
Proc. 2004 IEEE International Behavioral Modeling and Simulation Conference (BMAS 2004)

HOW TO (AND HOW NOT TO) WRITE A COMPACT MODEL IN VERILOG-A

Geoffrey J. Coram

Analog Devices, Inc.
804 Woburn St., Wilmington, MA 01887

ABSTRACT
Verilog-A was recently enhanced to provide greater sup-

port for compact modeling. In order for Verilog-A to be-
come the standard language for compact model develop-
ment and implementation, two more steps are necessary:
compact model developers must become familiar with the
language, and simulators must run compact models writ-
ten in Verilog-A almost as quickly and reliably as those
hand-coded in C. This paper addresses both of these steps:
it provides a quick introduction to writing compact models
in Verilog-A and, by indicating the sorts of techniques that
compact model writers may use, helps simulator vendors
understand the sorts of optimizations that are expected from
their Verilog-A interfaces.

1. INTRODUCTION

The standard language of compact modeling has been C
since about 1985, when Spice was re-written from FOR-
TRAN (Spice2) into C (Spice3). Most recent compact mod-
els have been written in C, although some still use FOR-
TRAN. The Compact Model Council [1] has preferred C
code in the past, but it encourages the release of Verilog-A
source code for its next-generation MOSFET model stan-
dardization effort. All the developers of candidate mod-
els for the CMC effort have indicated the intent to write
Verilog-A implementations of their models.

The Verilog-AMS hardware description language [2],
and specifically its analog-only subset called Verilog-A, was
recently enhanced to provide greater support for compact
modeling by the release of the Verilog-AMS Language Ref-
erence Manual (LRM) version 2.2. This version of the LRM
was developed over the course of the past two years with
involvement from compact model developers, vendors of
commercial simulators, and others, and is expected to be
approved by the Accellera [3] board of directors in Septem-
ber 2004. Many of the language extensions in the new LRM
were among those proposed by Lemaitre [4].

Even before the addition of these compact modeling ex-
tensions, Verilog-A was an excellent language for compact
model development and a dramatic improvement over C.
The advantages are listed in Section 2. MATLAB is of-
ten used for compact model development, due to its ease of

use and powerful data manipulation and plotting routines.
However, MATLAB models cannot be used in circuit simu-
lators. Verilog-A is almost as easy to use as MATLAB, and
it can be used directly in circuit simulators – as well as in
parameter extraction software, which provides methods for
handling measured data. Verilog-A support, compliant with
version 2.1 of the LRM, is available in a number of commer-
cial simulators and parameter extraction tools, as well as in
proprietary simulators of several semiconductor companies.
Support for version 2.2 of the standard will happen soon, be-
cause most of the features are already available for built-in
Spice models and for proprietary C interfaces to the simu-
lators. The Verilog-A interface simply needs to connect the
new syntax to existing functions in the C interfaces.

This paper is specifically intended for compact model
developers who want to learn how to write compact mod-
els in Verilog-A. Section 3 provides a quick overview of the
most useful elements of the language, which are scattered
through the Language Reference Manual. Unlike the LRM,
reference [5] is a user’s guide, but intended more for cir-
cuit designers writing high-level behavioral models than for
compact model developers. This paper focuses only on the
analog features of Verilog-A and does not address mixed-
signal modeling. Section 4 highlights a few tricks that might
be useful, while Section 5 notes areas of particular concern
for compact modeling.

This paper has a second intended audience: the pro-
grammers developing the Verilog-A interfaces for circuit
simulators. Compact models written in Verilog-A should
run reasonably fast, and simulator developers must invest
some effort to make this happen. It might be acceptable for
a new, automatically-compiled model to run slower than an
older hand-coded model, if the features of the new model
are compelling. For example, circuit designers accepted the
BSIM3 MOSFET model for its improvements, even though
it ran slower than the MOS level 3 model. And yet, it is not
necessarily the case that Verilog-A models will run more
slowly. Circuit simulators are not written in assembly lan-
guage; modern C compilers are very good at automatically
generating the assembly-level code. A good Verilog-A com-
piler could well produce more efficient code than a person
would by hand, particularly if the person concentrates on
developing the correct equations for the model. Section 6

0-7803-8615-9/04/$20.00c2004 IEEE 97

considers some areas in which the compiler needs to take
responsibility for optimizations. Section 7 suggests some
additional compiler features to aid the development of good
compact models.

Verilog-A has the potential to rejuvenate the field of
compact model development by lowering the barrier for get-
ting new models into simulators. Years ago, every semicon-
ductor company had its own copy of the Spice source code
and was therefore free to develop its own compact models.
Most semiconductor companies have switched to commer-
cial simulators, but they do not have the leverage to insist
that proprietary models be implemented in these simulators.
With Verilog-A, new models can be added almost as quickly
as the equations can be defined. The semiconductor com-
pany has control over the implementation schedule, and it
can maintain control of the intellectual property.

2. ADVANTAGES OF VERILOG-A

The main reason for preferring Verilog-A for compact mod-
eling over general-purpose programming languages is that
it frees the model developer from the burden of handling
the simulator interface. The simulator interface includes
a myriad of things such as reading the model parameters,
checking the topology, allocating memory, initializing val-
ues or recomputing them for a new temperature, loading the
Jacobian matrix and right-hand-side vector – each of which
is a separate function in Spice that is called at a specific
time during a simulation. Any given Spice-like simulator
may also have chosen to implement these functions differ-
ently than Berkeley Spice. For example, the right-hand-side
vector is loaded with different values depending on whether
the Newton-Raphson algorithm solves for the vector of un-
knowns directly or solves for the vector of differences from
the previous vector of unknowns. The simulator may not
even be Spice-like: it could use the harmonic balance algo-
rithm. Compact model developers using Verilog-A need not
be concerned with such details.

