
Standard VHDL 1076.1.1 Packages for
Multiple Energy Domain Support

Peter R. Wilson & Andrew D. Brown

Department of Electronics and Computer Science
University of Southampton

Southampton, UK

H. Alan Mantooth
Department of Electrical Engineering

University of Arkansas
Fayetteville, AR, USA

Abstract

This paper describes the set of packages providing a standard
for the declaration of the most frequently used constants and
types required for multiple energy domain modeling. Use of
these packages with their defined types, constants and
attributes is intended to provide a mechanism for writing
VHDL models (compliant with IEEE Std 1076.1-1999) that
are portable and interoperable with other VHDL models
adhering to this standard. The standard serves a broad class of
applications including electronics, thermal, magnetic, optical,
fluidic and mechanical systems.

The work described is the culmination of efforts by groups
with the same basic goals working over a period of over two
years. During this time many individuals have made valuable
contributions to the development of this standard from the
academic, industrial and EDA communities.

In this paper, rather than describe every aspect of the standard
in detail (impractical in a short paper), we have highlighted
the key elements of the proposed standard.

Introduction

The packages are intended for use primarily in the modeling
of multiple energy domain systems. The range of operation of
the packages is not defined in this standard, but is intended to
be valid across a wide range of disciplines and applications.
The range and scope of applications have been essentially
defined by the interests and requirements of the existing user
community of VHDL-AMS (defined by the IEEE Std 1076.1
[1]). Christen, et. al. [2],[3] and Vachoux [7] each provide an
overview of the rationale behind the language especially with
regard to the specific extensions addressed by the new set of
packages, namely natures, quantities and terminals. This is
required because the extensions to VHDL encapsulated in the
1076.1 standard only state the mechanism of mixed-signal
systems and does not address the specific packages required
to support the practical implementation of such systems.

In the “conventional” electronics arena, the nature of the
VHDL-AMS language is designed to support “mixed-signal”
systems (containing digital elements, analog elements and the
boundary between them) with a focus on IC design. Typical

examples of this kind of application are described in [4-6] &
[8-11]. There are of course many other similar applications
using VHDL-AMS that can be found in the literature.

Where the strengths of the VHDL-AMS language have really
become apparent however, is in the multi-disciplinary areas
of mechatronic and micro electro mechanical systems
(MEMS) [12-16].

Being able to represent these multiple disciplines and
technological interfaces in a single modeling framework is
incredibly powerful, however some pitfalls present
themselves to the unwary. The first potential problem is
defining a common, standard, interface such that models
created within different simulators will have consistent
definitions of natures, quantities and terminals to allow them
to be connected together. If this is not the case, then problems
can obviously occur when models and libraries undergo
deployment. Another related problem is in the underlying
assumptions made in models with regard to constants. If the
same name is used, but different value (or accuracy for
example) is used, then erroneous results can occur in
simulations of ostensibly the same circuit. Taking these
issues into account and building on the pioneering work of
the early adopters of the VHDL-AMS modeling language
allows a clear requirement for a set of multiple domain
packages that define basic physical constants and interface
conventions.

The packages proposed in IEEE standard 1076.1.1 were
therefore chosen for two purposes. The first was to define a
set of basic physical constants (either with or without default
values) so that models written using these packages could
have a common basis for modeling physical systems. The
second purpose was to define a set of physical types that
would provide a common framework for modeling physical
systems across a range of commonly used energy domains.
These enable models written using this proposed standard not
only use the same fundamental physical constants, but also
ensure that the interfaces are consistent, correct and maintain
interoperability between users and computer simulation
programs.

New Definitions

In order to provide supplementary information required for
multiple domain systems such as units and symbols, two new
attributes are defined in the proposed standard UNIT and
SYMBOL.

A. Unit

The UNIT attribute is defined as a string and is used to define
the name of the fundamental unit of the declared type. For
example, the name of the unit for voltage in electrical
systems is defined as “Volt”. The convention adopted in this
standard is for the initial letter to be capitalized if the unit is
named after an individual, otherwise the unit is in lowercase.

B. Symbol

The SYMBOL attribute is defined as a string and is used to
define the abbreviation of the fundamental unit of the
declared type. For example, the name of the symbol for
voltage in electrical systems is defined as “V”. The
convention adopted in this standard is for the initial letter to
be capitalized if the symbol is named after an individual,
otherwise the symbol is in lowercase.

Constants Packages

The constants have been divided into two categories, fixed
and user-definable. The fixed constants are fundamental
physical constants that have an accepted value and do not
generally vary. The user-definable constants are defined
without a default value, allowing them to be overwritten in
the model by the user. This allows the package to contain
names of commonly used constants, without restricting the
value to specific cases.

