
Automatic Generation of Compact Semiconductor Device
Models using Paragon and ADMS

Vivek Chaudhary
University of Arkansas

vchaudh@uark.edu

Matt Francis
University of Arkansas

afranci@uark.edu

Wei Zheng
University of Arkansas

wzheng@uark.edu

Alan Mantooth
University of Arkansas
mantooth@uark.edu

Laurent Lemaitre
Freescale

Laurent.Lemaitre@
freescale.com

ABSTRACT

This paper illustrates the automatic generation of a complex
semiconductor device model (BSIMSOI [1]) into the
Spectre simulator [2] from a higher-level representation
using Paragon‡. Paragon [3] is used to capture the
conceptual level description of the model and generate
Verilog-AMS code. This code is used for quick turn-around
model validation and subsequently used by the ADMS
model compiler [6] to generate C code for implementation
through Spectre’s compact model interface (CMI).

1. INTRODUCTION
The most significant building block to successful analog
and mixed-signal integrated circuit (IC) design is the
availability of high quality semiconductor device models
that have been characterized to the IC process. At present,
BSIM3 remains the standard device model available from
the majority of semiconductor foundries, while BSIM4 is
now beginning to take hold [4]. Semiconductor device
modeling takes an enormous amount of time and resource at
present. This is primarily due to a lack of modeling tools to
facilitate the research, implementation and characterization
of these complex models, in addition to the cumbersome
and error-prone nature of implementation of such models
directly in SPICE-like simulators. Without advanced
modeling tools the ability to compile other types of models,
such as behavioral models of circuits, into many advanced
simulators is effectively disabled.

The objective of this paper is to illustrate the
usefulness of an advanced modeling scheme for compact
models, based upon a well defined, scalable, comprehensive
and extensible metafile for representing compact models
[5], and an advanced model compiler (ADMS) and
modeling tool (Paragon). The methodology presented is

‡This work is sponsored by DARPA/MTO NeoCAD Program

under Grant No. N66001-01-1-8919, by Office of Naval
Research under Subaward No. USC 01-636, by an NSF CRCD
award (EEC-0088011) and by the Semiconductor Research
Corporation (SRC)

used to generate an industry standard model, the BSIM3-
SOI model (version 2.2) [1]. The format utilized provides a
neutral interface between hardware description languages
(HDLs), compilers and modeling tools, and simulators
within the complete modeling methodology.

The concept and benefit of a compact model compiler
based on standard high-level behavioral languages has been
described by a number of investigators [7-9]. However, a
major obstacle for model compilers is the generated code
efficiency, which has been reported to be 100 to 1000 times
slower than hand-developed code. Recent work
demonstrated by researchers at the University of
Washington indicates that this deficiency can be overcome
[10]. With some compilation optimization technologies
developed specifically for compact model compilers, it has
been shown that even BSIM models, implemented in
VHDL-AMS, can be created with performance comparable
to human optimized SPICE simulator code. Such results
serve to validate the promise of maintainable and efficient
compact models from high-level languages.

This paper illustrates the usefulness and extensibility of
the high-level representation by using Paragon to generate
Verilog-AMS [11-12] code for the ADMS model compiler
for the BSIMSOI model. Utilizing Verilog-AMS and
ADMS allows validation not only of the compiled compact
model with original SPICE code (as implemented in
Spectre), but also allows validation of the intermediate
Verilog-AMS code, as both formats are supported by the
Spectre simulator.

