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ABSTRACT

Automated model generation methods are becoming an in-
creasingly important component of methodologies for effective
system verification, especially for mixed-signal electronic sys-
tems. In this paper, we organize and review the fundamental
principles, development and applicability of the algorithmically-
based model generation methods available today for linear and
nonlinear systems.

I. INTRODUCTION

Electronic systems today, especially those for communica-
tions and sensing, are typically composed of a complex mix
of digital and mixed-signal circuit blocks. Verifying such sys-
tems prior to fabrication is challenging due to their size and
complexity. A common and useful approach towards verifica-
tion in such situations, both during early system design and af-
ter detailed block design, is to replace large and/or complex
blocks by small macromodels that replicate their input-output
functionality well, and verify the macromodelled system. The
macromodelled system can be simulated rapidly in order to
evaluate different choices of design-space parameters. Such a
macromodel-based verification process affords circuit and sys-
tem designers considerable flexibility and convenience through
the design process, especially if performed hierarchically using
macromodels of differing sizes and fidelity.

The key issue in the above methodology is, of course, the
creation of macromodels that represent the blocks of the sys-
tem well. This is a challenging task for the wide variety of
mixed-signal blocks in use today. The most prevalent approach
towards creating macromodels is manual abstraction. Macro-
models are usually created by the same person who designs
the original block, often aided by simulations. While this is
the only feasible approach today for many complex blocks, it
does have a number of disadvantages compared to the auto-
mated alternatives that are the subject of this paper. Simula-
tion often does not provide abstracted parameters of interest di-
rectly (such as poles, residues, modulation factors, etc.); obtain-
ing them by manual postprocessing of simulation results is in-
convenient, computationally expensive and error-prone. Man-
ual structural abstraction of a block can easily miss the very
nonidealities or interactions that detailed verification is meant
to discover. With device dimensions shrinking below 100nm
and non-idealities (such as substrate/interconnect coupling, de-
graded device characteristics, etc.) becoming increasingly crit-
ical, the fidelity of manually-generated macromodels to the real
subsystems to be fabricated eventually is becoming increas-
ingly suspect. Adequate incorporation of non-idealities into be-
havioral models, if at all possible by hand, is typically complex
and laborious. Generally speaking, manual macromodelling is
heuristic, time-consuming and highly reliant on detailed inter-
nal knowledge of the block under consideration, which is often
unavailable when IP blocks that are not designed in-house are
utilized. As a result, the potential time-to-market improvement
via macromodel-based verification can be substantially negated
by the time and resources needed to first generate the macro-
models.
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It is in this context that there has been considerable interest
in automated techniques for the creation of macromodels. Such
techniques take a detailed description of a block – for example,
a SPICE-level netlist – and generate, via an automated compu-
tational procedure, a much smaller macromodel. The macro-
model, fundamentally a small system of equations, is usually
translated into AHDL, Matlab or SPICE netlist form for use at
the system level. Such an automated approach, i.e., one that
remains sustainable as devices shrink from deep submicron to
nano-scale, is essential for realistic exploration of the design
space in current and future mixed-signal SoCs/SiPs.

Several broad methodologies for automated macromodelling
have been proposed. One is to generalize, abstract and automate
the manual macromodelling process. For example, common
topological elements in a circuit are recognized, approximated
and conglomerated (e.g., [11,45]) to create a macromodel. An-
other class of approaches attempts to capture symbolic macro-
models that capture the system’s input-output relationship, e.g.,
[24, 40–42, 44, 46]. Yet another class (e.g., [2, 10, 15]) employs
a black-box methodology. Data is collected via many simula-
tions or measurements of the full system and a regression-based
model created that can predict outputs from inputs. Various
methods are available for the regression, including data mining,
multi-dimensional tables, neural networks, genetic algorithms,
etc...

In this paper, we focus on another methodology for macro-
modelling, often termed algorithmic1. Algorithmic macromod-
elling methods approach the problem as the transformation of
a large set of mathematical equations to a much smaller one.
The principal advantage of these methods is generality - so long
as the equations of the original system are available numer-
ically (e.g., from within SPICE), knowledge of circuit struc-
ture, operating principles, etc., is not critical. A single algorith-
mic method may therefore apply to entire classes of physical
systems, encompassing circuits and functionalities that may be
very disparate. Three such classes, namely linear time invariant
(LTI), linear time varying (LTV), and nonlinear, are discussed
in Sections II, III and IV of this paper. Algorithmic methods
also tend to be more rigorous about important issues such as fi-
delity and stability, and often provide better guarantees of such
characteristics than other methods.

