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ABSTRACT 
In this paper, we describe a methodology for verifying the 
functional operation of a Mixed-Signal Circuit Block to be used 
in a larger integrated circuit.  Methodology requirements are 
outlined, including: compatibility with digital verification at the 
chip level, compatibility with circuit analysis at the block level, 
and compatibility with project schedule and resource availability. 
The methodology is described with examples on a case-study 
using a 10/100 Ethernet Physical Layer implementation. Results 
from the Case Study show the benefits of applying the 
methodology to future Mixed-Signal design projects.  

1. INTRODUCTION 
The push to integrate Analog and Mixed-Signal circuits with 
ASIC designs is influenced by a number of factors; Adoption of a 
System-on-Chip design approach for fast turn-around of High 
Value ASICs, increasing use of serial signaling interfaces like 
Ethernet,[1] Serial-ATA, PCI-Express™[2], and FB-DIMM[3], 
demand for smaller, lighter, cheaper, faster or lower-power end 
units, and application of other custom circuits[4] to increase 
system throughput.  While the benefits can be high, integration 
puts at risk not only the high costs of a mask set for nanometer-
scale process geometries, but weeks of bench-test and debug, re-
design and re-verification, and fabrication schedule, for an 
elapsed time that can make the difference between profitable 
venture or missed opportunity. Mixed-signal design verification 
methodology improvements have the potential for a large return 
on the invested effort. 

The “Digital Revolution” has been enabled by an ability to 
describe designs at a high level of abstraction[8, 11], and then use 
these descriptions to generate the detailed design automatically. 
This has enabled a clear distinction between Functional 
Verification (Will my circuit perform the expected functions?) 
and other performance analysis (will the circuit Run at the desired 
speed?, have a high enough yield?, low enough power?, etc.) that 
are used to judge the quality of a specific design implementation. 

Analog Design, continues to focus on creative circuit topology, 
and the optimization of circuit parameters for best performance. 
The distinction between “function” and “performance” is rarely a 
clear one.    

1.1 Mixed Signal IP Verification 
Requirements 
In determining the requirements for a Mixed Signal Verification 
methodology, we are, here, intending to focus on the issue of 
correct function, but considering performance where appropriate 
to the analog side of the design. Considering the mixed nature of 
this effort we make the first two requirements: 

• Compatibility with the System (full-chip) Design 
Verification Methodology. 

• Compatibility with the Circuit Design Analysis 
Methodology 

The first will require us to use, and validate, a digital-HDL model 
of the mixed signal block for use in system verification efforts. In 
addition, for top-level interface, we will primarily use the same 
methods (Bus Functional Models or Transaction Level Models) 
for describing the external digital interfaces. An advantage of this 
is the possibility for reuse of models already in use for the digital 
verification effort. 
The second will require working with “schematic” data directly 
wherever possible, and that analysis results from the mixed signal 
analysis tool can be correlated to the circuit analysis tool, and re-
processed by the same analysis tools already in use. Also, 
generation of additional data, or extra simulations should not 
interfere with circuit design and analysis efforts.  Finally, as the 
digital designers want to know that the RTL is correct, the analog 
designers will want the ability to ensure that all their functional 
requirements have been verified. 
The final requirement will be more related to project management 
and scheduling: 

• Compatibility with the Project Schedules and Resource 
availability. 

There are a number of implications we can determine from this. 
Verification runs shouldn’t tie up hardware needed for other work 
indefinitely, and they shouldn’t take so long as to jeopardize the 
project delivery date. Practically this will require: a limit on run 
time, preference for a number of short runs over a single long run,  
predictability of total resources needs, and minimization of 
engineering interaction is to complete the effort.  

1.2 Verification Challenges 
While there are a number of difficulties to be overcome in this 
effort, there are two major ones that we address here: simulation 
run time, and the need for significant engineer interaction in 
circuit analysis.   
The “run-time” challenge is due to the exponential degradation of 
circuit analysis engine performance with circuit size. For 
SPICE[7] class solvers, the exponent of degradation is around 2. 

