
Achieving Language Independence with Paragon

Pinki Mallick, Matt Francis, Vemulapally Chandrasekhar, Anthony Austin, H. Alan Mantooth

University of Arkansas, 3217 Bell Engineering Center, Fayetteville, AR 72701

Abstract
This paper describes Paragon†, a novel modeling tool

that promotes the creation of HDL-based models at a more
abstract, language-independent level. This modeling
environment encapsulates the semantic elements necessary
to create models at various hierarchical levels from mixed-
signal and mixed-technology behavioral models down to
semiconductor device models. Paragon is designed to
support the generation of multiple hardware description
languages including VHDL-AMS, MAST, and Verilog-
A(MS) as well as C and C++-based codes. This paper
focuses on the facets of Paragon that enable language
independence.

1. Introduction
Whether the modeling task at hand for an engineer is of a

semiconductor device, an analog building-block circuit, a
digital circuit, or a system level block, the one thing for
certain is that the current model being constructed won’t be
the last model ever constructed. Device, circuit and system
modeling are an integral part of the design process. The
need for models appears during design exploration, design
verification, test definition and even design debugging when
unfortunate circumstances have led to refabrication.

As our notion of the system extends to non-electrical
components more and more models are required to describe
and analyze that system. Multidisciplinary systems are now
involving people from a variety of scientific backgrounds
including physicists, and mechanical, chemical and civil
engineers in addition to electrical and computer engineers. It
is unlikely that each of these disciplines will have taught the
use of the same analysis tools. Even within electrical and
computer engineering we use a variety of tools and
languages to describe and analyze our circuits and systems.

Paragon [1] was created with the motivation of providing
a modeling environment or framework that was language-
based, but also language independent. The term language-
based refers to the fact that Paragon possesses the semantics
and constructs required to represent electrical (analog and
digital) and non-electrical (mixed-technology) behavior in
hardware description languages (HDLs) such as MAST [2],
VHDL-AMS [3-6], and Verilog-A(MS) [7, 8]. Conversely,
language-independent refers to the fact that using Paragon
requires no underlying knowledge of any of these languages
with respect to their syntax or peculiarities. Code generation
technology does that work for the user from an HDL-neutral
format in XML and MathML [9, 10]. Therefore, Paragon is

language-aware in its internal codes, but does not impose
this foundation to the user level.

Tools of an analogous nature to Paragon are
commercially available from a number of vendors for pure
digital design [11, 12]. This is not true for analog, mixed-
signal or mixed-technology. The Paragon research has
evolved from the first such effort that began in an industrial
setting originally [13, 14].

More recently, modeling tools for translating models
from a description in one language into a form for use in
circuit simulation (i.e., typically C code) have been
described [15-17]. In [15] and [16], the specifications of the
model were entered in languages specifically designed for
the purpose of translation to compact form. In [17], the user
employs Verilog-AMS to describe the model, which is then
translated into an XML format for subsequent C code
generation. Shi’s group [18] has recently achieved similar
functionality using VHDL-AMS as the input language,
employing their own internal format. In all of these
instances [15-18], the ultimate goal is the C code realization
for compilation and linkage to the simulator for fast
execution. In contrast to Paragon, each of these approaches
begins with a language input – some use HDLs, others do
not. In each case, the issue is that of being faced with a
language as opposed to a higher-level description that more
clearly conveys the essence of a model and makes it far
easier to create, modify, debug, support and, very
importantly, transfer to others. Further, the user can
generate any number of language outputs (e.g., VHDL-
AMS, Verilog-AMS, MAST) from one description in
Paragon that could subsequently be used as input into these
C code generators for SPICE-like simulator engines.

2. Overview of Model Creation in Paragon

Paragon enables the designer to easily create new models
in multiple HDLs, without knowing or learning any of them.
Models can be reused as components of existing models
(i.e., macromodeling) for hierarchical modeling. As
designers are typically model users, it is beneficial for them
to have modeling tools that are easy to use for creating or
adjusting models to meet the requirements of the system.
Also, as Paragon produces readable standardized code and
removes common errors, it is easy to use and modify a
model.

Paragon consists of a single interface containing multiple
windows much like a multiple document interface (MDI) in
a Microsoft tool (e.g., Microsoft Word). However, unlike
the MDI found in many applications where a single type of
interface exists to create/modify the document, the MDI
interface concept is extended in Paragon to multiple types of

† This work was supported by NSF Grant EEC-0088011, ONR/USC 01-
636, and Texas Instruments.

