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Abstract - Design challenges resulting from single chip
integration of RF and microwave transceivers is requiring
both more powerful analog simulation techniques and more
accurate behavioral models that allow efficient hierarchical
simulation. Today system level models are limited by their
inability to effectively cope with nonlinear memory effects.
The paper describes a modeling approach based on
modified Volterra series which accounts efficiently for
memory effects in nonlinear subsystems.

I. INTRODUCTION

Reduction of time to market of communications systems
has put a higher demand on simulation, both at circuit and
system level.  It is a fact that the simulation efficiency
depends primarily on the component model accuracy.
However if component model accuracy can be considered
satisfying today in circuit-level simulation, this is far to be
the case in system-level, as regards subsystems working on
nonlinear regime, especially for integrated power
amplifiers and converters. The commonly used amplitude-
amplitude and amplitude-phase modulation (AM-AM,
AM-PM) model suffers severely from the envelope
memoryless assumption, which limits its application only
to very narrow band systems. Several enhancements of the
AM-AM, AM-PM model have been proposed by the past
[1-4] to handle memory effects. However being primarily
designed for traveling wave amplifiers (TWA) their
efficiency is very limited when applied to integrated
circuits [5] as model prediction is poor as regards digital
modulation stimuli.  Recently there is a great interest
symbolic model order reduction (MOR) from Kirchoff law
defining the circuit at the transistor level [6-9].  These are
very promising approaches, though the work reported so
far succeed only for mildly nonlinear regimes.  The MOR
approach however suffers a basic limitation that it does not
allow the model to be derived from physical measurements
of the subsystem, hence preventing an escape from
transistor modeling inaccuracies. This may also exhibit
poor simulation speed and convergence problems  as it
requires the solution of a fairly large set of nonlinear
equations. The model described below tries to reconcile the
various aspects of simulation speed, modeling accuracy
and modeling situations.  It is a functional black box model
approach that can be derived either from commonly

available circuit simulation tools or from common physical
measurements equipments.

The model is based on a first order truncation of a
modified Volterra series. Volterra series[10] has a bad
reputation among engineers of being a cumbersome
technique; but yet it is an effective formalism for
representing nonlinear systems with memory, especially
when the system is large and distributed. Nevertheless the
classical form of Volterra series has poor convergence
properties and in practice it is hardly possible to measure
its kernels of order more than two to three. These
limitations make the classical Volterra series inefficient for
most nonlinear IC applications. So this paper proposes to
use a modified form of Volterra series [11] which lessen
the above limitations, providing fairly good accuracy with
only the first order kernel.  The extraction procedure of the
model is then easily affordable, based on single or two-
tone simulations or measurements.

We will briefly present the modified Volterra
series equation in section II, then show how this fits
efficiently to system level modeling in section III. An
application example and possible extension is then
presented which shows the effectiveness of the proposed
model.

II. CLASSICAL VS DYNAMIC VOLTERRA SERIES
EXPANSION
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                     Fig.1  Nonlinear system with memory

The output )( nty of a nonlinear system with memory

duration t∆M can be intuitively expressed as
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Taylor series expansion of )( nty  around some arbitrary

signal trajectory 0xx
rr

=  gives equation (2) below, from



which we obtain the well known Volterra series expansion
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),..,( 1 nnh λλ  is called Volterra kernel of order n . As it can

be seen, Volterra kernels are independent of the input
signal )(tx .  They are indeed coefficients of a power series
expansion. We thus see that for most nonlinear applications
encountered in analog IC systems it is necessary to
consider a large number of kernels, say up to five and
more, in order to accurately describe the response. Here
comes the two-fold difficulty of measuring/identifying high
order kernels and computing multiple dimensional
integrals, which limits usefulness of this elegant approach.