II. MACROMODELLING LINEAR TIME INVARIANT (LTI)
SYSTEMS

Often referred to as reduced-order modelling (ROM) or model-
order reduction (MOR), automated model generation methods
for Linear Time-Invariant (LTI) systems are the most mature
amongst algorithmic macromodelling methods. Any block com-
posed of resistors, capacitors, inductors, linear controlled sources
and distributed interconnect models is LTI (often referred to
simply as “linear”). The development of LTI MOR methods has
been driven largely by the need to “compress” the huge inter-
connect networks, such as clock distribution nets, that arise in
large digital circuits and systems. Replacing these networks by

1For a broader survey of macromodelling techniques, we refer the reader to,
e.g., [7].
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small macromodels makes it feasible to complete accurate tim-
ing simulations of digital systems at reasonable computational
expense. Although interconnect-centric applications have been
the main domain for LTI reduction, it is appropriate for any sys-
tem that is linear and time-invariant. For example, “linear am-
plifiers”, i.e., linearizations of mixed-signal amplifier blocks,
are good candidates for LTI MOR methods.

Impulse response h(t)

Transfer function H(s)
ODEs/PDEs

u(t) / U(s) y(t) / Y(s)

Fig. 1. Linear Time Invariant block

Figure 1 depicts the basic structure of an LTI block. u
�
t �

represents the inputs to the system, and y
�
t � the outputs, in the

time domain; in the Laplace (or frequency) domain, their trans-
forms are U

�
s � and Y

�
s � respectively. The definitive property

of any LTI system [48] is that the input and output are related
by convolution with an impulse response h

�
t � in the time do-

main, i.e., y
�
t ��� x

�
t ��� h

�
t � ). Equivalently, their transforms are

related by multiplication with a system transfer function H
�
s � ,

i.e., Y
�
s ��� H

�
s � X �

s � . Note that there may be many internal
nodes or variables within the block. The goal of LTI MOR
methods is to replace the block by one with far fewer internal
variables, yet with an acceptably similar impulse response or
transfer function.

In the majority of circuit applications, the LTI block is de-
scribed to the MOR method as a set of differential equations,
i.e.,

Eẋ � Ax
�
t ��� Bu

�
t �

y
�
t ��� CT x

�
t �	� Du

�
t � (1)

In (1), u
�
t � represents the input waveforms to the block and y

�
t �

the outputs. Both are relatively few in number compared to the
size of x

�
t � , the state of the internal variables of the block. A, B,

C, D and E are constant matrices. Such differential equations
can be easily formed from SPICE netlists or AHDL descrip-
tions; especially for interconnect applications, the dimension n
of x

�
t � can be very large.

The first issue in LTI ROM is to determine what aspect of
the transfer function of the original system should be retained
by the reduced system; in other words, what metric of fidelity
is appropriate. In their seminal 1990 paper [28], Pileggi and
Rohrer used moments of the transfer function as fidelity metrics,
to be preserved by the model reduction process. The moments
mi of an LTI transfer function H

�
s � are related to its derivatives,

i.e.,

m1 � dH
�
s �

ds






s � s0 �

m2 � d2H
�
s �

ds2






s � s0 �

��
�

(2)

where s0 is a frequency point of interest. Moments can be
shown to be related to practically useful metrics, such as de-
lay in interconnects.

In [28], Pileggi and Rohrer proposed a technique, Asymp-
totic Waveform Evaluation (AWE), for constructing a reduced
model for the system (1). AWE first computes a number of mo-
ments of the full system (1), then uses these in another set of
linear equations, the solution of which results in the reduced
model. Such a procedure is termed explicit moment matching.
The key property of AWE was that it could be shown to pro-
duce reduced models whose first several moments (at a given

frequency point s0) were identical to those of the full system.
The computation involved in forming the reduced model was
roughly linear in the size of the (large) original system.

While explicit moment matching via AWE proved valuable
and was quickly applied to interconnect reduction, it was also
observed to become numerically inaccurate as the size of the
reduced model increased beyond about 10. To alleviate these,
variations based on matching moments at multiple frequency
points were proposed [1] that improved numerical accuracy.
Nevertheless, the fundamental issue of numerical inaccuracy as
reduced model sizes grew remained.