3. The technologies and applications built on XML provide
a powerful and efficient way of expressing and
manipulating almost all types of data, including complex
mathematics and images. For example, Extensible
Stylesheet Language Transformations (XSLT) [25] is
used for transforming XML from one form into another.

interfaces all contributing to or operating on the same
document (that is, the model being created). Each of these
user interfaces (UIs) contributes some portion of behavior or
structure to a model. In general, all may be used if the model
is mixed-signal (i.e., mixed continuous-time/discrete-time).

The recommended (but not mandated) modeling process
is that of “outside-in”, whereby the modeler focuses on the
model interface first, then proceeds to describing the internal
information of the model, and finally generates code.

The model expressions and equations are expressed in
MathML, which is an XML application for describing
mathematical notation and capturing both its structure and
content. MathML is fast becoming the de facto standard for
encoding the structure of mathematical expressions so that
they can be displayed and shared over the World Wide Web.
Several mathematical software vendors use MathML for
expressing mathematical expressions. Thus, importing
complex mathematical expressions from these packages into
Paragon (and vice versa) is enabled.

A Model Interface Editor within Paragon is designed to
allow the user to succinctly specify the model name,
connection points, arguments, regions of validity of
arguments, and default values of arguments of a model. The
connection points can be analog or digital for electrical.
Further, connection points can be signal flow, mechanical,
optical, thermal, magnetic, etc. [19].

The model symbols in Paragon are saved in the database
in Scalable Vector Graphics (SVG), which is a language for
describing two-dimensional graphics in XML. Analogous to
expressions, more photo editor vendors are adding support
to their tools and applications for viewing and editing
images in SVG.

Models generally possess both structure and behavior
internally. Structure in this context can simply refer to how
equations are related to one another. A simple way of
illustrating this point is to take the example of the equations
of a resistor and capacitor being used to form a low-pass
filter. For the resistor we have V = R*I as the governing
equation. For the capacitor we have I = C*dV/dt. If these
equations are “connected” such that the voltage for each is
the same, a parallel tank is produced. However, if they are
connected such that the currents are the same, then a series
configuration is realized, which is a different model. Such
topological relationships are best described with the large-
signal model of the device.

3.1 XML Schema and Analysis Methods

The XML database can best be explained using a
Document Type Definition (DTD), which is a formal
description in XML Declaration Syntax. It defines the
different legal building blocks (elements) of the database,
describing where they may occur and how they all fit
together. The DTD is given below as Fig. 1. Paragon has a Topology Editor, which resembles a

schematic editor, that is used to define the internal structure
of the model being created. It is used in conjunction with an
Equation Editor interface to define the relationships that
exist in the model. Paragon also consists of a variety of other
tools for digital modeling, symbol editing, circuit-to-
behavioral model generation and model checking [1, 20].

<!DOCTYPE PARAGON DATABASE DTD [
<!ENTITY math dtd SYSTEM
“http://www.w3.org/TR/MathML2/appendixa.html”>
<!ELEMENT MODEL (INTERFACE, BODY)>
<!ATTLIST MODEL NAME CDATA #REQUIRED>
<!ATTLIST MODEL COMMENTS CDATA #IMPLIED>
<!ELEMENT INTERFACE (PARAMETER, PORT)> <!ATTLIST PARAMETER.name CDATA #REQUIRED> 3. Achieving Language Independence <!ATTLIST PARAMETER.value CDATA #IMPLIED>

Paragon was designed from the outset as a modeling
environment for analog, mixed-signal, and mixed-
technology entities. The goal has always been to alleviate
the need to master the nuances of HDLs for model creation.
The initial design involved a proprietary schema for the
internal, language-independent model representation [13].
The aim was to enable multilingual code generation from
this single representation. The current design utilizes XML
and MathML as the internal format. The reasons for the
choice of XML are:

<!ATTLIST PARAMETER.type CDATA #REQUIRED
(real|integer|time)>
<!ATTLIST PARAMETER.unit CDATA #IMPLIED>
<!ATTLIST PARAMETER.validity range CDATA #IMPLIED>
<!ATTLIST PORT.name CDATA #REQUIRED>
<!ATTLIST PORT.mode CDATA #REQUIRED (in|out|inout)>
<!ATTLIST PORT.nature CDATA #REQUIRED
(electrical|mechanical|thermal|optical|magnetic)>
<!ATTLIST PORT.type CDATA #REQUIRED (terminal|quantity|signal)>
<!ELEMENT BODY (MODEL EXPRESSIONS,
BRANCH,MACROMODEL)>
<!ELEMENT MODEL EXPRESSIONS (math dtd)>
<!ELEMENT BRANCH (QUANTITY, EQUATION)> 1. The use of XML in the database enables the description

of model information in a simple and flexible structured
text format.