The fundamental constants and their default values are given
in Table 1 in the proposed standard package:
FUNDAMENTAL_CONSTANTS.

TABLE 1
FUNDAMENTAL CONSTANTS

Constant Unit Name Default
Electron
charge

C PHYS_Q 602_176_462e-19

permittivity
of vacuum

F/m PHYS_EPS0 8.854_187_817e-12

permeability
of vacuum

H/m PHYS_MU0 4.0e-7 * MATH_PI

Boltzmann's
constant

J/K PHYS_K 1.380_6503e-23

Acceleration
due to
gravity

ms-2 PHYS_GRAVITY 9.806_65

Conversion
between
Kelvin and
degree
Celsius

- PHYS_CTOK 273.15

Velocity
of light

m/s PHYS_C 299_792_458.0

in a
vacuum
Planck’s
constant

- PHYS_H 6.626_068_76e-34

Planck’s
constant
divided by
2pi

- PHYS_H_OVER_2_PI PHYS_H/MATH_2_PI

It has been considered appropriate to include standard scaling
factors from YOCTO (1.0e-24) to YOTTA (1.0e+24) in this
package.

The user-definable constants have been placed in a package
separately from these fundamental constants in a package
called MATERIAL_CONSTANTS. The purpose of this
package is to defined standard names for constants in
common use, without necessarily defining a fixed value. This
is especially useful for material characteristics that may be
highly dependent on environmental conditions such as
temperature. The list of defined material constants is given in
Table 2.

TABLE 2
MATERIAL CONSTANTS

Constant Unit Name
Relative
permittivity
of silicon

- PHYS_EPS_SI

Relative
permittivity
of silicon
dioxide

- PHYS_EPS_SIO2

Young's
Modulus for
silicon

Pa PHYS_E_SI

Young's
Modulus for
silicon
dioxide

Pa PHYS_E_SIO2

Young's
Modulus for
polysilicon

Pa PHYS_E_POLY

Poisson's
Ratio for
silicon

100
orientation

PHYS_NU_POLY

Density of
Polysilicon

Kg/m3 PHYS_RHO_POLY

Density of
Silicon-
Dioxide

Kg/m3 PHYS_RHO_SIO2

Ambient
Temperature

K AMBIENT_TEMPERATURE

Ambient
Pressure

Pa AMBIENT_PRESSURE

Ambient
Luminance

 AMBIENT_LUMINANCE

Mixed Energy Domain Packages

VHDL-AMS requires that analog variables be defined using
quantities. Quantities can be free (not with respect to a
specific reference) or defined using a combination of a
through and across variable. Different energy domains use

basic definitions of through and across variable types that are
defined in these packages. For example, in the electrical
domain, through variables may be defined using currents and
across variables as voltages. The approach taken with the
proposed standard is to define a package for each major
energy system grouping (electrical, mechanical, thermal, etc).
Each package defines the names of variable types, tolerances,
units and symbols for use within a single energy domain.

The list of proposed packages is as follows:

ENERGY_SYSTEMS: This package contains basic
definitions of energy and power. There is also a definition of
a generic “no unit” system for control system modeling. The
basic subtypes defined in this package are:

ENERGY
POWER
PERIODICITY
REAL_ACROSS
REAL_THROUGH

ELECTRICAL_SYSTEMS: This package contains the
basic definitions for electrical and magnetic systems. The
basic subtypes defined are as follows:

VOLTAGE
CURRENT
CHARGE
RESISTANCE
CAPACITANCE
MMF
FLUX
INDUCTANCE
FLUX_DENSITY
FIELD_STRENGTH

MECHANICAL_SYSTEMS: This package contains the
basic definitions of rotational and translational mechanical
systems. The basic subtypes defined are as follows:

DISPLACEMENT
FORCE
VELOCITY
ACCELERATION
MASS
STIFFNESS
DAMPING
MOMENTUM
COMPLIANCE
ANGLE
TORQUE
ANGULAR_VELOCITY
ANGULAR_ACCELERATION
MOMENT_INERTIA
ANGULAR_MOMENTUM
ANGULAR_STIFFNESS
ANGULAR_DAMPING

RADIANT_SYSTEMS: This package contains definitions
for basic optical system modeling. The basic subtypes
defined are as follows:

ILLUMINANCE
LUMINOUS_FLUX
LUMINOUS_INTENSITY
IRRADIANCE

THERMAL_SYSTEMS: This package contains the
definitions for thermal systems modeling. The basic subtypes
defined are as follows:

