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Abstract 
This paper describes Paragon†, a novel modeling tool 

that promotes the creation of HDL-based models at a more 
abstract, language-independent level. This modeling 
environment encapsulates the semantic elements necessary 
to create models at various hierarchical levels from mixed-
signal and mixed-technology behavioral models down to 
semiconductor device models. Paragon is designed to 
support the generation of multiple hardware description 
languages including VHDL-AMS, MAST, and Verilog-
A(MS) as well as C and C++-based codes. This paper 
focuses on the facets of Paragon that enable language 
independence. 
 

1. Introduction 
Whether the modeling task at hand for an engineer is of a 

semiconductor device, an analog building-block circuit, a 
digital circuit, or a system level block, the one thing for 
certain is that the current model being constructed won’t be 
the last model ever constructed. Device, circuit and system 
modeling are an integral part of the design process. The 
need for models appears during design exploration, design 
verification, test definition and even design debugging when 
unfortunate circumstances have led to refabrication. 

As our notion of the system extends to non-electrical 
components more and more models are required to describe 
and analyze that system. Multidisciplinary systems are now 
involving people from a variety of scientific backgrounds 
including physicists, and mechanical, chemical and civil 
engineers in addition to electrical and computer engineers. It 
is unlikely that each of these disciplines will have taught the 
use of the same analysis tools. Even within electrical and 
computer engineering we use a variety of tools and 
languages to describe and analyze our circuits and systems. 

Paragon [1] was created with the motivation of providing 
a modeling environment or framework that was language-
based, but also language independent. The term language-
based refers to the fact that Paragon possesses the semantics 
and constructs required to represent electrical (analog and 
digital) and non-electrical (mixed-technology) behavior in 
hardware description languages (HDLs) such as MAST [2], 
VHDL-AMS [3-6], and Verilog-A(MS) [7, 8]. Conversely, 
language-independent refers to the fact that using Paragon 
requires no underlying knowledge of any of these languages 
with respect to their syntax or peculiarities. Code generation 
technology does that work for the user from an HDL-neutral 
format in XML and MathML [9, 10]. Therefore, Paragon is 

language-aware in its internal codes, but does not impose 
this foundation to the user level. 

Tools of an analogous nature to Paragon are 
commercially available from a number of vendors for pure 
digital design [11, 12]. This is not true for analog, mixed-
signal or mixed-technology. The Paragon research has 
evolved from the first such effort that began in an industrial 
setting originally [13, 14].  

More recently, modeling tools for translating models 
from a description in one language into a form for use in 
circuit simulation (i.e., typically C code) have been 
described [15-17]. In [15] and [16], the specifications of the 
model were entered in languages specifically designed for 
the purpose of translation to compact form. In [17], the user 
employs Verilog-AMS to describe the model, which is then 
translated into an XML format for subsequent C code 
generation. Shi’s group [18] has recently achieved similar 
functionality using VHDL-AMS as the input language, 
employing their own internal format. In all of these 
instances [15-18], the ultimate goal is the C code realization 
for compilation and linkage to the simulator for fast 
execution. In contrast to Paragon, each of these approaches 
begins with a language input – some use HDLs, others do 
not. In each case, the issue is that of being faced with a 
language as opposed to a higher-level description that more 
clearly conveys the essence of a model and makes it far 
easier to create, modify, debug, support and, very 
importantly, transfer to others. Further, the user can 
generate any number of language outputs (e.g., VHDL-
AMS, Verilog-AMS, MAST) from one description in 
Paragon that could subsequently be used as input into these 
C code generators for SPICE-like simulator engines. 

 
2. Overview of Model Creation in Paragon 

Paragon enables the designer to easily create new models 
in multiple HDLs, without knowing or learning any of them. 
Models can be reused as components of existing models 
(i.e., macromodeling) for hierarchical modeling. As 
designers are typically model users, it is beneficial for them 
to have modeling tools that are easy to use for creating or 
adjusting models to meet the requirements of the system. 
Also, as Paragon produces readable standardized code and 
removes common errors, it is easy to use and modify a 
model. 