In 1994, Gallivan et al [5] and Feldmann/Freund [3,4] identi-
fied the reason for this numerical inaccuracy. Computing the kth

moment explicitly involves evaluating terms of the form A � kr,
i.e., the kth member of the Krylov subspace of A and r. If
A has well separated eigenvalues (as it typically does for cir-
cuit matrices), then for k � 10 and above, only the dominant
eigenvalue contributes to these terms, with non-dominant ones
receding into numerical insignificance. Furthermore, even with
the moments available accurately, the procedure of finding the
reduced model is also poorly conditioned.

Recognizing that these are not limitations fundamental to the
goal of model reduction, [3, 5] proposed alternatives. They
showed that numerically robust procedures for computing Krylov
subspaces, such as the Lanczos and Arnoldi (e.g., [38]) meth-
ods, could be used to produce reduced models that match any
given number of moments of the full system. These approaches,
called Krylov-subspace MOR techniques, do not compute the
moments of the full system explicitly at any point, i.e., they
perform implicit moment matching. In addition to matching
moments in the spirit of AWE, Krylov-subspace methods were
also shown to capture well the dominant poles and residues of
the system. The Padé-via-Lanczos (PVL) technique [3] gained
rapid acceptance within the MOR community by demonstrat-
ing its numerical robustness in reducing the DEC Alpha chip’s
clock distribution network.

Krylov-subspace methods are best viewed as reducing the
system (1) via projection [6]. They produce two projection ma-
trices, V � R n � q and W T � R q � n, such that the reduced system
is obtained as

W T E� ��� �
Ê

ẋ � W T AV� ��� �
Â

x
�
t �	� W T B� ��� �

B̂

u
�
t �

y
�
t ��� CTV� ��� �

ĈT

x
�
t ��� Du

�
t ��� (3)

For the reduction to be practically meaningful, q, the size of the
reduced system, must be much smaller than n, the size of the
original. If the Lanczos process is used, then W TV � I (i.e., the
two projection bases are bi-orthogonal). If the Arnoldi process
is applied, then W � V and W TV � I.

The development of Krylov-subspace projection methods marked
an important milestone in LTI macromodelling. However, re-
duced models produced by both AWE and Krylov methods re-
tained the possibility of violating passivity, or even being un-
stable. A system is passive if it cannot generate energy under
any circumstances; it is stable if for any bounded inputs, its re-
sponse remains bounded. In LTI circuit applications, passivity
guarantees stability. Passivity is a natural characteristic of many
LTI networks, especially interconnect networks. It is essential
that reduced models of these networks also be passive, since the
converse implies that under some situation of connectivity, the
reduced system will become unstable and diverge unboundedly
from the the response of the original system.
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The issue of stability of reduced models was recognized early
in [5], and the superiority of Krylov-subspace methods over
AWE in this regard also noted. Silveira et al [16] proposed
a co-ordinate transformed Arnoldi method that guaranteed sta-
bility, but not passivity. Kerns et al [13] proposed reduction of
admittance-matrix-based systems by applying a series of non-
square congruence transformations. Such transformations pre-
serve passivity properties while also retaining important poles
of the system. However, this approach does not guarantee match-
ing of system moments. A symmetric version of PVL with im-
proved passivity and stability properties was proposed by Fre-
und and Feldmann in 1996 [30].

The passivity-retaining properties of congruence transforma-
tions were incorporated within Arnoldi-based reduction meth-
ods for RLC networks by Odabasioglu et al [20, 21] in 1997,
resulting in an algorithm dubbed PRIMA (Passive Reduced-
Order Interconnect Macromodelling Algorithm). By exploit-
ing the structure of RLC network matrices, PRIMA was able to
preserve passivity and match moments. Methods for Lanczos-
based passivity preservation [29, 47] followed.

All the above LTI MOR methods, based on Krylov-subspace
computations, are efficient (i.e., approximately linear-time) for
reducing large systems. The reduced models produced by Krylov-
subspace reduction methods are not, however, optimal, i.e., they
do not necessarily minimize the error for a macromodel of given
size. The theory of balanced realizations, well known in the
areas of linear systems and control, provides a framework in
which this optimality can be evaluated. LTI reduced-order mod-
elling methods based on truncated balanced realizations (TBR)
(e.g., [8, 9]) have been proposed. Balanced realizations are
a canonical form for linear differential equation systems that
“balance” controllability and observability properties. While
balanced realizations are attractive in that they produce more
compact macromodels for a given accuracy, the process of gen-
erating the macromodels is computationally very expensive, i.e.,
cubic in the size of the original system. However, recent meth-
ods [17] that combine Krylov-subspace techniques with TBR
methods have been successful in approaching the improved com-
pactness of TBR, while substantially retaining the attractive
computational cost of Krylov methods.