Verilog-A simulators automatically compute symbolic
partial derivatives of the currents and charges in a compact
model and determine the proper insertion of these values
into the Jacobian matrix for Newton’s method. This work
must be done by hand in C. Thus, even if one is modifying
an existing compact model in C, in which most of the inter-
face work has already been done, one still has to compute
new derivatives, and possibly get new matrix pointers, when
introducing a new dependence. The model developer is fo-
cused on getting correct equations for currents, which are
compared against measurements; the derivatives are harder
to verify. As a result, almost every hand-coded compact
model has had some derivative errors in its first release.

Verilog-A also provides a strong system for defining
model parameters. The declaration statement includes the

default value and can specify the range of valid values. The
default value may also be a function of other (previously-
declared) parameters. For example, some parameters may
have different defaults for NMOS and PMOS devices; this
may be incorporated directly in the parameter declaration
statement, rather than requiring special procedural code.

As a result, Verilog-A is an extremely efficient language
for writing compact models. To cite one example: self-
heating was added to a Verilog-A version of the BSIM3
MOSFET model in about two days; the same addition to the
native C code took two weeks. Further, the Verilog-A im-
plementation was used to find a bug (typographical error) in
the C implementation of the derivatives.

3. QUICK PRIMER

Verilog-A is a reasonably simple language. One can learn
most of the basic concepts simply by reading through an
example, such as the diode model in Listing 1.

The rest of this section consists of a brief discussion of
the elements used in this example. More details on the con-
cepts can be found in [5] or, of course, in the Verilog-AMS
Language Reference Manual [2]. A few complicated com-
pact modeling examples can be found on the Internet [6].

Verilog-A modulesreplace the primitives of Spice. In
most simulators that support Verilog-A, a module can be
instantiated in a Spice netlist as if it were a primitive or sub-
circuit. Presently, however, not all simulators allow Spice
.model cards for Verilog-A modules. Modules can contain
other modules, making them something of a hybrid between
primitives and subcircuits.

The device’s terminals “a” and “b” – calledports in
Verilog-A – appear in the parentheses following the mod-
ule’s name. Terminals of compact models should be de-
claredinout; Verilog was originally a language for model-
ing digital logic, and the direction indicated signal flow. The
terminals are also declared to beelectrical. The definition of
electrical comes from the included file “disciplines.vams,”
which contains the definitions ofdisciplines. Disciplines
are essentially user-defined data types, where the definition
includes the through and across variables, the units, and the
absolute tolerance. For compact modeling, the main disci-
pline of interest iselectrical, with the across variable V and
the through variable I. Self-heating modules may also refer-
ence thethermaldiscipline. An internal node can be defined
by declaring its discipline, but not including it in the port list
following the module name, as is done here forint .

This module declares two branches,res anddio . The
example treats them as mnemonic shorthand for the corre-
sponding pairs of nodes, but there are subtleties not exposed
here that are relevant when multiple branches exist between
two nodes.

The parameter declarations should follow the port and

98

‘include "disciplines.vams"
‘include "constants.vams"
module diode(a,c);

inout a,c;
electrical a,c,int;
branch (a,int) res;
branch (int,c) dio;
parameter real is = 10p from (0: inf);
parameter real rs = 0.0 from [0: inf);
parameter real cjo = 0.0 from [0: inf);
parameter real vj = 1.0 from (0: inf);

‘ ifdef VAMS COMPACT MODELING
aliasparam phi = vj;

(*desc="jct. voltage"*) real vd;
(*desc="current"*) real id;
(*desc="depl. charge"*) real qd;
(*desc="depl. cap."*) real cd;
(*desc="conductance"*) real gd;

‘ define GMIN ($simparam("gmin"))
‘ else

real vd, id, qd;
‘ define GMIN (1.0e-12)
‘ endif

analog begin
V(res) <+ I(res) * rs;
vd = V(dio);
id = is * (limexp(vd/$vt) - 1.0);
if (vd < vj) begin

qd = cjo * vj * (1.0 -
2.0 * sqrt(1.0 - vd/vj));

end else begin
qd = cjo * vd * (1.0 +

vd / (4.0 * vj));
end

‘ ifdef VAMS COMPACT MODELING
gd = ddx(id, V(int));
cd = ddx(qd, V(int));

‘ endif
I(dio) <+ id + ‘GMIN * vd;
I(dio) <+ ddt(qd);
I(dio) <+ white noise(2 * ‘P Q * id,

"shot");
V(res) <+ white noise(4 * ‘P K *

$temperature * rs,
"thermal");

end
endmodule

Listing 1. Verilog-A description of a diode. Verilog-A key-
words are in boldface.

branch declarations. The parameter definition must include
a default value. This value can be a simple number, includ-
ing exponential notation or standard scale factors. The value
can also be an expression containing previously-declared
parameters; see Section 4.1. Parameter ranges can be spec-
ified in the declaration, such as (0:inf) in the example. Fol-
lowing standard mathematical notation, brackets[] indi-
cate that the range includes the endpoints, but parentheses
() exclude the endpoints. One may alsoexcludespecific
values. The simulator will automatically generate an error
message if a user specifies a parameter that is out of range.