<!ATTLIST BRANCH.name CDATA #REQUIRED>
<!ATTLIST BRANCH.from CDATA #REQUIRED>
<!ATTLIST BRANCH.to CDATA #REQUIRED>

2. XML lends itself to standardization and open sourcing
for expressing model descriptions, which will lead to
model developers sharing models among different
modeling environments in a rich and structured format,
that is independent of any HDL.

<!ATTLIST QUANTITY.name CDATA #REQUIRED>
<!ATTLIST QUANTITY.nature CDATA (through|across)>
<!ATTLIST QUANTITY.type CDATA #IMPLIED>
<!ATTLIST QUANTITY.unit CDATA #IMPLIED>
<!ATTLIST EQUATION.type CDATA (simulataneous|conditional)>
<!ATTLIST EQUATION.value CDATA (math dtd)>

<!ELEMENT MACROMODEL (MACROMODEL PARAMETER)>
<!ATTLIST MACROMODEL.name CDATA #REQUIRED>
<!ATTLIST MACROMODEL.entity CDATA #REQUIRED>
<!ATTLIST MACROMODEL.architecture CDATA #REQUIRED>
<!ATTLIST MACROMODEL PARAMETER.name CDATA
#REQUIRED>
<!ATTLIST MACROMODEL PARAMETER.value CDATA
#REQUIRED>]>

Fig. 1. DTD showing the model description syntax of XML database.

Each model document has an interface and a body. The
model interface consists of the model name, connection
points and parameters. The body contains the model
topology and equations. The topology consists of branches
and instances of other models. The branches are in turn
defined by their ‘through’ and ‘across’ variables and
mathematical expressions involving these variables. The
topology and these mathematical expressions collectively
define the model behavior.

The code generation module generates code in multiple
HDLs by analyzing the XML database. Some of the
important analysis methods that accompany the Paragon
XML schema are:
1. Creation of an Abstract Syntax Tree (AST), which is an

internal data representation obtained by parsing the
MathML expression trees. The AST represents the inter-
relationships among the variables and constants in the
model equations and expressions.

2. Analysis of the AST for determining the functional
dependency and time dependency characteristics. This
enables the generation of efficient code by distinguishing
constants, time-varying variables, and “post-iterative”
calculations (e.g., power).

3. Checking for discontinuities in the model expressions
and accordingly generating proper code (e.g., issuing
break statements as appropriate for discontinuities in
VHDL-AMS) and indicating these to the modeler.
In addition to HDL code generation, Paragon produces

other outputs useful in the design process. Paragon can
generate symbols from its SVG format for a number of
design environments (e.g., Cadence, Mentor and Synopsys).
It can also generate model descriptions in an HTML
document. This includes the model symbol, the large-signal
topology of the model, the model equations and the model
parameters including default values, units and ranges of
validity.

3.2 Illustration of Language Independence

The language independence of Paragon is illustrated by
the use of an example. The example presented here is the
behavioral model of a self-heating resistor. It also shows the
ability of Paragon to generate mixed technology models.
Space does not permit us to show the entire XML database
and screenshots of the UIs of Paragon, so the main
information will be conveyed through a portion of the XML
database and the generated VHDL-AMS code and Verilog-
A code. The portion of the XML database given below in

Fig. 2 shows one of the branches of the topology of the
resistor along with its variables and equations. VHDL-AMS,
Verilog-A and MAST codes of the self-heating resistor were
generated in Paragon from the HDL-neutral XML database.
All were successfully simulated. The VHDL-AMS code is
shown in Fig. 3 and was verified in SystemVision [23]. The
Verilog-A code is shown in Fig. 4 and was verified in
ADMS [26]. These exhibit the powerful language
independent nature of the XML schema used for model
description in the Paragon database, which in turn shows the
language independent nature of Paragon.

<branch from="elec1" name="elec_branch" to="elec2">
<quantity name="i" nature="through" type="current" unit="ampere" />
<quantity name="v" nature="across" type="voltage"
unit="volt" />
<equation type="simultaneous">
<mrow>
<mi>v</mi>
<mo>=</mo>
<mi>i</mi>
<mo>*</mo>
<mi>resistance</mi>
</mrow>
</equation>
</branch>