TEMPERATURE
HEAT_FLOW
THERMAL_CAPACITANCE
THERMAL_RESISTANCE

FLUIDIC_SYSTEMS: This package contains the
definitions for fluidic (hydraulic) systems modeling. The
basic subtypes defined are as follows:

PRESSURE
VFLOW_RATE
VOLUME
DENSITY
VISCOSITY
FRESISTANCE
FCAPACITANCE
INERTANCE

If the electrical systems package is taken as an example
(proposed standard package is given in appendix A) it can be
seen that the subtypes appropriate for electrical and magnetic
systems are defined as type real and include voltage, current,
mmf and flux. These are the variables that allow basic
quantities to be defined with appropriate through and across
variables. Also defined are useful derivative types including
capacitance, resistance, inductance and charge. Also defined
are the magnetic variables B (FLUX_DENSITY) & H
(FIELD_STRENGTH) as they are commonly used in
magnetic system modeling and simulation.

As can be seen from the package definition, each subtype has
a corresponding UNIT and SYMBOL defined for post-
processing, display and unit checking purposes and as well as
the basic nature definitions for electrical and magnetic
systems, vector types are also defined.

The final element defined in the package is the name of the
default reference (in this case GROUND for electrical
systems).

This pattern is repeated for the other packages, and these can
be accessed through the working group web page [17].

Example

As an example of how the packages can be used in practice a
simple electro-magnetic transformer is used to illustrate some
of the key concepts involved. If a simple two winding
transformer (schematic shown in figure 1) is implemented
using a mixed –technology approach, the simple structure
consists of two winding models (interfacing between the
electrical and magnetic domains and a magnetic model of the
core.

Using the models defined in this way, structural models of
magnetic components can be built up that encompass the
multiple domain capability in the VHDL-AMS language.

MagneticElectrical Electrical

dt
d

nv p
pp

Φ
= ppp inmmf *=

pΦ

pi

dt
d

nv s
ss

Φ
=sss inmmf *=

sΦ

si
Core

cΦ
cmmf

Figure 1: Electro-Magnetic model of transformer

Using this approach, the winding model is defined using the
listing below:

1 use work.electrical_systems.all;
2
3 entity winding is
4 generic (r : real := 0.0;
5 n : real := 1.0);
6 port (
7 terminal ep,em : electrical;
8 terminal mp,mm : magnetic
9);
10 end entity winding;
11
12 architecture simple of winding is
13 quantity h across f through mp to mm;
14 quantity v across i through ep to em;
15 begin
16 h == i*n;
17 v == - n*f'dot + i*r;
18 end architecture simple;

Note that in order to use the electrical and magnetic
definitions, the electrical_systems package must be
referenced using the use statement in line 1. Note that the
terminals are defined with electrical or magnetic types and
the resulting quantities (v & i in the electrical domain and h &
f in the magnetic domains) have the correct units, symbols
and types defined by the referenced package (see appendix A
for the complete electrical_systems package listing).

The same approach is used for the core model as shown
below:

1 use work.energy_systems.all;
2 use work.electrical_systems.all;
3
4 entity core_linear is
5 generic (ur : real := 1.0;

6 len : real := 1.0e-2;
7 area : real := 1.0e-4
8);
9 port (terminal p,m : magnetic);
10 end entity core_linear;
11
12 architecture simple of core_linear is
13 constant mg : real
14 := PHYS_MU0*ur*area/len;
15 quantity mmf across f through p to m;
16 begin -- architecture linear
17 assert len /= 0.0
18 report "len should not be 0!"
19 severity error;
20 f == mg * mmf;
21 end architecture simple;

As for the winding model the electrical_systems package
must be referenced using the use statement in line2, but the
energy_systems package must also be included because of the
use of the PHYS_MU0 constant.

Using this approach, the electrical and magnetic effects are
modeled in the same overall system simulation as shown in
figure 2. As can be seen from the figures, the flux and mmf
values are correctly differentiated from the electrical voltage
signal applied to the transformer. In this simple simulation a
voltage source was applied to the primary of the transformer,
with a resistive load applied to the secondary.

Figure 2: Electrical and Magnetic test waveforms

Conclusions

The emergence of VHDL-AMS as a standard modeling
language for describing multiple energy domain systems has
produced a requirement for a clear and unambiguous
definition of constants and interface types for a wide variety
of technology types.

The proposed IEEE standard 1076.1.1 as outlined in this
paper seeks to address these issues and will provide a solid
foundation for the development of portable and interoperable
models.

Acknowledgement

It is only possible for standardization efforts to be successful
with the hard work of many individuals who volunteer time

and effort as part of the process. An acknowledgement is
therefore given to the members of the 1076.1.1 working
group who have contributed in many ways to the
development of this work.