The compact modeling extensions provide for parame-
ter aliases; a simulator supporting the extensions will allow
vj to be specified asphi for this module. This example
is constructed so that it will run even in a simulator that
does not support the extensions. The accent grave charac-
ter (‘) indicates a compiler directive, replacing the pound
sign (#) in C. The token VAMSCOMPACTMODELING
is pre-defined by a compiler that supports the extensions.

Variables can be declared at top level. They can also be
declared within named blocks. Like C, these declarations
must occur at the top of the block. With the compact mod-
eling extensions, the variables are all marked with descrip-
tions; this is intended to make them available to print as part
of the operating point information or to save as a waveform.

The behavior of the module is contained in theanalog
block. A module can have only oneanalog block, which
can contain arbitrarily many statements. Blocks are defined
with beginandend, which replace the curly bracesfg in C.

Verilog-A uses<+ to indicate acontributionto the volt-
age or current of a branch. The parasitic resistance uses the
voltage formulationV(res) <+ I(res)*rs; to per-
mit rs=0 . The diode branch uses separate current contri-
butions for the dc and capacitive currents; these values are
combined to yield the total current in the branch.

Basic mathematical functions, such as are found in C,
are available in Verilog-A. Those typically found in com-
pact models are the operators+ - * / and the functions
sqrt, pow, ln, exp, and abs. Improved convergence for
semiconductor junctions can be obtained by usinglimexp
instead ofexp. Capacitive currents are defined using the
time-derivative of charge, with theddt operator. The com-
pact modeling extensions also provide the partial derivative
operatorddx, which is most useful for operating-point in-
formation such as capacitances and conductances. In some
models, such as the BSIM3 MOSFET model [7], thermal
noise is computed from these partial derivatives.

The simulation temperature is requested with$tem-
perature , and the thermal voltage is requested with$vt .
The compact modeling extensions provide a method of re-
questing other important values from the simulator, such as
the minimum conductance$simparam("gmin") . The
$ indicates asystem function.

99

Conditional statements can be implemented withif and
else. The conditional expression can use the usual logical
operators&& || ! , the relational operators> >= < <= ,
and the equality operators== != . Verilog-A also has a
casestatement and afor loop, though these are not common
in compact models.

Small-signal noise sources can be added to a model us-
ing thewhite noiseandflicker noisefunctions. Shot noise
and thermal noise, both types of white noise, are present
in this model. The values of Boltzmann’s constant and the
electron charge are obtained from the header file “constants
.vams,” which contains several physical and mathematical
constants with the prefixesP andM , respectively.

4. CLEVER TRICKS

Verilog-A has a number of other useful features that are not
included in the diode model of the previous section. Param-
eter handling in Verilog-A is much easier than in C; some
interesting examples are presented in this section to show
the power of Verilog-A. On the other hand, debugging is
somewhat harder, because one does not naturally have ac-
cess to the low-level computations such as derivatives, or
even the values during Newton-Raphson iterations.

4.1. Parameter tricks

It was mentioned above that parameters can have default
expressions involving previously-declared parameters. For
example, a resistor model might have its resistance parame-
ter declared as follows:
parameter real r = rho * length / width;
assuming thatrho , length , andwidth were declared
before this line. The default expressions can also include
conditional code:
parameter integer mobmod = 1 from [1:3];
parameter real uc =

(mobmod==3) ? -46.5e-3 : -46.5e-12;
The range expression can contain previously-declared

parameters, as well. The following lines constrainp2 and
p3 such that(1-p2-p3) > 0 .
parameter real p2 = 0 from [0:1);
parameter real p3 = 0 from [0:1-p2);

The LRM requires the start of the range to be strictly
less than the end of the range, but it is possible to limit the
range to a single value:
parameter integer level = 11010

from [11010:11011);

4.2. N and P type devices

Compact models are generally formulated in terms of the
N-type device,i.e., NMOS or NPN. The equations in the
documentation are written for the N-type device. The C

code includes a special flag to allow it to work for the P-
type device as well. In Spice, the primitives actually have
different names, but the underlying code is the same. In
some commercial simulators, the newer device models have
one primitive name and a parameter to switch between N-
and P-types. This latter approach works in Verilog-A, and
the implementation could be almost a direct translation of
the C code. It is mentioned here because one Verilog-A
BJT model initially did not include it. One certainly would
not want to write the model equations twice, nor would one
want two compiled modules in memory when one would
suffice.

The simplest way to add this functionality is to declare
an integer parametertype :
parameter integer type = 1 from [-1:1] exclude0;
Then, the behavioral equations might include lines like the
following:
Vds = type * V(d,s);
...
I(d,s) <+ type * id chan;
The compact modeling extensions provide a way to make
this clearer for the user, by using astring parameter:
parameter string type = "NMOS"

from f"NMOS", "PMOS" g;
localparam integer sign=(type=="NMOS")?1:-1;
The localparam cannot be specified (oroverridden, in Ver-
ilog terminology) when the module is instantiated, but, be-
ing a parameter, it allows the compiler to make certain opti-
mizations.