Paragon consists of a single interface containing multiple 
windows much like a multiple document interface (MDI) in 
a Microsoft tool (e.g., Microsoft Word). However, unlike 
the MDI found in many applications where a single type of 
interface exists to create/modify the document, the MDI 
interface concept is extended in Paragon to multiple types of 
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3. The technologies and applications built on XML provide 
a powerful and efficient way of expressing and 
manipulating almost all types of data, including complex 
mathematics and images. For example, Extensible 
Stylesheet Language Transformations (XSLT) [25] is 
used for transforming XML from one form into another. 

interfaces all contributing to or operating on the same 
document (that is, the model being created). Each of these 
user interfaces (UIs) contributes some portion of behavior or 
structure to a model. In general, all may be used if the model 
is mixed-signal (i.e., mixed continuous-time/discrete-time). 

The recommended (but not mandated) modeling process 
is that of “outside-in”, whereby the modeler focuses on the 
model interface first, then proceeds to describing the internal 
information of the model, and finally generates code. 

The model expressions and equations are expressed in 
MathML, which is an XML application for describing 
mathematical notation and capturing both its structure and 
content. MathML is fast becoming the de facto standard for 
encoding the structure of mathematical expressions so that 
they can be displayed and shared over the World Wide Web. 
Several mathematical software vendors use MathML for 
expressing mathematical expressions. Thus, importing 
complex mathematical expressions from these packages into 
Paragon (and vice versa) is enabled. 

A Model Interface Editor within Paragon is designed to 
allow the user to succinctly specify the model name, 
connection points, arguments, regions of validity of 
arguments, and default values of arguments of a model. The 
connection points can be analog or digital for electrical. 
Further, connection points can be signal flow, mechanical, 
optical, thermal, magnetic, etc. [19]. 

The model symbols in Paragon are saved in the database 
in Scalable Vector Graphics (SVG), which is a language for 
describing two-dimensional graphics in XML. Analogous to 
expressions, more photo editor vendors are adding support 
to their tools and applications for viewing and editing 
images in SVG. 

Models generally possess both structure and behavior 
internally. Structure in this context can simply refer to how 
equations are related to one another. A simple way of 
illustrating this point is to take the example of the equations 
of a resistor and capacitor being used to form a low-pass 
filter. For the resistor we have V = R*I as the governing 
equation. For the capacitor we have I = C*dV/dt. If these 
equations are “connected” such that the voltage for each is 
the same, a parallel tank is produced. However, if they are 
connected such that the currents are the same, then a series 
configuration is realized, which is a different model. Such 
topological relationships are best described with the large-
signal model of the device. 

 
3.1 XML Schema and Analysis Methods 

The XML database can best be explained using a 
Document Type Definition (DTD), which is a formal 
description in XML Declaration Syntax. It defines the 
different legal building blocks (elements) of the database, 
describing where they may occur and how they all fit 
together. The DTD is given below as Fig. 1. Paragon has a Topology Editor, which resembles a 

schematic editor, that is used to define the internal structure 
of the model being created. It is used in conjunction with an 
Equation Editor interface to define the relationships that 
exist in the model. Paragon also consists of a variety of other 
tools for digital modeling, symbol editing, circuit-to-
behavioral model generation and model checking [1, 20]. 

 
<!DOCTYPE PARAGON DATABASE DTD [ 
<!ENTITY math dtd SYSTEM 
“http://www.w3.org/TR/MathML2/appendixa.html”> 
<!ELEMENT MODEL (INTERFACE, BODY)> 
<!ATTLIST MODEL NAME CDATA #REQUIRED> 
<!ATTLIST MODEL COMMENTS CDATA #IMPLIED> 
<!ELEMENT  INTERFACE (PARAMETER, PORT)>  <!ATTLIST PARAMETER.name CDATA #REQUIRED> 3. Achieving Language Independence <!ATTLIST PARAMETER.value CDATA #IMPLIED> 

Paragon was designed from the outset as a modeling 
environment for analog, mixed-signal, and mixed-
technology entities. The goal has always been to alleviate 
the need to master the nuances of HDLs for model creation. 
The initial design involved a proprietary schema for the 
internal, language-independent model representation [13]. 
The aim was to enable multilingual code generation from 
this single representation. The current design utilizes XML 
and MathML as the internal format. The reasons for the 
choice of XML are: 

<!ATTLIST PARAMETER.type CDATA #REQUIRED  
(real|integer|time)> 
<!ATTLIST PARAMETER.unit CDATA #IMPLIED> 
<!ATTLIST PARAMETER.validity range CDATA #IMPLIED> 
<!ATTLIST PORT.name CDATA #REQUIRED> 
<!ATTLIST PORT.mode CDATA #REQUIRED (in|out|inout)> 
<!ATTLIST PORT.nature CDATA #REQUIRED 
(electrical|mechanical|thermal|optical|magnetic)> 
<!ATTLIST PORT.type CDATA #REQUIRED (terminal|quantity|signal)> 
<!ELEMENT BODY (MODEL EXPRESSIONS, 
BRANCH,MACROMODEL)> 
<!ELEMENT MODEL EXPRESSIONS (math dtd)> 
<!ELEMENT BRANCH (QUANTITY, EQUATION)> 1. The use of XML in the database enables the description 

of model information in a simple and flexible structured 
text format.  