References

[1] “Definition of Analog and Mixed-Signal extensions to IEEE

Standard VHDL”, IEEE Standard 1076.1-1999
[2] Christen, E. and Bakalar, K., ”VHDL-AMS-a hardware

description language for analog and mixed-signal
applications”, IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, Volume 46, Issue
10 , Oct. 1999, pp 1263 -1272

[3] Christen, E. and Bakalar, K., “VHDL 1076.1-analog and
mixed-signal extensions to VHDL”, Design Automation
Conference, 1996, Proceedings EURO-DAC '96, 16-20 Sept.
1996, pp 556 -561

[4] Sabiro, SG, “Mixed-mode system design: VHDL-AMS”,
Microelectronic Engineering, 2000, Vol 54, Iss 1-2, pp 171-
180

[5] Godambe NJ and Shi CJR, “Behavioral level noise modeling
and jitter simulation of phase-locked loops with faults using
VHDL-AMS”, JOURNAL OF ELECTRONIC TESTING-
THEORY AND APPLICATIONS 1998, Vol 13, Iss 1, pp 7-
17

[6] Perkins AJ; Zwolinski M; Chalk CD; Wilkins BR,”Fault
modeling and simulation using VHDL-AMS”,ANALOG
INTEGRATED CIRCUITS AND SIGNAL PROCESSING
1998, Vol 16, Iss 2, pp 141-155

[7] Vachoux A, “Analog and mixed-signal extensions to
VHDL”, ANALOG INTEGRATED CIRCUITS AND SIGNAL
PROCESSING 1998, Vol 16, Iss 2, pp 185-200

[8] Boccuni I; Gulino R; Palumbo G, ”Behavioral model of
analog circuits for nonvolatile memories with VHDL-
AMS”, ANALOG INTEGRATED CIRCUITS AND SIGNAL
PROCESSING 2002, Vol 33, Iss 1, pp 19-28

[9] Mongellaz B; Marc F; Milet-Lewis N; Danto Y,
“Contribution to ageing simulation of complex analogue
circuit using VHDL-AMS behavioural modelling language”,
MICROELECTRONICS RELIABILITY 2002, Vol 42, Iss 9-
11, pp 1353-1358

[10] Sida M; Ahola R; Wallner D, “Bluetooth transceiver design
and simulation with VHDL-AMS”, IEEE CIRCUITS &
DEVICES 2003, Vol 19, Iss 2, pp 11-14

[11] Vogels, M.; De Smedt, B.; Gielen, G, “Modeling and
simulation of a sigma-delta digital to analog converter using
VHDL-AMS”, 2000 IEEE/ACM International Workshop on
Behavioral Modeling and Simulation, (2000), p 5-9

[12] Endemano A; Desmulliez MPY; Dunnigan M,”System level
simulation of a double stator wobble electrostatic
micromotor “, SENSORS AND ACTUATORS A-PHYSICAL
2002, Vol 99, Iss 3, pp 312-320

[13] Gibson D; Carter H; Purdy C, ”The use of hardware
description languages in the development of
microelectromechanical systems “, ANALOG INTEGRATED
CIRCUITS AND SIGNAL PROCESSING 2001, Vol 28, Iss
2, pp 173-180

[14] Bontoux P; O'Connor I; Gaffiot F; Letartre X; Jacquemod G,
“Behavioral modeling and simulation of optical integrated

devices”, ANALOG INTEGRATED CIRCUITS AND
SIGNAL PROCESSING 2001, Vol 29, Iss 1-2, pp 37-47

[15] Zhang TH; Cao F; Dewey AM; Fair RB; Chakrabarty K,
“Performance analysis of microelectrofluidic systems using
hierarchical modeling and simulation”, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II-
ANALOG AND DIGITAL SIGNAL PROCESSING 2001, Vol
48, Iss 5, pp 482-491

[16] Voigt P; Schrag G; Wachutka G, “Microfluidic system
modeling using VHDL-AMS and circuit simulation”,
MICROELECTRONICS JOURNAL 1998, Vol 29, Iss 11, pp
791-797

[17] http://mixedsignal.eleg.uark.edu/stdpkgs.html.