Two caveats should be mentioned here. The sign change
only applies to voltages and currents; the temperature and
power for self-heating networks do not get adjusted.
temp = Temp(tnode) + $temperature;
A more significant concern relates to the$limit function.
The syntax for$limit requires that the first argument be
a branch voltage, so one cannot write
$limit(type * V(b,e)) // INVALID!
Also,
type * $limit(V(b,e)) // WRONG!
is not the correct application of limiting; one instead needs:
if (type==1) begin

Vbe = $limit(V(b,e),"pnjlim",vcrit);
Vbc = $limit(V(b,c),"pnjlim",vcrit);

end else begin
Vbe = $limit(V(e,b),"pnjlim",vcrit);
Vbc = $limit(V(c,b),"pnjlim",vcrit);

end
One could also simply uselimexp if the branch voltage is
only used in one exponential.

4.3. Debugging

The compact modeling extensions include the system task
$debug that prints its arguments on every iteration, as well

100

as theddx function to request derivative information. The
format specifier%mcan be used to print the hierarchical
name of the module.
gm = ddx(id chan, V(g));
$debug("%m : gm = ", gm);

In a simulator without the extensions, one can still trick
the simulator into providing derivative information. This
trick can also be used to double-check the matrix stamp for
simulators with the extensions. One can add an extra termi-
nal and contribute to the current of that terminal any variable
in the module:
module mymos(d,g,s,b,test);
...
I(test) <+ Vgsteff;
Using the following netlist (in Spectre format):
X1 (d g s b test) mymos
R1 (test 0) resistor r=1
Vd (d 0) vsource type=dc dc=1 mag=1
the ac node voltage oftest will be the partial derivative
of Vgsteff with respect toV(d) (assuming there is no
parasitic drain resistance).

5. HAZARDS

The automatic derivative calculations of Verilog-A elimi-
nate the chances of the model developer making derivative
errors. However, there are still hazards that the language
cannot protect against – and some new hazards that are not
present in C or MATLAB.

There is one particular hazard in Verilog-A that bears
mentioning, because at least three independent model devel-
opers have encountered it.log means the base-10 logarithm;
ln is the natural logarithm.

Many of the other hazards are also present in C and
MATLAB, so that compact model developers should already
be aware of them. For example, one must pay proper atten-
tion to operator precedence and guard against division by
zero. The results of binary operations may depend on their
arguments; for example,b = 1/2; results in a value of
zero in C and Verilog-A (but not MATLAB), because the
arguments are integers.

5.1. Floating-point exceptions and hidden derivatives

Some mathematical functions are not well-behaved for all
arguments. This is of particular relevance for compact mod-
eling, since during Newton-Raphson iterations, the voltages
may take on “unreasonable” values. One can help ensure
thatexpdoes not produce too large a result by usinglimexp,
though some compact modelers prefer to explicitly linearize
the exponential above a breakpoint.

Division by zero is another potential numerical prob-
lem. An interesting wrinkle is that Verilog-A hides some

of the equations that need to be checked. For example,
if x = sqrt(y) , then there is no problem computingx
wheny=0 , but the automatically-computed derivative will
include1.0/ sqrt(y) if y depends on a node voltage. It
should be mentioned in this context that it is not acceptable
to tinker with the derivative; one simulator computed the
derivative ofsqrt(x) as1.0/ sqrt(x + ε) , but chose an
ε that happened to be larger thanx for a particular applica-
tion. Since the language is general-purpose, one cannota
priori choose anε that is appropriate for all applications.

abs(x) does not have a derivative atx=0 , and there-
fore it should not be used in expressions that depend on the
voltages. The resulting behavior would be non-physical and
could cause convergence problems. The following code was
present in one Verilog-A model with self-heating:
Tk = $temperature + DTA + abs(V(dt));
On the first iteration, node voltages are frequently initial-
ized to zero,i.e., V(dt)=0 ; this means that the simulator
hits the derivative problem exactly. If the simulator chooses
to set the derivative ofabsequal to zero at the origin, then
the Jacobian matrix would incorrectly indicate that the de-
vice currents have no dependence on the self-heating tem-
perature, inhibiting convergence. Also, this particular for-
mulation could converge withV(dt) negative.

Thepow function also requires care: it can give a result
that is too large, it is not defined for some arguments, and
its derivative is not defined for some arguments where the
function itself is defined. In many cases, it is preferable to
replacepow(a,b) by the equivalentexp(b * ln(a)) ,
particularly when the samea is raised to a few different
powers. The exponential function requires fewer cycles on
most computers, and one has the option of usinglimexp.

Other mathematical operators liketan or sinh can also
have problems, but they are not used in compact modeling.

5.2. Watch those if statements

if statements are always a concern in compact modeling.
Compact models need to have currents that are continuous
functions of their input voltages. For Newton’s method to
work, the functions should also have continuous first deriva-
tives. In order for a compact model to predict correct har-
monic distortion, the higher-order derivatives must also be
continuous. A physical system has continuous derivatives
of all orders. It is difficult to enforce that continuity across
an if statement.

Verilog-A provides a new trap for model writers to fall
into. If one tried to directly translate the depletion capaci-
tance equation from the BSIM3 C code [7], one might get:
if (vbs == 0.0) begin

qbs = 0.0; // BAD IDEA! dqbs/dvbs=0!
capbs = czbs + czbssw + czbsswg;

end else if (vbs < 0.0) begin
qbs = ...