 

 
 
 
 
 
 
 
 
 



For the newer class of FastSpice solvers, it is significantly lower, 
at a potential price of reduced accuracy, and a large dependency 
on the nature of the circuit. With the large scale of the IP blocks 
being used today (10-50K transistors in a High Speed SERDES), 
and the complicated test patterns that must be run, completing a 
run in a reasonable time frame is a challenge that must be 
addressed. 
 The role of the engineer in circuit analysis is due to the nature of 
the design problem, with most designers making a large number 
of simulation runs as they converge on a near-optimal circuit. 
Attempts to address this [5] have typically depended on the circuit 
designer learning to write code in a programming language. While 
advantageous for a bookkeeping of circuit verification efforts, few 
circuit designers look forward to coding opportunities. While 
coding will be required in the proposed methodology, the 
challenge will be to allow the circuit designer to work with 
familiar tools, and use stored tool setup information in any 
developed scripts. 

2. METHODOLOGY OVERVIEW 
The proposed methodology has two scopes, each of which is 
described in a following section. The first scope is the entire 
Mixed-Signal circuit block under Verification. Here we start the 
major block (the “top” block for our IP1 team) verification effort 
using the proposed Digital (RTL2) model, and then extend the 
same tests to the circuit level by replacing RTL with the transistor 
level description, for selected blocks. The second scope is at the 
minor-block level, where additional circuit analyses can be run to 
verify circuit functionality, and confirm model equivalence.  Cell 
level (digital or analog) verification is not considered here, as it 
would already be complete, or completed in the same manner as 
the sub-block level we will describe. 
By dividing the verification effort into a number of smaller, 
shorter simulation runs, the maximum use of spare CPU hours can 
be made, and both Verification Turn-around time and Designer 
interference minimized.  At the top level this is accomplished 
doubly by separating tests into separate scripts where possible, 
and by substituting a limited number of transistor blocks at each 
time.  
For circuit verification we utilize a Verification Environment for 
analog design with interfaces to preferred simulation and analysis 
tools. Providing specification checking, comparison between 
circuits and models, and a perl3 scripting ability this allows the 
verification engineer to make use of designer simulation setups. 
In each case, scripts are developed for each set of simulations to 
be run, and these scripts are re-run as the design effort progresses, 
with a  report set summarizing the script success or failure to 
complete, the success or failure of the test it performs, and 

                                                                 
1 IP – Intellectual Property; as “IP” a design block may be made 

available for integration into more than one ASIC or SOC. 
2 RTL – Register-Transfer-Level; digital HDL that is limited to 

constructs that can be automatically synthesized. This is 
preferred for digital verification as it allows compilation to 
hardware accelerators for design debug and frequently for 
testing software to be run on a system. 

3 Perl – Practical Extraction and Reporting Language 

pointing to detailed report information on the test run in case 
debugging is needed. 

2.1 TOP-LEVEL VERIFICATION 
The method proposed here for Top-Level verification has been 
used in digital verification for a long time, namely replace one 
block at a time with its detailed description, and re-run the top 
level tests. The challenge here is that the detailed descriptions are 
now analog circuits, and in some cases will need analog signals 
from other blocks that we wish to leave at a “behavioral” 
representation. Since the Verilog-AMS[9] language allows for 
automatic insertion of connections at design time, it may be 
possible to leverage that capability to reduce the number of 
Analog behavioral models needed to support the Mixed-Signal 
Verification.  

2.1.1 Common Interface types 
Most signal interfaces can be classified into three types, voltage, 
current, and “balanced”. A consideration of each of these will 
help determine which circuit blocks will require modeling, and 
what type of models will be needed. 

2.1.1.1 Voltage interface 
A Voltage interface is typified by a low driving impedance, and a 
High receiving resistance, such as is typically seen in standard 
MOS logic circuits. Where a behavioral model represents logic 
1’s and 0’s – namely High and Low voltages, mapping between 
logic value and analog values is fairly accurate, if a few fixed 
parameters are considered, namely Vhigh, Vlow, Vthresh, Tr, Tf, 
Rout, Cin, and delay.  Since this is a single wire interface, it is 
relatively simple to determine which representation of the signal 
is needed at each point and provide the right one. For this reason, 
on most interfaces between analog and “real” logic models, the 
automatically inserted models will suffice, at least for the purpose 
of functional verification.  One drawback for this kind of interface 
in analog circuitry is that the resistance of a long connection wire, 
taken with the high input resistance at the receiving end, makes 
for a high sensitivity to noise voltages due to capacitive coupling 
from adjacent signals.  