III. MACROMODELLING LINEAR TIME VARYING (LTV)
SYSTEMS

A. Linear Time Varying (LTV) Macromodelling
LTI macromodelling methods, while valuable tools in their

domain, are inapplicable to many functional blocks in mixed-
signal systems, which are usually nonlinear in nature. For ex-
ample, distortion or clipping in amplifiers, switching and sam-
pling behaviour, etc., cannot be captured by LTI models. In gen-
eral, generating macromodels for nonlinear systems (see Sec-
tion IV) is a difficult task.

However, a class of nonlinear circuits (including RF mixing,
switched-capacitor and sampling circuits) can be usefully mod-
elled as linear time-varying (LTV) systems. The key difference
between LTV systems and LTI ones is that if the input to an LTV
system is time-shifted, it does not necessarily result in the same
time shift of the output. The system remains linear, in the sense
that if the input is scaled, the output scales similarly. This latter
property holds, at least ideally, for the input-to-output relation-
ship of circuits such as mixers or samplers. It is the effect of a
separate local oscillator or clock signal in the circuit, indepen-
dent of the signal input, that confers the time-varying property.
This is intuitive for sampling circuits, where a time-shift of the
input, relative to the clock, can be easily seen not to result in

the same time-shift of the original output – simply because the
clock edge samples a different time-sample of the input signal.
In the frequency domain, more appropriate for mixers, it is the
time-varying nature that confers the key property of frequency
shifting of input signals. The time-varying nature of the system
can be “strongly nonlinear”, with devices switching on and off
– this does not impact the linearity of the signal input-to-output
path.

T−V ODEs/PDEs

Transfer function H(t,s)

Impulse response h(t,tau) y(t) / Y(s)u(t) / U(s)

Fig. 2. Linear Time Varying block

Figure 2 depicts the basic structure of an LTV system block.
Similar to LTI systems, LTV systems can also be completely
characterized by impulse responses or transfer functions; how-
ever, these are now functions of two variables, the first cap-
turing the time-variation of the system, the second the changes
of the input [48]. The detailed behaviour of the system is de-
scribed using time-varying differential equations, e.g.,

E
�
t � ẋ � A

�
t � x � t �	� B

�
t � u � t �

y
�
t ��� C

�
t � T x

�
t ��� D

�
t � u � t ��� (4)

Time variation in the system is captured by the dependence of
A, B, C, D and E on t. In many case of practical interest, this
time-variation is periodic. For example, in mixers, the local
oscillator input is often a sine or a square wave; switched or
clocked systems are driven by periodic clocks.

The goal of macromodelling LTV systems is similar to that
for LTI ones: to replace (4) by a system identical in form, but
with the state vector x

�
t � much smaller in dimension than the

original. Again, the key requirement is to retain meaningful
correspondence between the transfer functions of the original
and reduced systems.

Because of the time-variation of the impulse response and
transfer function, LTI MOR methods cannot directly be applied
to LTV systems. However, Roychowdhury [33–35] showed that
LTI model reduction techniques can be applied to LTV systems,
by first reformulating (4) as an LTI system similar to (1), but
with extra artificial inputs that capture the time-variation. The
reformulation first separates the input and system time varia-
tions explicitly using multiple time scales [36] in order to obtain
an operator expression for H

�
t
�
s � . This expression is then eval-

uated using periodic steady-state methods [14, 32, 43] to obtain
an LTI system with extra artificial inputs. Once this LTI sys-
tem is reduced to a smaller one using any LTI MOR technique,
the reduced LTI system is reformulated back into the LTV sys-
tem form (4). The use of different LTI MOR methods within
this framework has been demonstrated, including explicit mo-
ment matching [33] and Krylov-subspace methods [25, 34, 35].
Moreover, Phillips [25] showed that the LTV-to-LTI reformu-
lation could be performed using standard linear system theory
concepts [48], without the use of multiple time scales.