101

Note that, whilecapbs is assigned a value, this is not the
value of the derivative that the simulator uses (capbs might
be used for debugging or operating-point information). Ca-
pacitive currents in Verilog-A are contributed with
I(b,s) <+ ddt(qbs);
and the simulator computes the derivative ofqbs from the
assignments that were made.

Consider also the following example:
if (dT < 1e-10) dT=0.0;

If the simulator converts the Verilog-A to C code (which
most do), the result for that line and a few preceding it
would read as follows:

Tamb = $temperature;
Tdev = Tamb+dt+V(tnode);
AD dTdev dtnode = 1.0;
dT = Tdev-Tnom;
AD ddT dtnode = 1.0;
if (dT < 1e-10) f

dT=0.0;
AD ddT dtnode = 0.0;

g
where the derivatives calculated by the simulator are de-
noted by the leadingAD . While the value ofdT is changed
only slightly in the if statement, its true derivative is ze-
roed out. This would probably degrade convergence perfor-
mance and yield incorrect results in a small-signal analysis.

5.3. Numerical precision

In some cases, it is important in which order some opera-
tions are performed, due to the finite precision of computer
arithmetic. For example, when computing the expression
(1.0 + 2.0e-30) - 1.0 , the result will be0.0 be-
cause the computer is unable to distinguish the quantity in
parentheses from the exact value1.0 . In most cases, this
sort of numerical problem can be avoided by writing the
expression correctly. However, the concern in Verilog-A is
that the model developer does not have access to the deriva-
tive expressions. Compact model developers should always
be aware of situations where numbers of vastly different or-
ders of magnitude are combined.

5.4. Inappropriate functions

Verilog-AMS is a general-purposehardware description lan-
guage. As such, it includes a number of features that are
not appropriate for compact modeling. It is unlikely that
a compact model developer would use some of these, such
astransition , slew, last crossing, and the Z-transform op-
erators, so a warning against using any of these functions
should not be necessary. On the other hand, some functions
such asabsdelayandanalysismay be tempting.

Theabsdelayoperator should not be used to model an
ideal delay. An ideal delay is not physical, so it does not

belong in a compact model. Furthermore, circuit simulators
have to go to a lot of trouble to handle an ideal delay in a
transient analysis. Laplace transforms may also be difficult
to handle in the time domain, though not as difficult as an
ideal delay. It may be better to explicitly compute an equiv-
alent RC or RLC filter.

The analysis function provides a method of executing
some statements conditioned on the type of analysis. One
might think to use this to speed up a model evaluation by
skipping calculations. For example, if one is not doing a
transient analysis, one might think to skip the charge calcu-
lations:
if (analysis("tran"))

q = ...
Unfortunately, this code would result in the capacitances
also being zero, and a small-signal ac analysis would give
incorrect results. Also, some simulators perform “pseudo-
transient” analysis to find the dc operating point; the device
charges are expected to help smooth out sharp nonlineari-
ties, but the charges would not be present in this example.

Because the computations for the noise functions in the
BSIM3 model are complicated, one Verilog-A implementa-
tion wrapped the evaluation as follows:
if (analysis("noise")) begin

flicker=strongInversionNoiseEval(vds,
temp);

This worked fine for standard Spice analyses, but would not
give any noise for Spectre’s periodic noise analysis (PNoise)
or the noise analysis of a harmonic balance simulator.

The Verilog-A compiler must be sophisticated enough
to determine when the results of calculations are required
and when they are not.

5.5. Events

Events are another mixed-signal concept that is generally
not appropriate in compact modeling. Compact modelers
should not use any events other thanabove.

A common trick along the lines of theanalysisexam-
ples in the last section is to use the event@(initial step) to
perform initialization of variables that only depend on pa-
rameters. For example, one might compute
@(initial step) begin

isdrain = jsat * ad;
This code would get executed only on the first timepoint,
and would be skipped for the rest of a transient analysis.
However, theinitial step is true for every iteration of the
first timepoint, so the simulator is still re-computing the
expressions. Also, prior to the release of LRM 2.2, the
behavior of initial step for a dc sweep was not defined:
some vendors believed it should be true for every point of
a dc sweep, so that one could put temperature updates in-
side@(initial step) and still perform a correct temperature
sweep. However, this meant that the code was executed for

102

every iteration of every point of the dc sweep, even if the
swept variable did not affect any of the calculations. In-
stead, this sort of optimization should be left to the simula-
tor. The Verilog-A compiler must determine what expres-
sions have derivatives with respect to the node voltages in
order to fill in the Jacobian matrix; those expressions that do
not depend on the voltages should be pre-computed once.

Theaboveevent is useful for generating warning mes-
sages when a device enters a particular region of operation.
@(above(Vds - Vdsat))

$strobe("Device is saturated");
The advantage of theaboveevent over a simpleif statement
is that the message will only be issued once for each cross-
ing, rather than at each timepoint (or dc sweep point) that
the device remains saturated.

5.6. Constants

Constants are another potential hazard. The two lines below
were found in different Verilog-A models:
‘define TNOM (272.15+27.0)
Tnom = tnom + 273.0;
Neither one used the correct value 273.15 for the conversion
from Celsius to Kelvin. This value is available from “con-
stants.vams” as the token ‘PCELSIUS0. It is worth men-
tioning here that$simparam("tnom") returns a value
in Celsius, but$temperature is in Kelvin.