<!ATTLIST BRANCH.name CDATA #REQUIRED> 
<!ATTLIST BRANCH.from CDATA #REQUIRED> 
<!ATTLIST BRANCH.to CDATA #REQUIRED> 

2. XML lends itself to standardization and open sourcing 
for expressing model descriptions, which will lead to 
model developers sharing models among different 
modeling environments in a rich and structured format, 
that is independent of any HDL.  

<!ATTLIST QUANTITY.name CDATA #REQUIRED> 
<!ATTLIST QUANTITY.nature CDATA (through|across)> 
<!ATTLIST QUANTITY.type CDATA #IMPLIED> 
<!ATTLIST QUANTITY.unit CDATA #IMPLIED> 
<!ATTLIST EQUATION.type CDATA (simulataneous|conditional)> 
<!ATTLIST EQUATION.value CDATA (math dtd)> 

  



<!ELEMENT MACROMODEL (MACROMODEL PARAMETER)> 
<!ATTLIST MACROMODEL.name CDATA #REQUIRED> 
<!ATTLIST MACROMODEL.entity CDATA #REQUIRED> 
<!ATTLIST MACROMODEL.architecture CDATA #REQUIRED> 
<!ATTLIST MACROMODEL PARAMETER.name CDATA 
#REQUIRED> 
<!ATTLIST MACROMODEL PARAMETER.value CDATA 
#REQUIRED> ]> 
 

Fig. 1.  DTD showing the model description syntax of XML database. 
 

Each model document has an interface and a body. The 
model interface consists of the model name, connection 
points and parameters. The body contains the model 
topology and equations. The topology consists of branches 
and instances of other models. The branches are in turn 
defined by their ‘through’ and ‘across’ variables and 
mathematical expressions involving these variables. The 
topology and these mathematical expressions collectively 
define the model behavior. 

The code generation module generates code in multiple 
HDLs by analyzing the XML database. Some of the 
important analysis methods that accompany the Paragon 
XML schema are:  
1. Creation of an Abstract Syntax Tree (AST), which is an 

internal data representation obtained by parsing the 
MathML expression trees. The AST represents the inter-
relationships among the variables and constants in the 
model equations and expressions. 

2. Analysis of the AST for determining the functional 
dependency and time dependency characteristics. This 
enables the generation of efficient code by distinguishing 
constants, time-varying variables, and “post-iterative” 
calculations (e.g., power).  

3. Checking for discontinuities in the model expressions 
and accordingly generating proper code (e.g., issuing 
break statements as appropriate for discontinuities in 
VHDL-AMS) and indicating these to the modeler.  
In addition to HDL code generation, Paragon produces 

other outputs useful in the design process. Paragon can 
generate symbols from its SVG format for a number of 
design environments (e.g., Cadence, Mentor and Synopsys). 
It can also generate model descriptions in an HTML 
document. This includes the model symbol, the large-signal 
topology of the model, the model equations and the model 
parameters including default values, units and ranges of 
validity. 

 
3.2 Illustration of Language Independence 

The language independence of Paragon is illustrated by 
the use of an example. The example presented here is the 
behavioral model of a self-heating resistor. It also shows the 
ability of Paragon to generate mixed technology models. 
Space does not permit us to show the entire XML database 
and screenshots of the UIs of Paragon, so the main 
information will be conveyed through a portion of the XML 
database and the generated VHDL-AMS code and Verilog-
A code. The portion of the XML database given below in 

Fig. 2 shows one of the branches of the topology of the 
resistor along with its variables and equations. VHDL-AMS, 
Verilog-A and MAST codes of the self-heating resistor were 
generated in Paragon from the HDL-neutral XML database. 
All were successfully simulated. The VHDL-AMS code is 
shown in Fig. 3 and was verified in SystemVision [23]. The 
Verilog-A code is shown in Fig. 4 and was verified in 
ADMS [26]. These exhibit the powerful language 
independent nature of the XML schema used for model 
description in the Paragon database, which in turn shows the 
language independent nature of Paragon. 
 
