
Construction of VHDL-AMS simulator in MatlabTM

M. Zorzi, F. Franzè, N. Speciale

DEIS, University of Bologna
Viale Risorgimento 2 40136 Bologna, Italy

e-mail: mzorzi@deis.unibo.it

Abstract

In this paper we describe the digital kernel im-
plementation of the simulator S.A.M.S.A.[1], a
tool for the simulation of Vhdl-Ams systems in
MatlabTM. The digital kernel was validated by
simulating different systems. In particular we will
show the simulation of a low-power multistage
decimator for a wideband ∆-Σ Analog to Digi-
tal Converter (ADC). This example was correctly
simulated given the same results as other VHDL
commercial tools.

Keywords: VHDL-AMS, CAD tool, Circuit
simulation, ∆-Σ ADC, Behavioral Modeling

1 Introduction

System validation by using the circuit simula-
tion is mandatory to manage the increasing de-
sign complexity. New CAD tools, based on analog
and mixed-signal hardware description languages
and simulation [2][3] provide a unifying tool to
link the various design steps. Moreover, the use
of behavioral languages like Vhdl-Ams gives to
the designer a degree of freedom not available
by using a circuit simulator like Spice [4]: it is
possible to define a new model or a system not
present in the simulator model library. Although
adding new models to the simulator can be ac-
complished also in Spice [5][6], the use of behav-
ioral languages developed on recent years repre-
sents a more appealing solution, and allows to de-
scribe systems containing a mix of analog/digital
blocks described at different levels and in different
physical domains.

In this work we present the digital engine im-
plemented in S.A.M.S.A., a MatlabTM [7] tool for
Vhdl-Ams simulation.

This work is organized as follows: in the next
Section we explain how the Vhdl-Ams is com-
piled and mapped into a C++ intermediate form.
Section 3 describes the implemented digital sim-
ulation algorithm. Section 4 describes a valida-
tion example: a low-power multistage decimator
for a wideband ∆-Σ Analog to Digital Converter
(ADC). Finally, conclusions will be drawn in Sec-
tion 5.

2 Vhdl-Ams language compilation

The compilation is a two step procedure: the
Vhdl-Ams code is converted into C++ code and
then compiled with a standard C++ compiler like
GNU gcc. The final output is a set of dynamically
linked library which will be used by the simula-
tion engine. C++ thus acts like an intermediate
language, which is anyway fully human-readable
and provides an object oriented approach that is
more effective to translate Vhdl-Ams syntax. We
intend to show how it is possible to find a natural
mapping between a large set of Vhdl-Ams ele-
ments and C++. We focus now on the most im-
portant elements of Vhdl-Ams subdividing them
into some independent sets: i) the type system;
ii) statements and expressions; iii) entity and ar-
chitectures.

The mapping for statements and expressions is
quite simple and trivial, while finding a mapping
for the type system requires a stronger effort.

The Vhdl-Ams has a strong and rich type sys-
tem: we have scalar and non scalar types, it is



possible to define new types and subtypes, among
them we can define multidimensional arrays and
some complex operators like slicing are provided.

Moreover Vhdl-Ams defines different kind of
objects which are manipulated by expressions and
statements. Like any procedural language it has
constants and variables, but it has also quantities
and signals which are the basic elements for an
analog and digital simulation respectively.

The building blocks of a system described by
Vhdl-Ams are components. A component is de-
scribed by an entity which defines its interface
to the environment, and by one or more archi-
tectures which define its behavior. A good map-
ping for this is to describe each entity with a class
which defines only ports and generics, and each
architecture with a derived class. Using inheri-
tance each class defining an architecture has ac-
cess to generics and ports defined in the parent
(entity) class.

The translation of each component generates
a directory with the name of the associated en-
tity containing a set of C++ files: a primary.hh
file containing the class describing the entity,
a set of files entityname architecturename.cpp,
one for each architecture for that compo-
nent, a set of dynamic linked libraries entity-
name architecturename.dll (note extension .dll in
windows, in linux we have a different extension)
one for each architecture for the component. The
primary.hh file containing the declaration of an
entity class will be included by all the component
architectures which use that component.

A well defined directory hierarchy is manda-
tory to follow the hierarchical system organiza-
tion of Vhdl-Ams libraries, e.g. we can use the
same name for different components located in
different libraries. We defined also a more generic
abstract class called component. This is used by
the simulation engine to handle the whole system
architecture to be simulated. The simulation en-
gine cannot access specific components, but only
anonymous components. A key method of the
simulation engine is the getComponent method,
that allows the engine to dynamically load every
component (or a component to dynamically load

every inner components). By using this method
the engine recursively loads the components hier-
archy which defines the system to be simulated.
The dynamic load of all components of the system
is not OS dependent and MatlabTM can handle
it without any problem. This modular approach
allows for the development of large systems: it
is possible to build and test single components
individually, to reuse old components previously
generated, to glue up the whole system compiling
only the new added components.