IV. MACROMODELLING NONLINEAR SYSTEMS

While wires, interconnect, and passive lumped elements are
purely linear, any mixed-signal circuit block containing semi-
conductor devices is nonlinear. Nonlinearity is, in fact, a fun-
damental feature of any block that provides signal gain, or per-
forms any function more complex than linear filtering. Even
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though linear approximations of many nonlinear blocks are cen-
tral to their design and intended operation, it is usually im-
portant to consider the impact of nonlinearities with a view to
limiting their impact. For example, in “linear” amplifiers and
mixers, distortion and intermodulation, caused solely by non-
linearities, must typically be guaranteed not to exceed a very
small fraction of the output of the linearized system. This is
especially true for traditional RF and microwave designs. Such
weakly nonlinear systems comprise an important class of blocks
that can benefit from macromodelling.

Additionally, many nonlinear blocks of interest are not de-
signed to be approximately linear in operation. Examples in-
clude digital gates, switches, comparators, etc., which are in-
tended to switch abruptly between two states. While such op-
eration is obviously natural for purely digital systems, strongly
nonlinear behaviour is also exploited in analog blocks such as
sampling circuits, switching mixers, analog-to-digital convert-
ers etc.. Furthermore, oscillators and PLLs, which are common
and basic components in mixed-signal systems, exhibit com-
plex dynamics which are fundamentally strongly nonlinear.

Unlike for the classes of linear systems considered in the pre-
vious sections, no technique currently exists that is capable,
even in principle, of producing a macromodel that conforms
to any reasonable fidelity metric for completely general nonlin-
ear systems. The difficulty stems from the fact that nonlinear
systems are richly varied, with extremely complex dynamical
behaviour possible that is very far from being exhaustively in-
vestigated or understood. This is in contrast to linear dynamical
systems, for which comprehensive mathematical theories exist
(see, e.g., [48]) that are universally applicable. In view of the
diversity and complexity of nonlinear systems in general, it is
difficult to conceive of a single overarching theory or method
that can be employed for effective macromodelling of an ar-
bitrary nonlinear block. It is not surprising, therefore, that
macromodelling of nonlinear systems has tended to be manual,
relying heavily on domain-specific knowledge for specialized
circuit classes, such as ADCs, phase detectors, etc..

In recent years, however, linear macromodelling methods have
been extended to handle weakly nonlinear systems. Other tech-
niques based on piecewise approximations have also been de-
vised that are applicable some strongly nonlinear systems. As
described below in more detail, these approaches start from a
general nonlinear differential equation description of the full
system, but first approximate it to a more restrictive form, which
is then reduced to yield a macromodel of the same form. The
starting point is a set of nonlinear differential-algebraic equa-
tions (DAEs) of the form

q̇
�
x
�
t ����� f

�
x
�
t ����� bu

�
t �

y
�
t ��� cT x

�
t �
�

(5)

where f
�  � and q

�  � are nonlinear vector functions.

A. Polynomial-based weakly nonlinear methods
To appreciate the basic principles behind weakly nonlinear

macromodelling, it is first necessary to understand how the full
system can be treated if the nonlinearities in (5) are approxi-
mated by low-order polynomials. The polynomial approxima-
tion concept is simply an extension of linearization, with f

�
x �

and q
�
x � replaced by the first few terms of a Taylor series about

an expansion point x0 (typically the DC solution); for example,

f
�
x ��� f

�
x0 ��� A1

�
x � x0 ��� A2

�
x � x0 � 2 � ��

�
(6)

where a i represents the Kronecker product of a with itself i
times. When (6) and its q

�  � counterpart are used in (5), a sys-
tem of polynomial differential equations results. If q

�
x ��� x

(assumed for simplicity), these equations are of the form

ẋ
�
t ��� f

�
x0 ��� A1

�
x � x0 ��� A2

�
x � x0 � 2 � �� � bu

�
t �

y
�
t ��� cT x

�
t ��� (7)

The utility of this polynomial system is that it becomes possi-
ble to leverage an existing body of knowledge on weakly poly-
nomial differential equation systems, i.e., systems where the
higher-order nonlinear terms in (6) are small compared to the
linear term. In particular, Volterra series theory [39] and weakly-
nonlinear perturbation techniques [19] justify a relaxation-like
approach for such systems, which proceeds as follows. First,
the response of the linear system, ignoring higher-order polyno-
mial terms, is computed – denote this response by x1