2.1.1.2 Current interface 
The current interface is the classic solution to the coupled noise 
problem. For static references, the preferred signaling method is 
to use a low input impedance circuit, driven by a high output 
impedance. The common implementation of this, is the bias 
current source, driving a diode connected input of a current 
mirror. The equivalent RTL model will only show if the current 
signal is present or not. Even if only one reference current value 
is generated, one must still determine if the signal is of a source 
type or a sink type. To provide an automatic insertion connection 
for these signals would require definition and characterization of 
as many biases as are present in the design, and adding custom 
discipline types to all the affected RTL models to ensure the 
correct connections.  
In the section on BLOCK-LEVEL VERIFICATION a 
methodology for calibrating an analog model of the bias block 
will be shown, that will even allow automatically inserted 
connections from the bias circuit to a logic model, with an 
appropriate choice of logic values. While requiring an analog 
model of a bias block, this will not require a mixed-signal model 
for the case where 1 bias block drives several other blocks.  



2.1.1.3 Balanced interface  
The other approach to minimizing coupled noise on a signal path, 
involves a two-wire interface, typically with both driving and 
receiving interface impedances matched to the line, at least to 
some extent. Reserved for more dynamic signals, the nature of 
this type of signal is not easily representing in a digital model, 
except by the use of a real variable. In limited cases, like the 
10/100 Ethernet interface that is our case study, or the SERDES 
designs mentioned earlier, an equivalent logic value can be 
determined for up to 4 values on two wires. Since there is 
currently no provision for automatic insertion of connect models 
for a two wire interface, an analog or mixed signal model will be 
needed. 

2.1.1.4 Data Converters 
Digital-to-Analog Converters (DAC) and Analog-to Digital 
Converters (ADC) are examples of a class of blocks that are truly 
Mixed-Signal in nature, and may need to be modeled in a mixed-
signal manner to improve simulation run-times for other blocks.. 

2.1.2 Test planning and partitioning 
Having now identified some cases where an Analog or Mixed-
signal model is not needed, we now look at the details of 
implementing our partitioning strategy. We partition the testing in 
3 ways. 
1. We implement tests separately, so that each test can be run in 
parallel on a number of separate CPU’s. For example, with the 
10/100 Ethernet Phy., we have separate tests for configuration in 
Full-Duplex 100M mode, Full-Duplex 10M mode, Half-Duplex 
100M mode, and Half-Duplex 10M mode. We also have separate 
Block transmission tests in each mode, in combination, short & 
long packets, fixed & random patterns. 
2. We create multiple configurations of the design, testing a 
minimal number of blocks at the transistor level in each 
configuration so that each test can run in a reasonable time. A 
wrapper module supports the comparison between the design and 
its model. Behavioral models are used in place of the rest of the 
design. 
3. We create a separate set of configurations for interface 
checking. Since interface checking will require 2 or more blocks 
to be at the transistor level, we will limit the testing to that 
required to validate the interface only, and create one or more 
separate smaller test for the block itself allowing more detailed or 
longer tests, as shown in Figure 1. 

 
Figure 1 Partitioning Internal and Interface Tests 

2.1.2.1 Test Plan Matrix 
Table 1 shows the Test Plan for a simplified set of configurations 
and list of tests for the Ethernet Phy. Even in the planning stages, 
over 50 tests and 30 configurations are proposed, with a 
requirement to build and check analog or mixed models of 
approximately 10 design blocks. We eliminate redundant tests, 
i.e. 10BT tests of 100TX specific circuits. Not shown in the 
simplified list in Table 2 are a number of sub-blocks in the 
receiver to be treated separately, due to high transistor counts. 

Table 1 Simplified Text Plan Matrix 
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Functional Verif  X X X X X X X X X X
Functional Verif ExtLpBk  X X X   X X   X
TRANS model ck   X X X X X  X X X   
TRANS IF ck Int  X X X    X     
TRANS IF ck - pads  X X X    X     
BIAS model ck  X X X    X     
BIAS IF ck TRANS  X X X    X     
BG model ck  X X X    X     
BG IF chk  X X X    X     
RCVR model chk  - - - - - - - - - - 
RCVR IF chk  - - - - - - - - - - 
 