The mathematical constants, such as ‘MSQRT2 and
‘M PI, are also found in “constants.vams” and defined out
to 20 significant digits. Compact modelers are advised to
use these tokens, rather than typing the values in by hand.

The values of the physical constants are more controver-
sial, because Berkeley Spice [8] and many simulators de-
rived from it use different values than the best accepted val-
ues for these constants available from the National Institute
of Standards and Technology (NIST) [9]. The Verilog-AMS
LRM [2] contains a listing for “constants.vams” that uses
values from NIST. However, some simulators come pack-
aged with a file that uses the Spice values. As an example
of the differences, consider the values of Boltzmann’s con-
stantk given in Table 1.

It is hoped that a future revision of the LRM will define
tokens such as ‘PK SPICE and ‘PK NIST2004 that will
be consistent across all simulators and not change if NIST
updates the best accepted values.

Source Value (J/K)
Spice [8] 1.38062e-23
NIST (2002) [9] 1.3806505e-23
textbook (Sze) [10] 1.38066e-23

Table 1. Boltzmann’s constant

6. OPTIMIZATIONS

It is of critical importance that that compact models writ-
ten in Verilog-A run quickly for circuit simulation. Even
if the new model has additional features, circuit designers
will resist a slower model. This resistance has been seen
in the BSIM4 MOSFET model, which adds a number of
features important for smaller-geometry processes over its
predecessor, BSIM3. Foundries have released Spice model
libraries with crude subcircuits around BSIM3 models to
include gate leakage without moving to BSIM4. Only if
Verilog-A compact models run reasonably efficiently will
Verilog-A become the dominant language of compact mod-
eling. This section points out some obvious ways in which
Verilog-A compilers can optimize the code generated for
Verilog-A compact models. Further optimizations are cer-
tainly possible beyond what is presented here. Verilog-A
compiler authors should review the C code produced for
publicly-available Verilog-A models [6]. It would also likely
prove valuable to write a common model such as BSIM3 in
Verilog-A, and then compare the automatically-generated C
code with the original distributed C code.

6.1. Common subexpressions

Verilog-A compilers should aggressively combine common
subexpressions. The diode current is

id = is * (exp(vd/$vt) -1.0);
and the automatic derivative is

gd = is/$vt * exp(vd/$vt);
Someone hand-coding the model would not make two calls
to the exponential function; the Verilog-A compiler should
not either. Assuming the Verilog-A compiler generates C
code, the C compiler cannot be counted on to make this
optimization, because it does not know if the function call
(exp) has any side effects.

The Verilog-A compiler should look for efficient subex-
pressions. The costs of mathematical operations are gen-
erally known for various processors, with addition costing
less than the exponential. Similar to the way an optimizing
C compiler works, the Verilog-A compiler might try several
approaches to find the best subexpressions to factor out and
re-use. A person faced with the same task might well choose
a subexpression for readability that results in less efficient
code. In a quick perusal of the BSIM3 code, a few sepa-
rate occasions were found where multiple expressions were
all divided by the same value; since division is more expen-
sive than multiplication, it would have been more efficient
to generate a subexpression for the inverse of the value and
then perform multiplications. The optimization in C com-
pilers is also limited in scope; it may not be able to consider
a value and all its partial derivatives at the same time.

103

6.2. Dependency trees

Another critical area for compact model compilation is the
creation of a dependency tree. The compact model has a
large number of equations, and not all of them are needed
at every phase of every type of analysis. Additionally, some
compact models have a large number of calculations that
need to be performed only once for a given set of parameters
at a given temperature. However, as mentioned in Section
5 (specifically, 5.4 and 5.5) it cannot be the compact model
developer’s responsibility to determine what equations are
not needed. The developer should not need to know details
of the simulator’s homotopy methods for dc convergence or
its advanced analyses such as RF noise analysis.

Not only are some equations not needed at certain points
in the analysis, other equations never need partial deriva-
tives computed. The diode model of Listing 1 could be ex-
tended to model flicker noise by the addition of these two
lines:
flick = kf * pow(id, af);
I(dio) <+ flicker noise(flick, ef, "1/f");
(along with declarations of the parametersaf andef). The
compiler should recognize thatflick is only used in a
small-signal noise expression, and thus its derivatives are
never needed.

6.3. Eliminating nodes

In the diode model of Listing 1, the parasitic resistance was
defined by a voltage contribution that allows zero resistance.
In the case thatrs=0 , the internal nodeint is shorted to
the anode, regardless of the operating point. The simulator
should be able to eliminate the extra node. In fact, the simu-
lator may save two rows in the matrix: in the modified nodal
analysis used by most Spice simulators, a voltage contribu-
tion requires an extra row for the branch current in addition
to row for the extra node itself.

Because of the extra row for the branch current, compact
model writers may prefer to contribute to the current in a
conductance formulation. In order to allowrs=0 , a switch
branch is required.
if (rs == 0)

V(res) <+ 0;
else

I(res) <+ V(res) / rs;
Verilog-A compilers should handle this gracefully and not
introduce extra rows. Note that the compiler must construct
a correct dependency tree to know when to make this op-
timization. A model for an ideal switch, which switches
between open (I(sw)<+ 0;) and closed (V(sw)<+ 0;)
would have a conditional expression depending on the con-
trol voltage, and it would therefore be ineligible for this op-
timization.