To try resolving these limitations, it was suggested
by Asdente et al  [10] that carrying Taylor series expansion
in eq (2) around a well-behaved trajectory 0x

�
, given by a

priori knowledge of the system response, rather than the
null vector, can give excellent convergence properties to
the resulting series. One simple and efficient trajectory has
been found to be [11]:
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i.e. the steady state input.  Considering this trajectory in (2)
yields readily a modified Volterra series of the form below
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In the above expression ))t((xydc  is the static

characteristic (DC) of the system,  ),..,),t(( n1n λλxh
)

are the

modified Volterra kernels, which we will call hereafter
dynamic Volterra kernels to imply their dependence on the
instantaneous input signal. This modified series has the
important property to separate the purely static effects from
memory effects, which are intimately mixed in the classical
series. Hence if the system is purely static, the series
converges only with the static term, irrespective of the
input power.  The difference term )()( txtx −− λ  in the

equation above implies that if the signal period is small
compared to the memory duration τ   then the series can be
truncated to only first order, with good accuracy.

       ∫ −−+=
τ

λλλ
0

d)]t()t()[(),t(())t(()t( xxxhxyy dc   (6)

A more convenient form of eq (6) is obtained by
considering a Fourier integral in the place of convolution
to find.
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In the above, )),t(( ωxH  is actually the small signal

transfer function of the system computed around the pump
)t(x . Therefore this model does not need complicate

measurements or simulation and extraction procedures as
would require a high order classical Volterra series
expansion. For illustration, if we consider a single
transistor modeling, this will require static I/V curves and
bias dependent S parameters, which stand respectively for

)(xydc  and ),( ωxH .

Eq (7) has been with some success to model GaAs
FET transistors [10-12].  However, if we consider a
complete subsystem like a power amplifier, the assumption
for short memory duration with respect to the signal period
can no more hold as biasing, filter and matching circuit
will cause memory duration much longer than the carrier
period.  To make this approach possible, it is necessary to
carry the subsystem modeling in the complex envelope
signal plane, rather than in the real signal space.

III. ENVELOPE DOMAIN MODELING

The basic assumption on system level modeling is that
the signal )t(x  at any component port is a band-limited

modulation  signal on top of  a reference carrier frequency
as below:

])t(X[)t( t0j xeex ω�
ℜ= (8)

where )t(X
�

and x0ω  are respectively the complex

envelope (modulation) and reference carrier frequency of
the signal )t(x . All idle frequencies are supposed to be

sufficiently filtered-out within the subsystem, or constitute
otherwise distinct ports.
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Fig.2 Subsystem bloc diagram

Let us consider the two-port component block
depicted in Fig.2 above.  The reference carrier frequencies

x0ω  and y0ω  of excitation and response are known a

priori. A reference carrier may be a real one or an arbitrary
one corresponding to the mid-band frequency of a
transmission channel or multiplex.

Now for modeling the block our input/output

signals will be  )t(X
�

 and )t(Y
�

. Because now the memory

duration τ  of the subsystem is to be to compare against the
smallest period of the modulation and not the carrier as
previously,  we may expect the short memory duration
assumption to be possible and truncate the Volterra
expansion to the first order.

Equation (8) defining an analytic signal [13].  Hence

the output envelope )t(Y
�

 is actually a function of the input

envelope )t(X
�

 and its conjugate. Now reconsidering

equation (6),  with  )t(X
�

 and )t(X*�  as input signal and

)t(Y
�

 as output, we  readily find
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Substituting the convolution integral in (9) by a Fourier
integral equivalently yields:
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where BW is the signal bandwidth and )(ΩX
�

 the input

spectrum.

If we consider the particular case of amplifier or frequency
converter, we can write:
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where (p=q=1) for amplifier, (p>1,q=1) for multiplier and
( 1q1,p =±= ) for mixer.

We then se that because of the time invariance of their
input-output relation, the above kernels take the form

below, where )(tX
�

 and )(tX
)φ  are the magnitude and

phase of )(tX
�

.
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In the above, ))t(X(
�

dcY  is the static characteristic of the

subsystem, i.e. the response of the subsystem under a non

modulated carrier excitation ][)t( t0j
0

xeXex ω�
ℜ= . This

corresponds to the well known AM/AM and AM/PM
curve.

),)t(X(1 Ω
�

H  and ),)t(X(2 Ω
�

H  are the synchronous and

image Volterra transfer functions of the subsystem, which
the extraction principle is described below.