�
t � . Next,

x1
�
t � is inserted into the quadratic term A2

�
x � x0 � 2 (denoted a

distortion input), the original input is substituted by this wave-
form, and the linear system solved again to obtain a pertur-
bation due to the quadratic term – denote this by x2

�
t � . The

sum of x1 and x2 is then substituted into the cubic term to ob-
tain another weak perturbation, the linear system solved again
for x3

�
t � , and so on. The final solution is the sum of x1, x2,

x3 and so on. An attractive feature of this approach is that the
perturbations x2, x3, etc., which are available separately in this
approach, correspond to quantities like distortion and intermod-
ulation which are of interest in design. Note that at every stage,
to compute the perturbation response, a linear system is solved
– nonlinearities are captured via the distortion inputs to these
systems.

�

3

size q1

reduced linear system
input u  t !

reduced linear system
size q2

2

x2 " q2

rT
3

rT
1

x1 " q1

rT
2

output y  t !

size q3

reduced linear system

x3 " q3

Fig. 3. Block structure of reduced polynomial system

The basic idea behind macromodelling weakly nonlinear sys-
tems is to exploit this fact; in other words, to apply linear macro-
modelling techniques, appropriately modified to account for
distortion inputs, to each stage of the relaxation process above.
In the first such approach, proposed in 1999 by Roychowdhury
[35], the linear system is first reduced by LTI MOR methods
to a system of size q1, as shown in Figure 3, via a projection
basis obtained using Krylov-subspace methods. The distortion
inputs for the quadratic perturbation system are then expressed
in terms of the reduced state vector of the linear term, to obtain
an input vector of size q2

1 . The quadratic perturbation system
(which has the same linear system matrix, but a different in-
put vector) is then again reduced via another projection basis,
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to size q2. This process is continued for higher order terms.
The overall reduced model is the union of the separate reduced
models with outputs summed together, as depicted in Figure 3.

By tailoring projection bases for each nonlinearly-perturbed
linear system, this approach focusses on accuracy; however,
this is achieved at the cost of increased macromodel size q1 �
q2 � �� . Recognizing the size issue, Phillips in 2000 [26, 27]
proposed that a single projection basis be applied to the system
(7) (analogous to LTI MOR systems), and also observed that
Carlemann bilinearization [37] could be employed to obtain a
canonical equation form. Intuitively, the use of a single pro-
jection basis consolidates the commonality in the three reduced
models shown in Figure 3, leading to smaller overall models.

In 2003, Li and Pileggi proposed the NORM method [23],
which combines and extends the above two approaches. Similar
to [35], NORM generates tailored projection bases for each per-
turbed linear system, but instead of retaining separate macro-
models as in Figure 3, it compresses these projection bases into
a single projection basis. NORM then employs this single pro-
jection basis to reduce the system (7) as proposed in [27]. A
particularly attractive property of NORM is that it produces a
macromodel that matches a number of multidimensional mo-
ments of the Volterra series kernels [39] of the system – indeed,
the distortion terms for each perturbed system are pruned to en-
sure matching of a specified number of moments. The authors
of NORM also include a variant that matches moments at mul-
tiple frequency points.

B. Piecewise approximation methods
The polynomial approximations discussed above are excel-

lent when the intended operation of the system exercises only
weak nonlinearities, as in power amplifiers, “linear” mixers,
etc.. Outside a relatively small range of validity, however, poly-
nomials are well known to be extremely poor global approxi-
mators. This limitation is illustrated in Figure 4, where it can
be seen that, outside a local region where there is a good match,
even a sixth-degree Taylor-series approximation diverges dra-
matically from the function it is meant to represent.

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

Original Data
Order=1
Order=3
Order=6

Fitting Region 

Fig. 4. Limitations of global polynomial approximations

It is for this reason that other ways of approximating (5) that
have better global approximation properties than polynomials
have been sought. One approach is to represent the nonlinear
functions f

�  � and q
�  � in (5) by piecewise linear (PWL) seg-

ments. The state space is split into a number of disjoint re-
gions, and within each region, a linear approximation is used

that matches the nonlinear function approximately within the
region. By using a sufficiently large number of regions, the
nonlinear function can be represented accurately over the entire
domain of interest. From a macromodelling perspective, the
motivation for PWL approximations is that since the system is
linear within each region, linear macromodelling methods can
be leveraged.

