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ABSTRACT
This paper presents a technique for modeling nonlinear dis-

tortion of multirate time-varying communication circuits. To
properly consider the weakly nonlinear distortion effects in
circuits with multiple large-signal excitations, we capture the
quasiperiodic boundary condition of the system Volterra ker-
nels using a multivariate formulation. We then extend the
model order reduction work of [8][9] to reduce this large mul-
tivariate representation for compact modeling. The proposed
approach is demonstrated on a heterodyne front-end receiver.

1. INTRODUCTION

Detailed transistor-level simulations of mixed-signal com-
munication integrated circuits often consume significant
CPU time and result in lengthy design cycles. This simula-
tion bottleneck makes it highly desirable to build efficient
models that can facilitate system-level verification and
design-exploration. 

Recently, several projection-based nonlinear model reduc-
tion schemes have been proposed for analog circuits that can
capture distortion in terms of system-level representations
[6]-[9]. In [8], a weakly nonlinear model reduction algorithm
NORM was proposed to properly choose projection vectors
in order to reduce the model size. NORM was extended into
a hybrid approach to more efficiently handle high Q circuits
in [9]. 

Although all the prior work has focused on the reduction of
periodically time-varying circuits corresponding to the exist-
ence of single periodic large excitation (e.g. a single LO) in
the circuit, the extension to quasiperiodic circuits (e.g. con-
taining multiple LOs) is useful and offers several benefits
and tradeoffs. As more than one time-varying component of
the system is considered, the modeling problem size
increases correspondingly. However, the ability to macro-
model combinations of multiple circuit components/blocks
not only improves the system level simulation efficiency, but
also overcomes the difficulty of capturing couplings across
the circuit block boundaries. 

As an example, a heterodyne RF receiver is shown in
Fig. 1, where two LO signals of different frequencies are
used. If the weakly nonlinear distortion due to the RF input is
†
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to be captured in the system-level macromodel, the circuit
should be analyzed as a time-varying system with a operat-
ing condition based on the large-signal LO inputs. Modeling
the receiver as a whole can easily incorporate any feedbacks
or couplings between various blocks, and does not require
any assumption on the signal isolation between circuit
blocks associated with different LO signals.

To consider the distortion effect of these quasiperiodically
time-varying circuits, we must describe the system using
certain quasiperiodic boundary conditions. For these weakly
nonlinear systems it is possible to apply time-varying Volt-
erra series as an extension to the standard description, as in
[4][5], where no time-varying aspect is considered. The
quasiperiodic boundary conditions for a Volterra description
can, in principle, be obtained using a method very similarly
to either of the two methods proposed for steady-state simu-
lation; namely [1][3], or [2]. In this paper, we choose the lat-
ter approach since it provides a more straightforward finite-
difference formulation as well as other benefits [2]. Once
the multivariate Volterra nonlinear transfer functions are
formulated into a proper matrix form, they are reduced
using an extended model order reduction approach of [8][9].

2. BACKGROUND ON VOLTERRA SERIES

Volterra series has been widely used to characterize weak-
ly nonlinear systems [4][5]. For a circuit with input , the
response (circuit unknowns)  can be expressed using the
expansion

, (1)

where  is the nth order response, which is related to the

input via convolution in time domain:

. (2)

Fig. 1. A heterodyne receiver incorporating two large 
LO signals
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In the above equation,  is the nth order Volterra kernel,

and can be thought as an extension to the impulse response
function of a linear system. The Laplace transform of the nth
order Volterra kernel, , is often referred to as

the nth order nonlinear transfer function. Consider the fol-
lowing ordinary differential-algebraic (DAE) description of
a weakly nonlinear circuit that is biased at a fixed operating
point 

. (3)

The first order linear transfer function is given by 
. (4)

The symmetrized second order nonlinear transfer function is
determined by [8]

, (5)

where ,

,

. 

3. MULTIVARIATE VOLTERRA FORMULATION

For many communication circuits there exist one or more
large excitations such as clock or LO. To apply Volterra
series for these circuits, one can consider the nonlinear cir-
cuit as a weakly nonlinear system w.r.t. the small input sig-
nal that is being processed, even though the circuit responds
to the clocks or LO’s in a highly nonlinear way. This
requires analysis of the small input signal upon a time-vary-
ing operating condition due to large system excitations.
Correspondingly, instead of using a time-invariant Volterra
description , time-varying transfer functions

 are applied

(6)

. (7)

In (6)-(7), the system conductance and capacitance coeffi-
cient matrices vary as time. Consequently, the first and sec-
ond order nonlinear transfer functions are also function of
time. For simplicity, let us assume that there are two large ex-
citations in the circuit that create a 2-tone quasiperiodic op-
erating point. Instead of solving (6)-(7) with a quasiperiodic
boundary condition directly, we follow the multivariate ap-
proach in [2], and consider the bivariate version of equations
(here the number of variables refers only to the number of
time variables)

, (8)

. , (9)

where  and  correspond to the time scales of two periodic

large tones in the circuit. Each signal or matrix  in (6)-

(7) can be related to the corresponding one, , in (8)-

(9), as . In addition,  is biperiodic:

, where  and  are the periods

of the two large excitations. If (8)-(9) can be solved with pe-
riodic boundary conditions in both  and , then the 2-tone

quasiperiodic transfer functions can be easily obtained by
setting the two time arguments equal in their bivariate ver-
sion: 

 and . (10)

To solve (8) numerically, we discretize it using  and 

time steps along  and  directions within a period of 

and  respectively, on a 2d surface. Let us assume that uni-

form time steps  and  are used for  and ,

with corresponding sampling instants at ,

, respectively. Denoting the number of original

circuit unknowns as , we define the following matrices of
dimension  for the consideration of discretization

in  

, (11)

, (12)
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To add the discretization along the  direction, we define

the following matrices of dimension 

, , (15)

, . (16)

We further define 

, (17)

. (18)

to ultimately obtain

. (19)

Note that this finite difference formulation is identical to
that used in [2] for steady-state analysis except that the con-
ductance and capacitance coefficient matrices in the above
formulation are known a priori. Similarly, for the second and
the third order nonlinear transfer functions, a finite differ-
ence formula can be derived that also involves kronecker
products.

4. MODEL ORDER REDUCTION

As shown in the previous section, the large finite differ-
ence equations arise in the multivariate formulation are in a
problem size of , therefore they need to be

properly reduced. Furthermore, these system equations are
in a matrix form identical to that of (6)(7), thus they can be
reduced using the projection-based nonlinear model order
reduction technique of [8]. The NORM algorithm of [8]
computes a projection matrix by explicitly considering mo-
ment matching of nonlinear transfer functions and employ-
ing multipoint expansions. As a result, it has an improved
model compactness over earlier approaches such as [6][7],
which is critical for nonlinear reduction problems. 

A full projection-based approach, however, becomes less
efficient for modeling high order nonlinear effects when they
vary dramatically over the frequency band of interest (e.g.,
when the circuit under the modeling contains high-Q filter-

ing blocks). The primary reason for this is that a large projec-
tion matrix is usually needed for capturing the sharp
frequency domain characteristics, leading to large and dense
reduced high order matrices. To overcome this difficulty, an
adjoint-based hybrid approach was proposed in [8], where
the first and second nonlinear effects at all nodes are approx-
imated using projection, while high order effects (third or-
der) at the specified output node are approximated via
projection and the reduction of an adjoint network. The re-
sulting model is further reduced by pruning nonlinear coeffi-
cient matrices in the original system coordinates using an
idea similar to that of [10].

In this paper, the multipoint version of NORM algorithm
of [8] is employed to efficiently approximate the first order
and the second order system responses while the adjoint ap-
proach of [9] is chosen to approximate the third order distor-
tion effects at the selected sidebands at the output.

5. RESULTS

A heterodyne front-end receiver in the architecture of Fig.
1 is used to test the proposed approach. The two LO fre-
quencies are set at  and 

respectively. The 2-tone quasiperiodic operating point of the
receiver is computed via steady-state analysis, and the
whole system is modeled as a weakly nonlinear system cor-
responding to the small RF input via the bivariate Volterra
formation presented in Section 3.  Up to the third order dis-
tortion effects are considered based on a set of finite differ-
ence equations that correspond to a matrix dimension of
about 40,000.

To reduce this extracted full model, multipoint NORM is
used to produce a reduced order model of size 36 for
approximating the linear time-varying transfer functions as
well as the second order nonlinear distortions. For the third
order effects, we consider the amount of third order inter-
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Fig. 2. The first order transfer function as a function 
of the RF frequency



modulation distortion translated by one  and one ,

i.e. close to the base band. To model the propagation of the
third order nonlinear distortions from various circuit nodes
to the output, an adjoint network is formed with the proper
2-D DFT matrix (corresponding to the wanted third order
transfer function sideband at the output) absorbed in its
input vector. This linear adjoint network is reduced into a
system of size 20. Fig. 2 shows the harmonic of the first
order transfer function corresponding to the conversion gain
of the receiver. As the output is fully differential, the second
order nonlinear effect is ideally zero. To see the third order
nonlinear distortion translated by the sum of two LO fre-
quencies, the respective harmonic of the varying third order
transfer function is plotted in Fig. 3. As can be seen, for
both plots, the reduced order model agrees very well with
the full model over a wide range of the input frequencies.
Using the reduced order model, the simulation efficiency is
improved by a factor of 13.

6. CONCLUSIONS

In this paper, a multivariate Volterra formulation is pre-
sented to characterize important weakly nonlinear effects in
communication ICs. This choice of multivariate representa-
tion leads to a natural boundary condition formulation such
that the system distortion under multiple circuit time varia-
tions can be well captured. The resulting set of large system
equations are effectively reduced using nonlinear model
order reduction techniques for improving simulation effi-
ciency.
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Fig. 3. The third order transfer function as a function of 
RF input tones. Two tone frequencies f1 and f1 vary from 
910-990MHz while the third tone is fixed at -950MHz. (a) 
f1 varies from 910MHz to 950MHz, and (b) f1 varies from 

955MHz to 990MHz.
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