IV.  Extraction of dynamic Volterra series kernels

From Equation (10), we see that it is possible to extract the
three kernels by applying at input a two-tone signal of the
form

1],[][)t( t)0(jt0j
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or in terms of envelope signal, a DC signal plus a small
sinusoidal modulation:
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In fact, applying (14) into (10), the output signal writes
tjtj

0)t( Ω−−Ω+ ++= eYeYYY
����

δδ , so that:
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The extraction procedure is therefore straightforward, as
sketched in Fig.3.  The three characteristics of the model
can be computed by a simple two-tone  measurement on a
phase calibrated network analyzer  [14] or in any steady
state simulation tool. The static characteristic

)( 0XYdc
�

accounts for the purely static nonlinear effects

and the two nonlinear transfer functions ),( 01 ΩXH
�

and

),( 02 ΩXH
�

 for the memory effects.

The frequency distance Ω  between the two tones is to be
swept throughout the bandwidth BW of the subsystem and

the input signal magnitude 0X
�

 from  linear region to

saturation.
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       Fig.3 Dynamic Volterra kernels extraction set-up

V.  Model implementation

Eq (10) may look a bit cumbersome with the integral
notation, actually the model allows a very efficient

numerical implementation, by fitting ),)t(X(1 Ω
�

H  and

),)t(X(2 Ω
�

H  with  rational function:
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Inserting (17) into (10), we find the expression (18), where
we see that the model proposed results in a infinite impulse
response filter (IIR) with coefficients depending on the
input signal.  For many applications, a filter of order 2 to 3

is sufficient.  This is therefore suitable to all system-level
simulators and can be implemented in analog HDL
languages.
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VI.  MODEL  APPLICATION EXTENSION

The experiments we have carried show that the above
model is  very well behaved  up to 1-2 dB compression and
more for power amplifiers  where the biasing circuit has
been carefully taken care to optimize the DC settling time.
For illustration, Fig. 4 compares the model prediction
against the HB circuit simulation of third order
intermodulation ratio (IM3) for a four stage 6 watts MMIC
amplifier used in a radar application.  The agreement is
fairly good between the two. The order of model used was
2 (P=Q=2), computation time for the model is only a few
seconds, while the harmonic balance simulation takes more
than half an hour to complete the power and frequency
sweeps.  There is some discrepancy between the model and
the circuit simulation in the power region where the IM3
exhibits a resonance phenomenon as to the two tones
distance.  This issue is considered in the model extension
suggested below.  It is worth noting that computing the
IM3 ratio for varying tone distance and power is probably
the most effective test for amplifier model, because it
highlights the nonlinearity and memory problems, which
otherwise is hidden in computing higher level averaging
figures like ACPR.
In cases where DC settling time is large due to a poorly
designed bias network, AGC loops or severe thermal
effects, the memory duration may extend very much and
weaken the above assumption  of short memory duration.
To account for this situation which is common case to
narrow band circuits, one may reconsider the expansion in
equation (2), replacing the single power  basis functions

nx  with  an arbitrary shaped nonlinear function that
achieve a better series convergence.  The derivation is then
beyond the scope of this paper and may be found in [15].
Doing so, one obtain a slightly modified model equation



below that has proven to be very effective, deep into
saturation.
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The kernel of the above equation may be readily extracted
by driving the circuit with  a unit step input envelope.
Figures 5 and 6 compare the performance of the basic and
extended Volterra models against the circuit simulation for
a typical narrow band amplifier. One may see a good
agreement between the extended model and the circuit
simulation, with a substantial improvement of the extended
model over the basic modified-Volterra model.
It is worth noting the important variation of the IM3 curves
for low tones spacing, even at low input power.  This is an
important indication that extrapolation of intermodulation
distortion from a single tone spacing IP3 can lead to very
poor predictions.
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CONCLUSION

The paper has reviewed the basic theory of a powerful
behavioral modeling mechanism based on modified
Volterra series, so-called dynamic Volterra series model.
The model is simple to derive from circuit simulation and
also from network analyzer tools.  Its implementation has
been shown to be suitable to system-level simulators,
guarantying simulation speed. It can be applied to various
functions like power amplifiers, multipliers and converters
to capture nonlinear behavior with memory, especially in
modern high speed applications.
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