2. MODEL COMPILATION
Model compilation is the process of automatically
generating compact semiconductor device models in C/C++
for SPICE-like simulators from a higher-level abstract
representation of the model. The overall model creation
process is illustrated in Fig 1. The higher-level
representation of the model is captured by Paragon and
various model compilers like ADMS and MCAST work on
this higher-level representation of the model to generate
SPICE code for the target simulator. The biggest challenge
has been developing model compilers capable of generating
compact low level C/C++ code comparable in speeds to the
hand-generated models. MCAST has developed industry-

grade device models comparable in simulation speeds to the
hand-written models. Paragon is capable of generating low-
level C/C++ code for the fREEDA [17] simulator. ADMS
is a freely available model compiler available through the
open-source community and it supports popular simulators
such as Spectre, ADS, McSPICE, and NanoSim. ADMS
uses a Verilog-AMS description of the model as input and
generates C/C++ code for these target simulators. Paragon
can automatically generate Verilog-AMS code from a
higher-level description of the model, which can then be fed
into ADMS to generate C/C++ models for all the simulators
supported by ADMS. The advantages of using a model
compiler to develop these models over hand-written models
are the following:

1. The model development time is dramatically
reduced as the model developer does not need to manually
write low level C/C++ code.

2. The generated model is easier to maintain and
reuse as the modeler does not have to read and modify the
low level C/C++ code.

3. The same abstract representation of the model can
be used by a model compiler to generate low level C/C++
code for different simulators.

Paragon

User Interface HDL Models

XML representation

ADMS
MCAST

Optimization
algorithm

Spice models
Spectre models
ADS models
Zspice models

Spice 3f5 models

Fig. 1. Methods of model creation utilizing XML
schema and advanced compilation tools.

3. MODELING METHODLOGY
The overall modeling methodology used in this paper is
best summarized by Fig. 2. Starting with BSIMSOI model
documentation and source code [1], the model was
implemented utilizing the graphical editors of the Paragon
modeling tool. The result of this model editing is the XML
Abstract Model Representation. From this model
description, Verilog-AMS code, suitable as an input to the

ADMS model compiler was generated. This intermediate
Verilog-AMS code was validated in the Spectre simulator
before CMI code for Spectre was created utilizing the
ADMS tool.

Paragon UI

XML Verilog-AMS

ADMS Model Compiler

Spectre C
(CMI Interface)

Fig. 2. Automatic generation of native Spectre models
using Paragon and ADMS.

3.1 Abstract Model Representation
The abstract model format is designed to capture all of

the information necessary to create a semiconductor device
model, with the emphasis being on the data specific to the
model and not a specific simulator. The schema removes
the simulator dependence from device models, facilitates
rapid adoption, and supports enhancements through the use
of XML [18]. The use of XML enables the description of
model information in a simple and flexible structured text
format, which lends itself to standardization and open
sourcing. It is easily interchanged and adopted, as many
standard technologies exist for its manipulation and
creation, including XSLT transformations, which are used
by Paragon for such tasks as code generation [19].

The model expressions and equations are expressed in
MathML [20], which is an XML standard for describing
mathematical notation. Each model document has an
interface and a body. The model interface consists of the
model name, connection points and parameters. The body
contains the model topology and equations. The topology
consists of branches and instances of other models. The
branches are in turn defined by their ‘through’ and ‘across’
variables and MathML mathematical expressions involving
these variables. The topology and these mathematical

expressions collectively define the model behavior. The
specifics of the format, including the Document Type
Definition (DTD) are published in [5].

Fig. 3. Screenshot of Paragon showing the creation of the
BSIMSOI MOSFET model.

3.2 Paragon Modeling Tool: BSIMSOI Model
A tool that can directly operate upon the XML-format

model, Paragon, was utilized to create the BSIMSOI model
from documentation. Using Paragon, a user has the ability
to enter the large-signal model topology and graphically
define branch-based behavior. Through and across
quantities and the associated expressions are easily defined
for each branch. Generic model expressions are defined in
an expression editing tool, which uses the general language
of math, rather than any specific HDL, to define the model
equations. Model interface objects, such as parameters and
connections points, are defined in a simple form which also
permits the user to add their default values and appropriate
ranges of validity and comments, all of which are
propagated to the abstract format and any generated code.
In addition, Paragon provides methods not only for the
generation of multiple languages (Verilog-A, VHDL-AMS
[21-22], MAST [15], fREEDA [17] and VTB [23]) but also
for model debugging and analysis, such as time-variance
determination and other sanity checks (Fig. 4).