Fig. 2. Portion of the XML model database of the self-heating resistor

-- VHDL-AMS Model of thermal_resistor generated by
Paragon
-- This is a machine generated code.
-- Generated on Tue, 01 Apr 2003 12:28:48
library IEEE;
library IEEE_proposed;
use IEEE.math_real.all;
use IEEE_proposed.electrical_systems.all;
use IEEE_proposed.thermal_systems.all;
entity thermal_resistor is
generic
(alpha:real:=0.0068;initial_resistance:real:=5.0;
initial_temp:real:=27.0);
port (terminal elec1 : electrical;terminal elec2 :
electrical;terminal therm : thermal);
end entity thermal_resistor;
architecture Arch1 of thermal_resistor is
quantity resistance : real := 1.0;
quantity i through elec1 to elec2;
quantity v across elec1 to elec2;
quantity heat_flow through therm to thermal_ref;
quantity temperature across therm to thermal_ref;
begin
resistance==(initial_resistance*(1.0+
(alpha*(temperature-(initial_temp+273.0)))));
v==(i*resistance);
heat_flow==-((i**2.0)*resistance);
end architecture Arch1;

Fig. 3. Paragon generated VHDL-AMS code of self-heating resistor.

-- Verilog-A Model of thermal_resistor generated
by Paragon
-- This is a machine generated code.
-- Generated on Mon, 11 Aug 2003 09:16:29 AM

`include "discipline.h"

`include "constants.h"

Fig.5. Screenshot of Paragon showing the model interface and topology of
the EKV MOSFET model.

module thermal_resistor(elec1, elec2, therm);
inout elec1, elec2, therm;
electrical elec1, elec2;
thermal therm;
parameter real alpha=0.0068;
parameter real initial_resistance=5.0;
parameter real initial_temp=27.0;
real resistance;
analog begin
resistance = (initial_resistance*(1.0+(alpha*
(Temp(therm)-(initial_temp+273.0)))));
V(elec1,elec2) <+ resistance*I(elec1,elec2);
Pwr(therm) <+ -(pow(I(elec1,elec2),2.0))
*resistance;
end
endmodule

Fig. 4. Paragon generated Verilog-A code of self-heating resistor.

 4. Semiconductor Device Model Example To further illustrate language independent model
creation, the EKV MOSFET [21] model was implemented.
This example speaks directly to the ability to produce the
HDL descriptions used as inputs for subsequent C code
generation in [17] and [18]. Following the procedure
outlined in Section 2, the model name, connection points
and model parameters are first created. For each model
parameter it is possible to specify default values, units, and
range of validity information that gets translated into model
parameter checking in the HDL code. Next, the user begins
to enter the large-signal topology of the MOSFET as shown
in Fig. 5. The user is able to create internal nodes in this
graphical editor, which are indicated as internal source and
drain nodes. Also, the user can either specify branches for
items such as resistances, capacitances and body diodes, or
instantiate a Paragon model as shown in Fig. 5 for
illustration. The branches whose behaviors are defined with
expressions are seen as the boxes in Fig. 5. The branch
relationships are not repeated here, but can be viewed in the
Technical Report on the EKV MOSFET model [22]. The
instantiated models appear as a schematic symbol as one
would expect (e.g., resistor, diode).

5. Conclusion

The modeling tool described in this paper enables the
user to quickly and correctly create new models and reuse
parts of existing models. The environment raises model
creation, support, and dissemination a level above
programming software, preventing the developer from
having to master the HDLs to generate code in them.
Knowledge of basic modeling concepts and mathematics is
the only requirement for creating models using Paragon.

References
[1] V. Chaudhary, M. Francis, X. Huang, H. A. Mantooth, "Paragon - A

mixed-signal behavioral modeling environment," IEEE Int. Conf. on
Communications, Circuits, & Syst. (ICCCAS), pp. 1315-1321,
Chengdu, China, June 30, 2002.

[2] H. A. Mantooth, M. Fiegenbaum, Modeling with an Analog Hardware
Description Language, Kluwer Academic Publishers, Norwell, MA,
1995.

[3] 1076.1-1999 IEEE Standard VHDL Analog and Mixed-Signal
Extensions Language Reference Manual, IEEE Press, ISBN 0-7381-
1640-8. The final step of the model creation process is to

generate the HDL code for the model. VHDL-AMS, MAST
and Verilog-A(MS) codes were all generated by Paragon.
All were verified through simulation to give equivalent
results. Further, the generated MAST was compared to the
model available in Saber [24] with no discrepancies.

[4] P. Ashenden, G. D. Peterson, D. A. Teegarden, The Systems
Designer’s Guide to VHDL-AMS, Morgan-Kaufmann, San Francisco,
CA, 2003.

[5] R. S. Cooper, The Designer’s Guide to Analog and Mixed-Signal
Modeling, Avant! Press, 2001.