Appendix A: Electrical Systems Package Listing

package ELECTRICAL_SYSTEMS is
 -- subtype declarations
 subtype VOLTAGE is REAL tolerance
"DEFAULT_VOLTAGE";
 subtype CURRENT is REAL tolerance
"DEFAULT_CURRENT";
 subtype CHARGE is REAL tolerance
"DEFAULT_CHARGE";
 subtype RESISTANCE is REAL tolerance
"DEFAULT_RESISTANCE";
 subtype CAPACITANCE is REAL tolerance
"DEFAULT_CAPACITANCE";
 subtype MMF is REAL tolerance
"DEFAULT_MMF";
 subtype FLUX is REAL tolerance
"DEFAULT_FLUX";
 subtype INDUCTANCE is REAL tolerance
"DEFAULT_INDUCTANCE";

 -- attribute declarations
 -- Use of UNIT to designate units
 attribute UNIT of VOLTAGE : subtype is
"Volt";
 attribute UNIT of CURRENT : subtype is
"Ampere";
 attribute UNIT of CHARGE : subtype is
"Coulomb";
 attribute UNIT of RESISTANCE : subtype is
"Ohm";
 attribute UNIT of CAPACITANCE : subtype is
"Farad";
 attribute UNIT of MMF : subtype is
"Ampere";
 attribute UNIT of FLUX : subtype is
"Weber";
 attribute UNIT of INDUCTANCE : subtype is
"Henry";
 attribute UNIT of FLUX_DENSITY : subtype is
"Tesla";
 attribute UNIT of FIELD_STRENGTH : subtype is
"Amperes per meter";

 attribute SYMBOL of VOLTAGE : subtype is
"V";
 attribute SYMBOL of CURRENT : subtype is
"A";
 attribute SYMBOL of CHARGE : subtype is
"C";
 attribute SYMBOL of RESISTANCE : subtype is
"Ohm";
 attribute SYMBOL of CAPACITANCE : subtype is
"F";

 attribute SYMBOL of MMF : subtype is
"A";
 attribute SYMBOL of FLUX : subtype is
"W";
 attribute SYMBOL of INDUCTANCE : subtype is
"H";
 attribute SYMBOL of FLUX_DENSITY : subtype is
"T";
 attribute SYMBOL of FIELD_STRENGTH : subtype is
"A/m";

 -- nature declarations
 nature ELECTRICAL is
 VOLTAGE across
 CURRENT through
 ELECTRICAL_REF reference;
 nature ELECTRICAL_VECTOR is array (NATURAL range
<>) of ELECTRICAL;

 nature MAGNETIC is
 MMF across
 FLUX through
 MAGNETIC_REF reference;
 nature MAGNETIC_VECTOR is array (NATURAL range
<>) of MAGNETIC;

 -- vector subtype declarations
 subtype VOLTAGE_VECTOR is
ELECTRICAL_VECTOR'across;
 subtype CURRENT_VECTOR is
ELECTRICAL_VECTOR'through;
 subtype CHARGE_VECTOR is REAL_VECTOR
tolerance "DEFAULT_CHARGE";
 subtype RESISTANCE_VECTOR is REAL_VECTOR
tolerance "DEFAULT_RESISTANCE";
 subtype MMF_VECTOR is
MAGNETIC_VECTOR'across;
 subtype FLUX_VECTOR is
MAGNETIC_VECTOR'through;
 subtype INDUCTANCE_VECTOR is REAL_VECTOR
tolerance "DEFAULT_INDUCTANCE";

 -- attributes of vector subtypes
 attribute UNIT of VOLTAGE_VECTOR : subtype
is "Volt";
 attribute UNIT of CURRENT_VECTOR : subtype
is "Ampere";
 attribute UNIT of CHARGE_VECTOR : subtype
is "Coulomb";
 attribute UNIT of RESISTANCE_VECTOR : subtype
is "Ohm";
 attribute UNIT of CAPACITANCE_VECTOR : subtype
is "Farad";
 attribute UNIT of MMF_VECTOR : subtype
is "Ampere";
 attribute UNIT of FLUX_VECTOR : subtype
is "Weber";
 attribute UNIT of INDUCTANCE_VECTOR : subtype
is "Henry";

 attribute SYMBOL of VOLTAGE_VECTOR : subtype
is "V";
 attribute SYMBOL of CURRENT_VECTOR : subtype
is "A";
 attribute SYMBOL of CHARGE_VECTOR : subtype
is "C";
 attribute SYMBOL of RESISTANCE_VECTOR : subtype
is "Ohm";
 attribute SYMBOL of CAPACITANCE_VECTOR : subtype
is "F";

 attribute SYMBOL of MMF_VECTOR : subtype
is "A";
 attribute SYMBOL of FLUX_VECTOR : subtype
is "W";
 attribute SYMBOL of INDUCTANCE_VECTOR : subtype
is "H";

 alias GROUND is ELECTRICAL_REF;
end package ELECTRICAL_SYSTEMS;