The large-signal topology of the BSIMSOI model that
was implemented in Paragon is shown in Fig. 3. Creating
the model interface was the first step in the process of
creating the model in Paragon. The model interface
consisting of model name (BSIMSOI), external connection
points (drain, gate, source, substrate, and body) and all the
process and instance parameters were captured in Paragon.
The BSIMSOI model consists of 4 fixed and 3 optional

nodes. This makes the total number of connection points
vary from four to seven. Paragon does not currently support
modeling of dynamically varying topologies or optional
connection points; hence BSIMSOI was modeled with 6
fixed nodes. Along with the five external connection points,
an internal body node was also modeled as shown in the
model topology in Fig. 3. The only node that was neglected
was the thermal junction node required for a self-heating
version of the BSIMSOI model. Finally, the behavior of the
model was entered by defining all the branch relationships
[1].

Fig. 4. A screen-shot of model-profiler window inside
Paragon environment showing dependencies of all the
BSIMSOI model variables.

The usefulness of a high-level tool such as Paragon is
illustrated through the example of this BSIMSOI model, as
illustrated in Fig. 3. The model’s interface, topology and
expressions are easily browsed and modified, allowing
another developer to quickly identify and modify specific
facets of the model. The validity and sanity of all the model
parameters and expressions can be done before actually
generating the Verilog-AMS code. Fig. 4 shows a screen-
shot of the model-profiler tool in Paragon. All the model
parameters, constants and variables are analyzed and listed
in tabular form. The modeler can verify their validity before
proceeding ahead with automatic code-generation.

Gate

Drain

Source

Ids + Ic

Ibd

Ibs

Iii

Idgidl

Isgidl

RbpQd

Qb

Qe
Qg

Qjdwg

Qjswg

Qs (overlap)

Qd (overlap)

P

Cs,e

Cs,esw

Cd,e

Cd,esw

BackgatE

 Body

(External Body)

(Substrate)

Fig. 5. Large-signal topology of the BSIMSOI, version 2.2
MOSFET model.

3.3 ADMS
The final step in the model creation process is to generate
the low level C code for the Spectre circuit simulator.
Paragon was used to first generate the Verilog-AMS code
for BSIMSOI model. The generated Verilog-AMS code
was validated in Spectre for correctness. ADMS was then
used to implement this model directly in Spectre using the
CMI toolkit. ADMS takes Verilog-AMS as input and
generates compact C/C++ model for the target simulator. A
major advantage of the ADMS approach is that it allows
Verilog-AMS simulators to be used to check the validity of
a compact model prior to implementation into simulators.
This significantly helps model development, as all
simulation capabilities, including DC, AC, noise, transient,
etc., are directly available for the Verilog-AMS code.

The Verilog-AMS language has some restrictions that
prevent it from creating a model which can provide all the
information needed by a tool like ADMS to generate C
code for SPICE-like circuit simulator [7]. For instance,
Verilog-AMS does not distinguish between model
parameter and instance parameters. It is possible to “pass”

all this information to ADMS without breaking the Verilog-
AMS validity of the model description [7]. This is achieved
by defining macros in the Verilog-AMS code that are set to
void in Verilog-AMS mode. Verilog-AMS simulators do
not see the extra information and parse the model
description correctly. On the other hand ADMS parses the
extra-information correctly and is able to generate a
compact C model for the target simulator. Paragon-
generated Verilog-AMS code of BSIMSOI model was
manually appended with these macros before feeding it to
ADMS.

ADMS has been designed to make the implementation
of compact models simple, efficient and robust. It supports
C code generation for the Application Programming
Interface (API) of various simulators including Spectre [2],
Mica [24], HSIM [25] and zSpice [26]. The specification
for code-generation for various simulators is written in
XML, which can be developed and supported by simulator
vendors without recompiling ADMS source code. This also
simplifies adding the API specification of other new
simulators to ADMS in the future.

Fig. 6. Ids-Vds curve for generated and compiled
BSIMSOI, version 2.2 MOSFET model.