[6] E. Christen, K. Bakalar, "VHDL-AMS-a hardware description
language for analog and mixed-signal applications," IEEE Trans. on
Circuits and Systems, part II, Vol. 46 Issue: 10, pp. 1263–1272, Oct.
1999.

For semiconductor device modeling, the aim of Paragon
is to provide the ability to instantiate common effects that
are kept in a library analogous to regular models. This
semiconductor device toolbox will contain behaviors such as
junction capacitance relationships, diode relationships,
breakdown effects, drain-source current expressions, etc.
Once instantiated, Paragon provides the option to flatten the
hierarchy upon code generation, so that all code is flattened
in the HDL implementation for simulation efficiency as
opposed to maintaining a hierarchical netlist of these effects.

[7] D. Fitzpatrick, I. Miller, Analog Behavioral Modeling with Verilog-A,
Kluwer Academic Publishers, Norwell, MA, 1997.

[8] P. Frey, D. O'Riordan,“ Verilog-AMS: Mixed-signal simulation and
cross domain connect modules”, Proc. IEEE BMAS, pp. 103 –108,
Oct. 2000.

[9] Extensible Markup Language (XML), http://www.w3.org/XML
[10] Mathematical Markup Language (MathML), http://www.w3.org/Math
[11] HDL Designer Series, Mentor Graphics Corporation,

http://www.mentorg.com/hdldesigner/

http://www.w3.org/XML
http://www.w3.org/Math
http://www.mentorg.com/hdldesigner/

[12] StateMate User’s Manual, I-logix,
http://www.ilogix.com/fs_prod.htm.

[13] H. A. Mantooth, J. P. Skudlarek, J. R. Carlson, D. K. Cooper, I. E.
Getreu, G. Graham, S. Pothier, R. Vedam, C. M. Wolff, “Model
Architect - An environment for HDL-based mixed-signal model
development,” Proc. IEEE BMAS, 11 pgs, 1999.

[14] H. A. Mantooth, C. M. Wolff, “Component-based analog and mixed-
signal simulation model development,” U.S. Patent No. 5963724,
Filed Feb. 16, 1996, Issued Oct. 5, 1999.

[15] R. V. H. Booth, “An extensible compact model description language
and compiler,” Proc. IEEE BMAS, pp. 39-44, Oct. 2001.

[16] M. Zorzi, N. Speciale, G. Masetti, “Automatic embedding of a
ferroelectric capacitor model in Eldo,” Proc. IEEE BMAS, pp. 97-101,
Oct. 2001.

[17] L. Lemaitre, C. McAndrew, S. Hamm, “ADMS – Automatic Device
Model Sythesizer,” Proc. IEEE Custom Int. Circ. Conf., pp. 27-30,
2002.

[18] C.-J. Shi, “BMAC – Behavioral Model Analyzer and Compiler”,
private communication, University of Washington, Seattle, WA, Dec.
2002.

[19] Standard VHDL 1076.1 packages for multiple energy domain support,
http://www.vhdl.org/vi/analog.

[20] X. Huang, C. Gathercole and H. A. Mantooth, “Modeling nonlinear
dynamics in analog circuits via root localization,” IEEE Trans.
Computer-Aided Design, to appear.

[21] C. C. Enz, F. Krummenacher, E. A. Vittoz, “An analytical MOS
transistor model valid in all regions of operation and dedicated to low-
voltage and low-current applications,” J. Analog Integrated Circuits
and Signal Processing, vol. 8, no. 1, pp. 83-114, July 1995.

[22] M. Bucher, C. Lallement, C. Enz, F. Théodoloz, F. Krummenacher,
“The EPFL-EKV MOSFET Model Equations for Simulation”,
Technical Report, Model Version 2.6, June 1997. Revision I,
September, 1997, Revision II, July, 1998.

[23] SystemVision, Mentor Graphics Corporation,
http://www.mentor.com/systemvision/

[24] H. A. Mantooth, M. Vlach, “Beyond SPICE with Saber and MAST,”
IEEE Proc. of Int. Symposium on Circuits Syst., vol. 1, pp. 77-80,
May 1992.

[25] Extensible Stylesheet Language, http://www.w3.org/TR/xslt
[26] ADMS, Mentor Graphics Corporation,

http://www.mentorg.com/ams/adms.html.
[27] D. Fitzpatrick, Ira Miller, Analog Behavioral Modeling with the

Verilog-A Language, Kluwer Academic Publishers, San Francisco,
Massachusetts, 1998.

http://www.ilogix.com/fs_prod.htm
http://www.vhdl.org/vi/analog
http://www.w3.org/TR/xslt
http://www.mentorg.com/ams/adms.html

	Achieving Language Independence with Paragon
	Abstract