Table 2 Simplified Configuration List for Test Planning 

Configuration  
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Functional Verif  R R R R R R R R R R 
Functional Verif ExtLpBk  R R R R R R R R   
TRANS model ck   A R A X R R R M   
TRANS IF ck Int  S R S S S R R M   
TRANS IF ck - pads  A R A S R R M S   
BIAS model ck  A R X A R R M M   
BIAS IF ck TRANS  S R S S S R M M   
BG model ck  X M A M R R * M   
BG IF chk  S S S S R R * M   
RCVR model chk  - - - - - R X* A   
RCVR IF chk  - - - - - R S* S     

Model Type Legend 
R RTL (digital model) * Expand subblocks 
S Schematic (transistors) - Depends on expansion 
G Gate (gate level netlist) A Analog Behavioral 
M Mixed-Signal Behavioral 
X Compare - Schematic + RTL ref model 
E Extracted - from layout with parasitics 
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HDL 

Analog 
HDL 
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2.1.3 RTL vs. Schematic Comparison 
The Model Check simulations accomplish both Functional 
Testing of the block checked, and a direct comparison of behavior 
between the block as designed and the digital model of the block 

used for System Functional Verification. To perform this 
checking we use a special wrapper for the block as shown in 
Figure 2, which contains interface monitors to convert any non-
logic interface values. 

 
Figure 2 Example Schematic for RTL vs Schematic Comparison 

Within this view we have 3 Mixed Signal behavioral models 
which are of interest. The first is a current monitor shown in 
Listing 1, with an output of the proper value if the current thru is 
acceptable. Second, shown in Listing 2, we have an interface 
monitor to convert the transmitter output voltages to the 
corresponding logic values used in the RTL code. This assumes 
proper output loading as the monitor provides NO load. Time 
and voltage tolerance values for edge detection are set at the 
maximum value consistent with the tolerance in the logic 
compare module, shown in Listing 3. 
The compare module adds a message to the log file in the case 
of any mismatches. We have a simple logic model that disables 
the checks when the logical outputs are not expected to match. 

Listing 1 ibias_E2L: Bias Current Interface monitor 
// Verilog-AMS HDL for  VFS_AMS_PHY180.ibias50u_E2L:verilogams 
// last revised:  07/20/04 jbdavid 
`include "constants.vams" 
`include "disciplines.vams" 
// DEFINE & TIMESCALE :  
`timescale 1ns/10ps 
//==================================================== 
module  ibias_E2L ( // PINS :  

   inout plus, minus, // monitor branch 
   output out  );        // logic out 
// REGISTER and WIRE TYPES  
   electrical plus, minus; 
   reg out; 
// PARAMETERS:  (Comment each one) 
   parameter real ibias = 100u; // 100ua default 
   parameter real ibias_tol = 0.75 from (0:1);  
//--------------------------------------------------------------------------- 
   always @(above(I(plus,minus) - ibias*ibias_tol, 1n, 1u)) out = 0; 
   always @(above(ibias*ibias_tol - I(plus,minus), 1n, 1u)) out = 1;  
//--------------------------------------------------------------------------- 
   analog begin 
      V(plus,minus) <+ 0; 
   end 
endmodule 
 

Listing 2 eth_E2L: Ethernet Interface Monitor 
// Verilog-AMS HDL for  VFS_AMS_PHY180.eth_E2L:verilogams 
// last revised:  07/20/04 jbdavid 
`include "constants.vams" 
`include "disciplines.vams" 
// DEFINE & TIMESCALE :  
`timescale 1ns/10ps 



module  eth_E2L (  
   output out_neg, out_pos,  
   input in_neg, in_pos             ); // end of port declarations 
// REGISTER and WIRE TYPES  
   logic out_pos; 
   electrical in_pos; 
   logic out_neg; 
   electrical in_neg; 
   reg inneg, inpos; 
// INTERNAL NODES : 
   assign out_pos = inpos; 
   assign out_neg = inneg; 
// PARAMETERS:  (Comment each one) 
   parameter real vth = 0.5; // diff input threshold for detection 
//--------------------------------------------------------------------------- 
   always @(cross(V(in_pos,in_neg) - vth,1, 100p, vth*0.1)) begin 
      inpos = 1; inneg = 0; 
   end 
   always @(cross(V(in_pos,in_neg) - vth,-1, 100p, vth*0.1)) begin 
      inpos = 0; inneg = 0; 
   end 
   always @(cross(V(in_pos,in_neg) + vth,1, 100p, vth*0.1)) begin 
      inpos = 0; inneg = 0; 
   end 
   always @(cross(V(in_pos,in_neg) + vth,-1, 100p, vth*0.1)) begin 
      inpos = 0; inneg = 1; 
   end 
endmodule 
 