Piecewise linear approximations are not new in circuit sim-
ulation, having been employed in the past most notably in at-
tempts to solve the DC operating point problem [12, 22]. One
concern with these methods is a potential exponential explosion
in the number of regions as the dimension of the state space
grows. This is especially the case when each elemental device
within the circuit is first represented in piecewise form, and the
system of circuit equations constructed from these piecewise
elements. A combinatorial growth of polytope regions results,
via cross-products of the hyperplanes that demarcate piecewise
regions within individual devices.

To circumvent the explosion of regions, which would severely
limit the simplicity of a small macromodel, Rewienski and White
proposed the Trajectory PWL method (TPWL) [31] in 2001. In
TPWL, a reasonable number of “center points” is first selected
along a simulation trajectory in the the state space, generated by
exciting the circuit with a representative training input. Around
each center point, system nonlinearities are approximated by
linearization, with the region of validity of the linearization de-
fined implicitly, as consisting of all points that are closer to the
given center point than to any other. Thus there are only as
many piecewise regions as center points, and combinatorial ex-
plosion resulting from intersections of hyperplanes is avoided.
The implicit piecewise regions in TPWL are in fact identical to
the Voronoi regions defined by the collection of center points
chosen.

Within each piecewise region, the TPWL approach simply
reduces the linear system using existing LTI MOR methods to
obtain a reduced linear model. The reduced linear models of
all the piecewise regions are finally stitched together using a
scalar weight function to form a single-piece reduced model.
The weight function identifies, using a closest-distance met-
ric, whether a test point in the state space is within a particular
piecewise region, and weights the corresponding reduced linear
system appropriately.

The TPWL method, by virtue of its use of inherently bet-
ter PWL global approximation, avoids the blow-up that occurs
when polynomial-based methods are used with large inputs. It
is thus better suited for circuits with strong nonlinearities, such
as comparators, digital gates, etc... However, because PWL ap-
proximations do not capture higher-order derivative informa-
tion, TPWL’s ability to reproduce small-signal distortion or in-
termodulation is limited.

To address this limitation, Dong and Roychowdhury pro-
posed a piecewise polynomial (PWP) extension [18] of TPWL
in 2003. PWP combines weakly nonlinear MOR techniques
with the piecewise idea, by approximating the nonlinear func-
tion in each piecewise region by a polynomial, rather than a
purely linear, Taylor expansion. Each piecewise polynomial re-
gion is reduced using one of the polynomial MOR methods out-
lined above, and the resulting polynomial reduced stitched to-
gether with a scalar weight function, similar to TPWL. Thanks
to its piecewise nature, PWP is able to handle strong nonlin-
earities globally; because of its use of local Taylor expansions
in each region, it is also able to capture small-signal distortion
and intermodulation well. Thus PWP expands the scope of ap-
plicability of nonlinear macromodelling to encompass blocks
in which strong and weak nonlinearities both play an important

5



functional rôle.

V. CONCLUSION

Automated bottom-up macromodelling is rapidly becoming
critical for the effective hierarchical verification of large mixed-
signal systems. We have discussed the main algorithmic macro-
modelling approaches available today. Linear time-invariant
methods, the subject of research for more than a decade, have
already proven their usefulness for interconnect analysis. Is-
sues such as the fidelity, compactness, dynamical stability and
passivity of generated macromodels have been identified and
addressed. Extensions to linear time-varying systems, useful
for mixers and sampling circuits, have also been demonstrated
to produce useful, compact models. Interest in macromodelling
nonlinear systems has grown rapidly over the last few years and
a number of promising approaches have emerged. It is likely
that further research in automated nonlinear macromodelling
will translate into practically useful tools in the near future.

Acknowledgments
We would like to thank Joel Phillips, Jacob White, Larry Pi-

leggi, and Ken Kundert for useful discussions related to macro-
modelling. Special thanks are due to Ning Dong for many valu-
able discussions and for permission to use Figure 4.

REFERENCES
[1] E. Chiprout and M.S. Nakhla. Asymptotic Waveform Evaluation. Kluwer,

Norwell, MA, 1994.
[2] D. Schreurs, J. Wood, N. Tufillaro, D. Usikov, L. Barford, and D.E. Root.

The construction and evaluation of behavioral models for microwave de-
vices based on time-domain large-signal measurements. In Proc. IEEE
IEDM, pages 819–822, December 2000.

[3] P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé
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