
Efficient Functional Verification for Mixed Signal IP
Jonathan David

Cadence Design Systems, Inc
2655 Seely Ave., Bldg 8

San Jose, CA 95134
(408) 894-2646

j.david@ieee.org

ABSTRACT
In this paper, we describe a methodology for verifying the
functional operation of a Mixed-Signal Circuit Block to be used
in a larger integrated circuit. Methodology requirements are
outlined, including: compatibility with digital verification at the
chip level, compatibility with circuit analysis at the block level,
and compatibility with project schedule and resource availability.
The methodology is described with examples on a case-study
using a 10/100 Ethernet Physical Layer implementation. Results
from the Case Study show the benefits of applying the
methodology to future Mixed-Signal design projects.

1. INTRODUCTION
The push to integrate Analog and Mixed-Signal circuits with
ASIC designs is influenced by a number of factors; Adoption of a
System-on-Chip design approach for fast turn-around of High
Value ASICs, increasing use of serial signaling interfaces like
Ethernet,[1] Serial-ATA, PCI-Express™[2], and FB-DIMM[3],
demand for smaller, lighter, cheaper, faster or lower-power end
units, and application of other custom circuits[4] to increase
system throughput. While the benefits can be high, integration
puts at risk not only the high costs of a mask set for nanometer-
scale process geometries, but weeks of bench-test and debug, re-
design and re-verification, and fabrication schedule, for an
elapsed time that can make the difference between profitable
venture or missed opportunity. Mixed-signal design verification
methodology improvements have the potential for a large return
on the invested effort.

The “Digital Revolution” has been enabled by an ability to
describe designs at a high level of abstraction[8, 11], and then use
these descriptions to generate the detailed design automatically.
This has enabled a clear distinction between Functional
Verification (Will my circuit perform the expected functions?)
and other performance analysis (will the circuit Run at the desired
speed?, have a high enough yield?, low enough power?, etc.) that
are used to judge the quality of a specific design implementation.

Analog Design, continues to focus on creative circuit topology,
and the optimization of circuit parameters for best performance.
The distinction between “function” and “performance” is rarely a
clear one.

1.1 Mixed Signal IP Verification
Requirements
In determining the requirements for a Mixed Signal Verification
methodology, we are, here, intending to focus on the issue of
correct function, but considering performance where appropriate
to the analog side of the design. Considering the mixed nature of
this effort we make the first two requirements:

• Compatibility with the System (full-chip) Design
Verification Methodology.

• Compatibility with the Circuit Design Analysis
Methodology

The first will require us to use, and validate, a digital-HDL model
of the mixed signal block for use in system verification efforts. In
addition, for top-level interface, we will primarily use the same
methods (Bus Functional Models or Transaction Level Models)
for describing the external digital interfaces. An advantage of this
is the possibility for reuse of models already in use for the digital
verification effort.
The second will require working with “schematic” data directly
wherever possible, and that analysis results from the mixed signal
analysis tool can be correlated to the circuit analysis tool, and re-
processed by the same analysis tools already in use. Also,
generation of additional data, or extra simulations should not
interfere with circuit design and analysis efforts. Finally, as the
digital designers want to know that the RTL is correct, the analog
designers will want the ability to ensure that all their functional
requirements have been verified.
The final requirement will be more related to project management
and scheduling:

• Compatibility with the Project Schedules and Resource
availability.

There are a number of implications we can determine from this.
Verification runs shouldn’t tie up hardware needed for other work
indefinitely, and they shouldn’t take so long as to jeopardize the
project delivery date. Practically this will require: a limit on run
time, preference for a number of short runs over a single long run,
predictability of total resources needs, and minimization of
engineering interaction is to complete the effort.

1.2 Verification Challenges
While there are a number of difficulties to be overcome in this
effort, there are two major ones that we address here: simulation
run time, and the need for significant engineer interaction in
circuit analysis.
The “run-time” challenge is due to the exponential degradation of
circuit analysis engine performance with circuit size. For
SPICE[7] class solvers, the exponent of degradation is around 2.

For the newer class of FastSpice solvers, it is significantly lower,
at a potential price of reduced accuracy, and a large dependency
on the nature of the circuit. With the large scale of the IP blocks
being used today (10-50K transistors in a High Speed SERDES),
and the complicated test patterns that must be run, completing a
run in a reasonable time frame is a challenge that must be
addressed.
 The role of the engineer in circuit analysis is due to the nature of
the design problem, with most designers making a large number
of simulation runs as they converge on a near-optimal circuit.
Attempts to address this [5] have typically depended on the circuit
designer learning to write code in a programming language. While
advantageous for a bookkeeping of circuit verification efforts, few
circuit designers look forward to coding opportunities. While
coding will be required in the proposed methodology, the
challenge will be to allow the circuit designer to work with
familiar tools, and use stored tool setup information in any
developed scripts.

