.15 
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Figure 7: % Speedup in total simulation time with 
respect to number of linear time-variant equations for 
1000 component model.  
*remaining equations are nonlinear. 
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 each model the remaining percentage of equations were 

ig. 6 shows effect of increasing the number of linear time-

Increasing the percentage of linear time-variant equations 

 
Fig. 8 shows the effect of in reasing the number of linear 

with respect to linear equations decreases the speedup. This is 
because the automatic differentiator is called during the first 
NR iteration at every time step instead of only once at the 
start of simulation.   

** remaining linear equations are linear time-inva c
 time-variant equations with respect to the linear time-

invariant equations on speedup.   
 

In
nonlinear. As expected, a completely linear time-invariant 
system gives the highest speedup.   
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F
invariant equations on speedup and Fig. 7 shows effect of 
increasing the number of linear time-variant equations on 
speedup. Both graphs show increasing speedups for 
increasing number of classifiable equations. We also note that 
the rate of improvement due to linear time-invariant 
equations is greater than that for linear time-variant.   
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Figure 6: % Speedup in total simulation time with 
respect to number of linear time-invariant equations for 
1000 component model.  
*remaining equations are nonlinear. 

 

respect to increase in number of linear time-variant 
equations for 1000 component model.  
*remaining equations are linear time-invariant. 

Figure 8: % Speedup in total simulation time with 

The second set of models represents the input stage of a 
multi-channel data acquisition system. Each channel accepts 
a time varying sinusoidal signal as input. The input signal is 
rectified by a half-wave rectifier and is used to drive a load 
resistance. The half-wave rectifier uses a single diode, which 
is modeled to exhibit three operational regions - a nonlinear 
forward bias region, a linear reverse bias region and a 



nonlinear breakdown region. Thus, this stage has three 
classifiable equations, a linear time-variant input signal, a 
linear time-invariant reverse bias region and a linear time-
invariant load resistance equation. 
 
Table 2 shows the simulation times and the percentage 

Table 2: Simulation results for multi-channel input stage for data 

 
Selective Matrix Update Traditional Method 

speedup obtained over the traditional method for simulation 
on a 1.0 GHz AMD-Athlon processor with 128MB memory 
executing Red Hat Linux 7.3.  
 

acquisition system 

Number 
of Input 

Build Time 
(seconds) 

Si n M
Build Time 
(seconds) 

Si n 

% Speedup 

stages 
Matrix Total 

mulatio
Time 

(seconds) 

atrix Total 
mulatio
Time 

(seconds) 

in Total 
Simulation 

Time 

1 45.50 0.67 0.75 1.29 1.37 

2 1.15 1.26 2.40 2.51 49.84 

4 2.19 2.33 4.64 4.79 51.46 

8 4.24 4.49 9.34 9.59 53.18 

16 8.85 9.34 19.39 19.88 53.03 

 
 

Conclusions 
 

e draw from the tables and graphs, that it is possible to W
significantly enhance the time and number of updates to the 
coefficient matrix and the RHS. In fact we have shown that 
speedups of up to 53% in total simulation time are possible 
over traditional methods for the benchmarks used.  We also 
conclude that for systems with the same percentages of 
classifiable equations, greater speedups are achieved for 
systems requiring more number of iterations for solution 
convergence.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Future work will focus on techniques to increase the number 
of classifiable equations by using substitutions to convert 
nonlinear equations into one of the two classifiable forms.   
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