Listing 3 logic_sig_compare: Reports Signal Mismatch  
// Verilog-AMS HDL for  VFS_AMS_PHY180.logic_sig_compare:verilogams 
// last revised:  07/20/04 jbdavid 
`include "constants.vams" 
`include "disciplines.vams" 
`timescale 1ns/10ps 
//==================================================== 
 module  logic_sig_compare ( // goes here 
   input golden, intest, enable, 
   output mismatch       ); // end of port declarations 
// INTERNAL NODES : 
   reg faild, enabled; 
   assign mismatch = enabled&&(golden^intest); 
// PARAMETERS:  (Comment each one) 
   parameter real tcheck_ns = 3.0; // time between mismatch and faild 
   parameter real endelayLH = 0; // ns 
   parameter real endelayHL = 0; // ns 
// LOCAL VARIABLES:  (Comment each one) 
   real eventstart; 
//--------------------------------------------------------------------------- 
   initial faild = 0; 
   always @(posedge enable) #(endelayLH) enabled = 1; 
   always @(negedge enable) #(endelayHL) enabled = 0; 
   always @(posedge mismatch) begin 
      eventstart = $realtime; 
      #(tcheck_ns) if (mismatch!==0)  begin 
            faild = faild + 1; 
            $display("SPECFAIL %m: @ %d GLD: %b TST %b",  
                         eventstart, golden, intest); 
      end 
   end 
endmodule 
 

2.2 BLOCK-LEVEL VERIFICATION 
The primary analog model needed to complete the Transmitter 
block Verification is for the Bias_port block. Here we define a 
model for a current mirror, where the Reference input voltage as 

a function of input current (the diode curve for the diode 
connected Mos) is captured in a look-up table. On the output 
side we model the current gain dependency on the output 
voltage.  
To capture the data for this lookup table we run two simulation 
sweeps, one sweeping the input current to generate the diode 
curve, the other sweeps the load voltage to capture the current 
gain, down into the triode region of the output device. If done to 
a zero volt difference, this will ensure that the table will contain 
a 0 gain entry for the case where the Source-Drain voltage of the 
output is 0, as it would be if the current mirror is driving a 
standard E2L interface element. This allows us to know that for 
a bias source, the correct logic value for “on” is 1, as the output 
is referenced to the supply. For a bias sink, “on” = 0. In the case 
of the architecture used by this team, when the powerdown state 
is asserted (siddq = 1) the outputs are clamped to remove any 
voltage from the receiver, ground for a bias source, and supply 
for a bias sink. This feature has not yet been added to the model 
shown here. 
While most simulation environments will measure and report 
the desired values, turning this data into a specification report, 
and lookup files has in the past typically required programming 
expertise, and hundreds of lines of code such as that previously 
presented by this author[5]. However the Virtuoso Specification 
Driven Environment[12] used for this second phase allows 
specification limits to be associated with measures, and is easily 
configured to build the look up tables required for this model. 
Once all the desired tests, sweeps and calibrations are 
developed, their execution can be exported to a perl script, and 
added to the design teams regression suite. 

Listing 4  Bias_port vloga view (simplified) 
// VerilogA for VFS_AMS_PHY180, Bias_port, vloga 
// last revised:  8/07/04 jbdavid 
// DESCRIPTION   :  
//  this is a calibrated behavioral model 
// 
// LIMITATIONS   : no output clamp on SIDDQ 
`include "constants.vams" 
`include "disciplines.vams" 
//========================================= 
module Bias_port(   I_REXT_REF100,   SIDDQ,  VDD, 
   VSS,    I_REXT_100,    );  // PINS :  
   output [1:0] I_REXT_100; 
   input        I_REXT_REF100; 
   input        SIDDQ, VDD, VSS; 
 