In a previous work [1] we focused on the analog
domain: in this paper we aim to show the main
architecture of the digital part.

The digital domain introduces the problem of
some Vhdl-Ams specific elements mapping. We
can summarize them as: i) signals; ii) signal as-
signments statements; iii) wait sequential state-
ments; iv) process concurrent statements.

Signals are the basic elements manipulated by
a digital system. We map a signal to a Signal
class containing a value of a given type and a set
of specific signal informations, e.g. a flag telling
if an event has raised for the signal and the list of
processes sensible to that signal. Signal assign-
ment statements are mapped into transactions,
i.e. a signal assignment generates a new transac-
tion which will be handled by the digital solver.
Each concurrent statement of a component, and
specifically the process statement, is mapped into
a class Process plus some methods related to the
process. The Process class contains some infor-
mation about the status of the process, a phase
which acts as a program counter and tells where
the execution has to resume for a resumed pro-
cess. Moreover it contains also a pointer to the
run method.

The run method contains the sequential code
that each process has to execute. The other meth-
ods related to the process are: i) the init method;
ii) the register info method. The former initial-
izes the process status and phase, the latter notify
the process to all signals to which it is sensible.

The main problem to handle was to restart the
execution of a resumed process from where it has
stopped. We solved this by using the phase vari-



COMMAND 
FILE

System

Hierarchy

DC

AC

TRAN

SIMULATION

FINISH
Solver

INITIALIZATION

Signal events

Transactions

Processes

Figure 1: Schematic diagram of the simulation
algorithm.

able and a switch of goto at the beginning of the
run method which allows to jump to a given la-
bel inside the process code. The wait statement
is thus simply mapped with some lines of code
which set the status of the process to SUSPEND,
define a return for the run method, and set a label
after the return statement to indicate where the
execution has to restart when process will resume.
All inner data of a process are maintained by the
component containing the process, e.g. we can-
not place process variables inside the run method
since we have to maintain the value during pro-
cess execution-resume phase. We avoided name
clash by redefining local names by attaching a
prefix indicating an unique identifier for the pro-
cess.

3 Simulation algorithm

The digital simulation algorithm is based on
the IEEE standard specification; in this work we
will focus on some implementative approaches we
have adopted.

A class called System stores the global sim-
ulation variables visible to all components.
Simulation steps are the following (Fig. 1): i)
command file elaboration, initialization phase;
ii) System creation, hierarchy root retrieve and
solver creation; iii) simulation phase; iv) deal-
location phase. Some of these steps will be ex-
plained in the following sections.

3.1 Initialization phase

The command file stores everything should be
known to simulate a specified architecture of a
primary unit. In this file it is also indicated
the simulation end time, the simulator options
and the variables that should be exported to the
MatlabTM workspace or to the output file. After
the command file elaboration, the System class
is created and the component root is retrieved.
The dynamically linked library for each compo-
nent is loaded in memory, and a cache list with
loaded components is updated. Some Vhdl-Ams
systems can have a lot of instances of the same
component, and the cache avoid to load the same
library many times and speed up this simulation
phase. When an instance is created, the com-
ponent constructor is called, the component in-
ternal data and digital processes are initialized.
Each component will also load its instanced units
and update the hierarchy tree. When loading in-
stances the port and generic mapping is updated.

The solver is created and initialized according
to the simulation type. Each solver (AC, TRAN,
DC, DIGITAL) is derived from a class Solver. By
calling the Solver->simulate() method the simu-
lation is performed, as briefly explained in the
next section.

3.2 Simulation phase

The simulation is performed according to the
IEEE directives for the digital simulation [3]. It is
not the purpose of this work to give a detailed ex-
planation of the whole simulation algorithm, but
we will focus on some implementation aspects.

Basically, the digital simulation is made by
making some scheduled transactions which can
change a signal value or activate suspended pro-
cesses. After the activation, processes are exe-
cuted and new transactions are scheduled. The
challenge is to perform these tasks in an opti-
mized way. In the first developed digital engine
the simulation procedure was composed by the
following steps: i) make transactions; ii) look for
active processes by walking through the hierar-
chy tree and calling a specific checkActive method
for each process; iii) walk through the hierarchy
tree and call all active processes; iv) clear signal



events. In spite of its simplicity, this procedure
resulted to be very slow, basically due to the tree
walking for each simulation cycle. A most ap-
pealing solution was analyzed and implemented
on current digital kernel.

It is based on the reduction of the hierarchy
tree access time, which is due to the process
activation-execution phase. Our approach to han-
dle process execution after a signal event or a
transaction activation is the following:

• during the instance initialization each pro-
cess pointer is stored on signals that can ac-
tivate that process;

• a list with all signals that have the event flag
raised and an active process list are kept in
memory. The signal list and the process list
are updated by the same signals when an
event occurs;

• we walk through the active process list at the
current simulation time, and the process run
method is called.