ADMS was used to generate a compact C model of
BSIMSOI in Spectre from modified Verilog-AMS code
generated by Paragon. An XML file for the Spectre
interface and CMI toolkit was used in generating and
compiling this model into Spectre. This XML file and the
CMI toolkit are developed and maintained by Cadence
[27]. This XML file is used by ADMS to build the CMI
source code of the BSIMSOI model from its Verilog-AMS
description.

The generated BSIMSOI model was simulated in
Spectre and its results were compared with the built-in
BSIMSOI model in Spectre for speed and accuracy. The
automatically generated C code performed accurately and
simulated in about the same time as the native Spectre

model. Implementation and validation using Paragon took
less than two weeks, which is significantly less than the
time it takes to implement a new model of BSIM3
complexity in a SPICE-like simulator such as Spectre.

4. FUTURE WORK
Future work involves developing more synergy between
Paragon and ADMS to further facilitate the ease of
generating complex SPICE models for various circuit
simulators. Work is in progress to make ADMS directly
generate SPICE models from the XML schema instead of
using a Verilog-AMS description of the model. Also, in
future work code-generation capabilities of Paragon will be
enhanced to generate Verilog-AMS descriptions of models
that will have all the additional information that AMDS
needs to generate compact models without manually
defining any macros in the Verilog-AMS code.

5. CONCLUSIONS
The modeling methodology described in this paper enables
the user to quickly and correctly create complex new
models with relative ease for various SPICE-like circuit
simulators. Once the model has been entered, tested and
validated in Paragon, ADMS can be used in conjunction
with Paragon to generate compact C code for any new
circuit simulator in the future. The generated C code from
ADMS is only slightly slower than hand-written code, but
with further optimization this will be overcome. Also, there
is an enormous decrease in the model development time.
The model development time is significantly reduced
because the model developer does not have to deal with the
low level C code for each circuit simulator. The time
required to validate and test a new model is also
significantly reduced because the model developer can
carry out the model debugging process at a higher level.
The model can be analyzed and debugged in the Paragon
environment and the generated Verilog-AMS code can be
tested thoroughly before the creation of the C code for
implementing the model in a target simulator. By debugging
the model at a level higher than C code, more bugs are
filtered out before they reach the low level C code. This
greatly increases the efficiency of the model debugging
process because the model developer does not have to carry
out C code debugging of his model for each circuit
simulator in which he intends to implement the model. The
higher-level XML description of the model is easy to
maintain, reuse and update and this leads to an increased
efficiency in the overall model creation process.

6. REFERENCES

[1] BSIM3SOI Source code and Documentation, http://www-

device.eecs.berkeley.edu/~bsimsoi/

[2] Spectre Circuit Simulator,
http://www.cadence.com/products/custom_ic/spectre/

[3] V. Chaudhary, M. Francis, X. Huang, H. A. Mantooth,
Paragon - A mixed-signal behavioral modeling
environment, IEEE Int. Conf. on Communications,
Circuits, & Syst. (ICCCAS), pp. 1315-1321, Chengdu,
China, June 30, 2002.

[4] BSIM3 Homepage, http://www-
device.eecs.berkeley.edu/~bsim3/intro.html

[5] Francis, M.; Chaudhary, V.; Mantooth, H.A.;
Compact modeling of semiconductor devices using
higher level methods
IEEE 2004 International Symposium on Circuits and
Systems, 29 May-1 June 4 2004

[6] ADMS Model Compiler, http://sourceforge.net/projects/mot-
adms

[7] L. Lemaitre, C. McAndrew, S. Hamm, ADMS –
Automatic Device Model Sythesizer, Proc. IEEE
Custom Int. Circ. Conf., pp. 27-30, 2002.

[8] R. V. H. Booth, An extensible compact model
description language and compiler, Proc. IEEE BMAS,
pp. 39-44, Oct. 2001.

[9] M. Zorzi, N. Speciale, G. Masetti, Automatic
embedding of a ferroelectric capacitor model in Eldo,
Proc. IEEE BMAS, pp. 97-101, Oct. 2001.