   electrical [1:0] I_REXT_100; 
   electrical       I_REXT_REF100; 
   electrical       SIDDQ, VDD, VSS; 
// PARAMETERS:  (Comment each one) 
// Model calibrated at ‘20:48:06’ on ‘Sat Aug 7 2004’ by ‘jbdavid’ 
   parameter real VdsatIN = 1.013308; //VdsatIN=0.5 
   parameter real VthSIDDQ = 1.2; 
   parameter real VminOut = 0.7; 
   parameter real Roffext = 1.000571e+12; // Roffext = 1G 
   parameter real Cdsrext100_1 = 2.698685e-13 ; // Cdsrext100_1 = 200f 
   parameter real Cdsrext100_0 = 2.698685e-13 ; // Cdsrext100_0 = 200f 
// LOCAL VARIABLES:  (Comment each one) 
   integer siddq; // = 1(true) if siddq > vth other wise 0 
   real Iref_rext, Vdd; // variable to minimize use of access functions 
   real Hext100_1 ; 
   real Hext100_0 ; 
   real vdsatin; 



//----------------------------------------------    
   resistor  #(.r(Roffext)) RinIext        (I_REXT_REF100,  VSS); 
   capacitor #(.c(Cdsrext100_1)) C8  (I_REXT_100[1],  VDD); 
   capacitor #(.c(Cdsrext100_0)) C9 (I_REXT_100[0],  VDD); 
//--------------------------------------------------------------------------- 
   analog begin 
      siddq = V(SIDDQ,VSS) > VthSIDDQ?1:0; // "bias" signal, dont need edge 
      vdsatin = VdsatIN; 
      if (!siddq) begin 
         V( I_REXT_REF100  ,VSS) <+ vdsatin; 
      end 
      Iref_rext  = I( I_REXT_REF100  ,VSS); 
      Hext100_1 = $table_model( V(VDD,I_REXT_100[1]),   
             "Hext100_1.tbl", "1CL"); 
      I(VDD,  I_REXT_100[1]) <+ Iref_rext*Hext100_1; 
      Hext100_0 = $table_model( V(VDD,I_REXT_100[0]),   
            "Hext100_0.tbl", "1CL" ); 
      I(VDD,  I_REXT_100[0]) <+ Iref_rext*Hext100_0; 
      I(VDD , VSS) <+ 3* Iref_rext; 
   end 
endmodule 
 

3. CASE-STUDY RESULTS 
For a completed 10/100 Ethernet Phy. project in 0.18u CMOS, 
the following simulations were run for estimates of the total 
verification effort, using three different settings for the analog 
solver. The first uses the Spectre® solver, the second adds 
acclerated model evaluation to the spectre solver, and the third 
uses the Ultrasim™ FastSpice solver. 

Table 3 Top Level Run Results 

Configuration Trans 
Count 

Ams 
(spectre) 

Ams 
(Accel.) 

Ams 
(Ultrasim) 

Functional Verif 0 2.75 min 2.75 min -- 

Functional Verif 
(schematics) 

 -- -- 31 hr 

TRANS model ck  547 64.8 hr  19.7 hr 3.5 hr 

TRANS IF ck Int 1126 114.7 hr 37.8 hr  4.5 hr 

VSdE[12] was used to calibrate the behavioral models, with the 
work estimates and run times shown in Table 4. The testplan 
provides both block level specification test and data collection 
for calibration. Even as improvements in transient solvers allow 
evaluation of larger circuit blocks in a given time frame, 
considering that these blocks would be used in over 50 tests for 
this design, even the 22% speed up provided with the FastSpice 
solver is significant. We expect reuse of models and calibration 
setups to provide additional productivity improvement. 

Table 4 Block Level Modeling and Calibration Development 

Block Modeling  Testplan Runtime 

Bias_port 12 hours 8 hours 20 min 

Common_BG 12 hours 12 hours 20 min 

After accounting for all the tests and configurations, we project 
this methodology would provide at least a 7x reduction in 
overall simulation time with the Spectre solver, and 3x with the 
faster Ultrasim solver. It also increases the capability for parallel 
operation. These benefits justify the investment in model 
development and calibration setup. 

4. CONCLUSIONS 
A methodology for Mixed Signal functional verification has 
been developed which provides functionally verified digital 
models to the system verification effort, and Functional & 
Performance Verification reports to the mixed signal design 
team. The time to complete each separate test has been 
minimized through the partitioning of the transistor level tests, 
with a small reduction in total CPU hour requirements, but a 
great increase in opportunities to reduce the total cycle time thru 
parallelism, and use of spare cycles on existing compute 
hardware. The effort to create, validate, and calibrate analog or 
mixed signal models where required, is shown to be a 
worthwhile investment. 
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