The resistance and conductance formulations describe

the same analog behavior, and in principle, they could be
implemented identically by the Verilog-A compiler. How-
ever, the convergence behavior of one or the other formu-
lation may be better in certain cases. For example, the so-
called “small resistor problem” results when resistances of
vastly different orders of magnitude are combined and one
value is lost due to finite numerical precision. Authors of
Verilog-A compilers should consider the implications care-
fully before changing one formulation to the other.

6.4. Adding nodes

According to the current version of the Verilog-AMS LRM
[2], the following two lines are illegal:
I(dio) <+ id + ddt(qd);
I(cap) <+ C * ddt(V(cap));
Syntactically, theddt is an “analogexpression,” and one
cannot combine two analog expressions with a binary oper-
ator. This restriction is expected to be removed in a future
revision of the LRM. The diode module of Listing 1 prop-
erly places theddt on a separate line.

Most Verilog-A compilers are able to handle both those
lines correctly, although some of them are known to add
an extra row for these types of expressions. If the vari-
able C depends on the node voltages, then an extra row
is needed; however, this is not the correct way to model
a nonlinear capacitor: the expression should beddt(C *
V(cap)) . Verilog-A compilers should not introduce un-
necessary rows, and they should issue a warning when the
module requires them.

6.5. The chain rule

Some further optimizations may be found in considering the
chain rule for derivatives. For example, many equations in
BSIM3 depend on Vgsteff, which itself depends on Vgs,
Vbs, and Vds. Any equation that depends on Vgsteff, there-
fore, should really have three partial derivatives calculated.
However, the source code from Berkeley [7] cleverly calcu-
lates only one derivative with respect to Vgtseff (though it
is confusingly nameddVgs) and then completes the chain
rule at the end with the following lines:
Gds += Gm * dVgsteff dVd;
Gmb += Gm * dVgsteff dVb;
Gm *= dVgsteff dVg;
Prior to these lines,Gmwas the partial derivative of the
channel current with respect toVgsteff andGds did not
include that portion of dependence of the channel current on
Vds that came throughVgsteff .

6.6. Model versus instance parameters

Along with the questions of what code is needed for what
simulation, another implementation detail that should be

104

hidden from the compact model developer is the difference
between model and instance parameters. Certainly, from a
simulator standpoint, it is important not to require storage
for each of BSIM3’s several hundred model parameters for
each instance of a device that uses the model. However,
the partitioning of parameters between instance and model
is not fixed. Some users want the flatband voltage – which
is usually a model parameter – to be an instance parameter,
in order to facilitate mismatch modeling. Other users might
not need the drain and source areas to be instance parame-
ters, and it might be more efficient to calculate a simple ex-
pression (AD = 2 * W * HDIF) rather than storing the
value for a million transistors. Thus, the compact model
developer cannot be expected to partition the parameters.

The compact modeling extensions for Verilog-A pro-
vide theparamset, which extends the capabilities of the
Spice .model card. However, the paramset is only available
for netlists written in Verilog format, rather than Spice for-
mat. Simulator vendors need to determine how to support
.model cards in their netlist format in an efficient manner.

7. VERILOG-A DEBUGGER

This section provides some suggestions for how a Verilog-
A compiler and simulator could assist in debugging a com-
pact model. The first two ideas below are fairly simple, but
checking continiuty could require some sophistication.

7.1. Error messages

It is important that the simulator running a Verilog-A model
produce error messages that are clearly related to the orig-
inal Verilog-A code, rather than the generated code. As
was noted in 5.1,sqrt(0) is well-defined, but its deriva-
tive is not; the error message should implicate the square
root function, not the division by zero.

7.2. Warning mode

Most C compilers accept the argument “+w” to turn on ad-
ditional warnings. A Verilog-A compiler could accept this
argument to check for the following types of unusual condi-
tions.

1. Variables that have a value assigned, but the value is
not used (output variables, such ascd andgd in the
diode example, should not cause warnings).

2. Variables that are used before they are explicitly as-
signed a value (note that Verilog-A specifies that vari-
ables are all initialized to zero).

3. Internal nodes that are created by the syntax of ex-
pressions (see Section 6.4).

4. Contributing to both the voltage and the current of a
branch (the last contribution wins, setting the type).

5. Accessing or contributing to the current of a node.

The last item requires some explanation. The expression
Id=I(a);
creates a short-circuit branch from the port to ground and
measures that current; the intent was to measure the termi-
nal current, which is done with
Id=I(<a>);
Compact models should also contribute to branch currents
rather than node currents. These lines are from a MOSFET
model:
I(gate) <+ cqgate;
I(drainp) <+ cqdrn;
I(bulk) <+ cqbulk;
I(sourcep) <+ -(cqgate+cqdrn+cqbulk);
Each of these lines creates a branch from the respective node
to ground and specifies a current in it. If the currents do
not sum to zero, then the model appears not to obey Kir-
choff’s current law. It takes one fewer line to contribute to
branch currents, and current conservation is automatically
enforced.
I(gate,sourcep) <+ cqgate;
I(drainp,sourcep) <+ cqdrn;
I(bulk,sourcep) <+ cqbulk;

7.3. Continuity

It is tedious, yet essential, to check the continuity of equa-
tions acrossif statements. If the equations and the deriva-
tives are not continuous, then convergence could be im-
paired. All theif statements in which the conditional ex-
pression has a dependence on the node voltages must be
checked. The compact model compiler has all the pieces
necessary to perform the check, and it would be of great
benefit if it would perform the check automatically.