[10] B. Wan, B. P. Hu, L. Zhou, C.-J. Shi, MCAST – An
abstract-syntax-tree based model compiler for circuit
simulation, IEEE Custom Integrated Circuits Conf.
(CICC), pp. 249-252, Sept. 2003.

[11] D. Fitzpatrick, I. Miller, Analog Behavioral Modeling
with Verilog-A, Kluwer Academic Publishers,
Norwell, MA, 1997.

[12] P. Frey, D. O'Riordan, Verilog-AMS: Mixed-signal
simulation and cross domain connect modules, Proc.
IEEE BMAS, pp. 103 –108, Oct. 2000.

[13] S. Liu, K.C. Hsu, P. Subramaniam, ADMIT-ADVICE
Modeling Interface Tool, IEEE Custom Integrated
Circuits Conference, 1988.

[14] A.T. Yang, and S.M. Kang, iSMILE: A Novel Circuit
Simulation Program with emphasis on New Device
Model Development, 26th Design Automation
Conference, 1989.

[15] MAST/Saber User Manual, Synopsys, Inc.
[16] H. A. Mantooth, M. Fiegenbaum, Modeling with an

Analog Hardware Description Language, Kluwer
Academic Publishers, Norwell, MA, 1995.

http://www-device.eecs.berkeley.edu/%7ebsimsoi/
http://www-device.eecs.berkeley.edu/%7ebsimsoi/
http://www.cadence.com/products/custom_ic/spectre/
http://www-device.eecs.berkeley.edu/%7ebsim3/intro.html
http://www-device.eecs.berkeley.edu/%7ebsim3/intro.html
http://sourceforge.net/projects/mot-adms
http://sourceforge.net/projects/mot-adms

[17] fREEDA Circuit Simulator,
http://guppie.egrc.ncsu.edu/freeda

[18] Extensible Markup Language (XML),
http://www.w3.org/XML

[19] Extensible Stylesheet Language,
http://www.w3.org/TR/xslt

[20] Mathematical Markup Language (MathML),
http://www.w3.org/Math

[21] 1076.1-1999 IEEE Standard VHDL Analog and
Mixed-Signal Extensions Language Reference Manual,
IEEE Press, ISBN 0-7381-1640-8.

[22] P. Ashenden, G. D. Peterson, D. A. Teegarden, The
Systems Designer’s Guide to VHDL-AMS, Morgan-
Kaufmann, San Francisco, CA, 2003.

[23] Santi E., Dougal, R.A., Monti, A. The VTB
Environment for Virtual Prototyping of Dynamic Ship
Systems. American Society of Naval Engineers Annual
Meeting, Arlington, VA, March 24, 2003

[24] Mica Device Programming Interface, Documentation
and Programmer’s guide, Motorola Internal Document,
1998

[25] HSIM User’s Guide, NASSDA Corportaion, 2001
[26] Zspice Circuit Simulator, http://mot-

zspice.sourceforge.net/
[27] Cadence Design System, http://www.cadence.com/

http://guppie.egrc.ncsu.edu/freeda
http://www.w3.org/XML
http://www.w3.org/TR/xslt
http://www.w3.org/Math
http://mot-zspice.sourceforge.net/
http://mot-zspice.sourceforge.net/
http://mot-zspice.sourceforge.net/

	INTRODUCTION
	MODEL COMPILATION
	MODELING METHODLOGY
	Abstract Model Representation
	Fig. 3. Screenshot of Paragon showing the creation of the BSIMSOI MOSFET model.
	Paragon Modeling Tool: BSIMSOI Model
	Fig. 4. A screen-shot of model-profiler window inside Paragon environment showing dependencies of all the BSIMSOI model variables.
	Fig. 5. Large-signal topology of the BSIMSOI, version 2.2 MOSFET model.
	ADMS
	Fig. 6. Ids-Vds curve for generated and compiled BSIMSOI, version 2.2 MOSFET model.

	FUTURE WORK
	CONCLUSIONS
	REFERENCES