<branch from="elec1" name="elec_branch" to="elec2"> 
<quantity name="i" nature="through" type="current" unit="ampere" />  
<quantity name="v" nature="across" type="voltage" 
unit="volt" />  
<equation  type="simultaneous"> 
<mrow> 
<mi>v</mi> 
<mo>=</mo> 
<mi>i</mi> 
<mo>*</mo> 
<mi>resistance</mi> 
</mrow>  
</equation> 
</branch> 
 

Fig. 2.  Portion of the XML model database of the self-heating resistor 
 
-- VHDL-AMS Model of thermal_resistor generated by 
Paragon 
-- This is a machine generated code. 
-- Generated on Tue, 01 Apr 2003 12:28:48 
library IEEE; 
library IEEE_proposed; 
use IEEE.math_real.all; 
use IEEE_proposed.electrical_systems.all; 
use IEEE_proposed.thermal_systems.all; 
entity thermal_resistor is 
generic 
(alpha:real:=0.0068;initial_resistance:real:=5.0; 
initial_temp:real:=27.0); 
port (terminal elec1 : electrical;terminal elec2 : 
electrical;terminal therm : thermal); 
end entity thermal_resistor; 
architecture Arch1 of thermal_resistor is 
quantity resistance : real := 1.0; 
quantity i through elec1 to elec2; 
quantity v across elec1 to elec2; 
quantity heat_flow through therm to thermal_ref; 
quantity temperature across therm to thermal_ref; 
begin 
resistance==(initial_resistance*(1.0+ 
(alpha*(temperature-(initial_temp+273.0))))); 
v==(i*resistance); 
heat_flow==-((i**2.0)*resistance); 
end architecture Arch1; 
 

Fig. 3.  Paragon generated VHDL-AMS code of self-heating resistor. 
 

 
-- Verilog-A Model of thermal_resistor generated 
by Paragon 
-- This is a machine generated code. 
-- Generated on Mon, 11 Aug 2003 09:16:29 AM 
 
`include "discipline.h" 

  



`include "constants.h" 

Fig.5.  Screenshot of Paragon showing the model interface and topology of 
the EKV MOSFET model. 

module thermal_resistor(elec1, elec2, therm); 
inout elec1, elec2, therm; 
electrical elec1, elec2; 
thermal therm; 
parameter real alpha=0.0068; 
parameter real initial_resistance=5.0; 
parameter real initial_temp=27.0; 
real resistance; 
analog begin 
resistance = (initial_resistance*(1.0+(alpha* 
(Temp(therm)-(initial_temp+273.0))))); 
V(elec1,elec2) <+ resistance*I(elec1,elec2); 
Pwr(therm) <+ -(pow(I(elec1,elec2),2.0)) 
*resistance; 
end 
endmodule 
 
 

Fig. 4.  Paragon generated Verilog-A code of self-heating resistor. 
 
 

 4. Semiconductor Device Model Example  To further illustrate language independent model 
creation, the EKV MOSFET [21] model was implemented. 
This example speaks directly to the ability to produce the 
HDL descriptions used as inputs for subsequent C code 
generation in [17] and [18]. Following the procedure 
outlined in Section 2, the model name, connection points 
and model parameters are first created. For each model 
parameter it is possible to specify default values, units, and 
range of validity information that gets translated into model 
parameter checking in the HDL code. Next, the user begins 
to enter the large-signal topology of the MOSFET as shown 
in Fig. 5. The user is able to create internal nodes in this 
graphical editor, which are indicated as internal source and 
drain nodes. Also, the user can either specify branches for 
items such as resistances, capacitances and body diodes, or 
instantiate a Paragon model as shown in Fig. 5 for 
illustration. The branches whose behaviors are defined with 
expressions are seen as the boxes in Fig. 5. The branch 
relationships are not repeated here, but can be viewed in the 
Technical Report on the EKV MOSFET model [22]. The 
instantiated models appear as a schematic symbol as one 
would expect (e.g., resistor, diode).  

 
5. Conclusion 

The modeling tool described in this paper enables the 
user to quickly and correctly create new models and reuse 
parts of existing models. The environment raises model 
creation, support, and dissemination a level above 
programming software, preventing the developer from 
having to master the HDLs to generate code in them. 
Knowledge of basic modeling concepts and mathematics is 
the only requirement for creating models using Paragon. 
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