This solution had the effect to reduce the sim-
ulation time to the 10% of the first digital kernel
simulation time we implemented.

4 Simulation example
Many tests where performed to validate the

digital simulation engine. In this section the
VHDL [8] implementation of a low-power mul-
tistage decimator [9] for a wideband ∆-Σ analog
to digital converter (ADC) is presented. More
exactly, the output of a 2-bit 2nd order ∆-Σ

8

2 Equalizer

20Mhz

Comb filter
4th order

M=8 40Mhz320Mhz

symmetrical
39 tap

HBF

Figure 2: Block diagram of the implemented dec-
imator.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency [f/f
S
]

A
m

pl
itu

de
 [d

B
]

Figure 3: ∆-Σ modulator output power spectral
density.

Modulator (DSM) with optimized Noise Trans-
fer Function (NTF) is supposed to be sampled
at Fs=320Ms/s having an oversampling ratio
OSR=Fs/2fB=18.82 where fB=8.5MHz is the
baseband frequency of the signal of interest (like
could be for example an OFDM signal in the
standard IEEE802.11). The simulated decima-
tor down-samples the output of the converter to
20Ms/s applying a decimation factor of M=16
and meeting requirements like almost same SNR
at the output of the decimator as in input
(SNR=60[dB] or 10 equivalent bits), low power
consumption (less than 10mW) and latency de-
lay less than 1µs. To meet these constraint a cas-
cade of a 4th order Comb Filter with decimation
ratio M=8, 39 tap symmetric Half Band filter are
used. To compensate the drop in the baseband
due to the comb filter an equalizer as final stage
is required. Figure 3 shows the power spectral
density of the signal taken from ∆-Σ Modulator.
Simulation results are shown in Figures 4 and
5. These results where compared with the results
obtained with other commercial simulators, giv-
ing a perfect agreement.

The implemented and simulated decimator has
a total number of 74 different components and
607 instances, and a total number of 4478 pro-
cesses.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−60

−40

−20

0

20

40

60

80

Normalized Frequency [f/f
S
]

A
m

pl
itu

de
 [d

B
]

Figure 4: Comb Filter output power spectral den-
sity (NFFT = 2048 samples).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−20

0

20

40

60

80

Normalized Frequency [f/f
S
]

A
m

pl
itu

de
[d

B
]

Figure 5: Decimated signal power spectral den-
sity (NFFT = 1024 samples).

5 Conclusions

In this work we presented the S.A.M.S.A. dig-
ital kernel implementation, and the simulation
results regarding a low-power multistage deci-
mator used to validate our tool. The simula-
tor was able to correctly simulate the whole sys-
tem giving the same numerical results as other
commercial VHDL tools. Moreover, S.A.M.S.A.
allows for the simulation integration with the
MatlabTMtoolboxes, giving to it a great flexibility
and the capability to use all the numerical fea-

tures of this numerical scientific tool. The com-
piler actually allows to compile almost all of the
clauses defined in the IEEE standard, and in par-
ticular it is possible to compile all the standard-
ized libraries as std logic 1164, std logic signed,
std logic unsigned, std logic arith.

The proposed tool is part of a research project
for the development of a MatlabTM simulation
framework for fully analog/mixed signal simula-
tion.

Actually the analog and digital kernel are avail-
able in S.A.M.S.A., and a fully mixed-signal en-
gine is on-going.

Acknowledgments
The authors would like to thank Dr. A. Mar-

cianesi for help, work and suggestions about the
decimator and ∆-Σ modulator.

6 References
[1] M. Zorzi, N. Speciale, G. Masetti, “A

New VHDL-AMS Simulation Framework in
Matlab” BMAS 2002, Santa Rosa (CA), 6-8
October 2002.

[2] “SPECTRE HDL Reference”, Cadence De-
sign Systems, 1998.

[3] “IEEE Standard VHDL Analog and Mixed-
Signal Extensions”, IEEE Std 1076.1-1999.

[4] A. Vladimirescu, “The SPICE Book”,
John Wiley & Sons, Inc. 1994.

[5] M. Zorzi, F. Franzè, N. Speciale
“I.M.A.GE.: a new CAD Tool for Device
Modeling in Spice”, Proc. of ECCTD01,
Espoo, Finland, pp 241–244.

[6] F. L. Cox, W. B. Kuhn, J. P. Murray
and S. D. Tynnor, “Code-Level Modeling in
XSPICE”, Proc. of ISCAS’92. Vol 2, 1992,
pp: 871-874.

[7] “Matlab Reference Documentation”, Ver.
6, Mathworks.

[8] P. J. Ashenden, “The Designer’s Guide
to VHDL”, Morgan Kaufmann Publishers,
Inc. 1996.

[9] S. R. Norsworthy, R. Schreier, G. C. Temes,
”Delta-Sigma Data Converters: Theory,
Design, and Simulation”, New York: IEEE
Press, 1996.