Consider the following lines from the BSIM3 source
code [7]:
if (Abulk0 < 0.1)
f T9 = 1.0 / (3.0 - 20.0 * Abulk0);

Abulk0 = (0.2 - Abulk0) * T9;
dAbulk0 dVb *= T9 * T9;

g
To check continuity, one must evaluate these lines at the
breakpoint,Abulk0 = 0.1 . One finds thatT9 = 1.0 ,
Abulk0 = 0.1 , and the derivative is unchanged.

If the code above were translated into Verilog-A, the
derivativedAbulk0 dVb would not appear in the source
code. When the module was compiled, the compiler would
generate this derivative. Therefore, the compiler would be
aware that the conditional expression depends on the node
voltages. This would trigger a check of the final value of

105

Abulk0 and its derivative at the breakpoint. Some sym-
bolic manipulation will be necessary for more complicated
expressions. In some cases, the compiler may need to un-
derstand numerical precision, such thatln(1 + x) is nu-
merically indistinguishable from 0 forx < 1.0e-16 .

7.4. Preventing ill-formed models

The Verilog-A language prevents the creation of two types
of incorrectly-formulated models. The first type is a model
that does not have consistent ac and transient behavior. The
Spice small-signal ac analysis is intended to compute the
limiting behavior of the response of a circuit to a transient
sinusoidal stimulus, when the amplitude of the sinusoid is
decreased to zero. Therefore, ac and transient behavior of
a model should be consistent. Some transistor models have
violated this rule by altering the Jacobian matrix for ac anal-
ysis in order to capture non-quasi-static effects. Verilog-A
does not allow the compact model writer access to the Jaco-
bian matrix. The matrix used for transient analysis must be
consistent with the matrix for ac analysis.

The other type of poorly formulated model is one that
is capacitance-based instead of charge-based, that is, one
that does not use charge as the state variable. The orig-
inal recognition that a capacitance-based model does not
conserve charge, due to numerical effects of the integration
method, was made by Yang [11]. A more illustrative expla-
nation is given in [12]. Verilog-A requires that models be
charge-based, because no provision is made for integration
of a capacitance model.

Compact model developers may want to use these ap-
proaches to create a new model. It is incumbent upon the
developers of Verilog-A compilers not to provide propri-
etary extensions to support these ill-conceived approaches.

8. CONCLUSION

This paper has provided a wide-ranging overview of the fea-
tures and dangers in Verilog-A compact modeling. If com-
pact model developers follow the suggestions in this paper,
their models are more likely to work as intended. Verilog-A
compiler authors have been given some hints on common
ways that the language may be used, so that they can en-
sure that their simulator will run the models correctly and
efficiently.

Verilog-A is on the path to becoming the preferred lan-
guage for compact modeling. Verilog-A provides a quick
method of enhancing compact models to model new physics
of advanced processes. Research groups, both academic and
industrial, can easily make their new equations available.
Simulator programmers can concentrate on innovative sim-
ulation techniques to distinguish their simulators rather than
struggling to keep up with standard models.

9. ACKNOWLEDGMENTS

The author would like to thank Dr. Colin McAndrew for the
invitation to present this tutorial, as well as for his support
for automatic model compilers over the past many years.
Thanks are also due to the compact model developers whose
models provided many of the examples cited here – usually
unintentionally.

10. REFERENCES

[1] http://www.eigroup.org/cmc/

[2] Verilog-AMS Language Reference Manual, version
2.2, Accellera, 2004.

[3] http://www.accellera.org

[4] L. Lemaitre, et. al., “Extensions to Verilog-AMS to
Support Compact Device Modeling,”Proc. 2003 IEEE
International Workshop on Behavioral Modeling and
Simulation (BMAS 2003), San Jose, CA.

[5] K.S. Kundert and O. Zinke,The Designer’s Guide to
Verilog-AMS, Boston: Kluver Academic Publishers,
2004.

[6] A few models, including the Philips MOS11
MOSFET transistor model, are available from
http://www.designers-guide.com/VerilogAMS/ The
Philips Mextram 504 bipolar transistor model is avail-
able at http://ectm.et.tudelft.nl/data/artwork/design/
code/ahdl/mextram.va Silvaco International has some
Verilog-A models available for “non-commercial
use” for registered users at https://src.silvaco.com/
ResourceCenter/en/downloads/verilogA.jsp

[7] BSIM3 (version 3.2.4) source code from the Uni-
versity of California, Berkeley. Available from
http://www-device.eecs.berkeley.edu/�bsim3/

[8] Spice3f4 source code from the University of Califor-
nia, Berkeley. Available through anonymous FTP to
ic.eecs.berkeley.edu in the subdirectory pub/Spice3/ or
by contacting software@eecs.berkeley.edu. The value
is found in the file src/lib/fte/cpitf.c

[9] http://physics.nist.gov/constants and specifically
http://physics.nist.gov/cuu/Constants/Table/allascii.txt

[10] S.M. Sze,Physics of Semiconductor Devices, 2nd. ed.,
New York: John Wiley & Sons, 1981.

[11] P. Yang,et. al., “An Investigation of the Charge Con-
servation Problem for MOSFET Circuit Simulation,”
IEEE J. Solid-State Circuits, vol. SC-18, Feb. 1983.

[12] K.S. Kundert,The Designer’s Guide to SPICE and
Spectre, Boston: Kluver Academic Publishers, 1995.

106