2. METHODOLOGY OVERVIEW
The proposed methodology has two scopes, each of which is
described in a following section. The first scope is the entire
Mixed-Signal circuit block under Verification. Here we start the
major block (the “top” block for our IP1 team) verification effort
using the proposed Digital (RTL2) model, and then extend the
same tests to the circuit level by replacing RTL with the transistor
level description, for selected blocks. The second scope is at the
minor-block level, where additional circuit analyses can be run to
verify circuit functionality, and confirm model equivalence. Cell
level (digital or analog) verification is not considered here, as it
would already be complete, or completed in the same manner as
the sub-block level we will describe.
By dividing the verification effort into a number of smaller,
shorter simulation runs, the maximum use of spare CPU hours can
be made, and both Verification Turn-around time and Designer
interference minimized. At the top level this is accomplished
doubly by separating tests into separate scripts where possible,
and by substituting a limited number of transistor blocks at each
time.
For circuit verification we utilize a Verification Environment for
analog design with interfaces to preferred simulation and analysis
tools. Providing specification checking, comparison between
circuits and models, and a perl3 scripting ability this allows the
verification engineer to make use of designer simulation setups.
In each case, scripts are developed for each set of simulations to
be run, and these scripts are re-run as the design effort progresses,
with a report set summarizing the script success or failure to
complete, the success or failure of the test it performs, and

1 IP – Intellectual Property; as “IP” a design block may be made

available for integration into more than one ASIC or SOC.
2 RTL – Register-Transfer-Level; digital HDL that is limited to

constructs that can be automatically synthesized. This is
preferred for digital verification as it allows compilation to
hardware accelerators for design debug and frequently for
testing software to be run on a system.

3 Perl – Practical Extraction and Reporting Language

pointing to detailed report information on the test run in case
debugging is needed.

2.1 TOP-LEVEL VERIFICATION
The method proposed here for Top-Level verification has been
used in digital verification for a long time, namely replace one
block at a time with its detailed description, and re-run the top
level tests. The challenge here is that the detailed descriptions are
now analog circuits, and in some cases will need analog signals
from other blocks that we wish to leave at a “behavioral”
representation. Since the Verilog-AMS[9] language allows for
automatic insertion of connections at design time, it may be
possible to leverage that capability to reduce the number of
Analog behavioral models needed to support the Mixed-Signal
Verification.

2.1.1 Common Interface types
Most signal interfaces can be classified into three types, voltage,
current, and “balanced”. A consideration of each of these will
help determine which circuit blocks will require modeling, and
what type of models will be needed.

2.1.1.1 Voltage interface
A Voltage interface is typified by a low driving impedance, and a
High receiving resistance, such as is typically seen in standard
MOS logic circuits. Where a behavioral model represents logic
1’s and 0’s – namely High and Low voltages, mapping between
logic value and analog values is fairly accurate, if a few fixed
parameters are considered, namely Vhigh, Vlow, Vthresh, Tr, Tf,
Rout, Cin, and delay. Since this is a single wire interface, it is
relatively simple to determine which representation of the signal
is needed at each point and provide the right one. For this reason,
on most interfaces between analog and “real” logic models, the
automatically inserted models will suffice, at least for the purpose
of functional verification. One drawback for this kind of interface
in analog circuitry is that the resistance of a long connection wire,
taken with the high input resistance at the receiving end, makes
for a high sensitivity to noise voltages due to capacitive coupling
from adjacent signals.

2.1.1.2 Current interface
The current interface is the classic solution to the coupled noise
problem. For static references, the preferred signaling method is
to use a low input impedance circuit, driven by a high output
impedance. The common implementation of this, is the bias
current source, driving a diode connected input of a current
mirror. The equivalent RTL model will only show if the current
signal is present or not. Even if only one reference current value
is generated, one must still determine if the signal is of a source
type or a sink type. To provide an automatic insertion connection
for these signals would require definition and characterization of
as many biases as are present in the design, and adding custom
discipline types to all the affected RTL models to ensure the
correct connections.
In the section on BLOCK-LEVEL VERIFICATION a
methodology for calibrating an analog model of the bias block
will be shown, that will even allow automatically inserted
connections from the bias circuit to a logic model, with an
appropriate choice of logic values. While requiring an analog
model of a bias block, this will not require a mixed-signal model
for the case where 1 bias block drives several other blocks.

2.1.1.3 Balanced interface
The other approach to minimizing coupled noise on a signal path,
involves a two-wire interface, typically with both driving and
receiving interface impedances matched to the line, at least to
some extent. Reserved for more dynamic signals, the nature of
this type of signal is not easily representing in a digital model,
except by the use of a real variable. In limited cases, like the
10/100 Ethernet interface that is our case study, or the SERDES
designs mentioned earlier, an equivalent logic value can be
determined for up to 4 values on two wires. Since there is
currently no provision for automatic insertion of connect models
for a two wire interface, an analog or mixed signal model will be
needed.

2.1.1.4 Data Converters
Digital-to-Analog Converters (DAC) and Analog-to Digital
Converters (ADC) are examples of a class of blocks that are truly
Mixed-Signal in nature, and may need to be modeled in a mixed-
signal manner to improve simulation run-times for other blocks..

2.1.2 Test planning and partitioning
Having now identified some cases where an Analog or Mixed-
signal model is not needed, we now look at the details of
implementing our partitioning strategy. We partition the testing in
3 ways.
1. We implement tests separately, so that each test can be run in
parallel on a number of separate CPU’s. For example, with the
10/100 Ethernet Phy., we have separate tests for configuration in
Full-Duplex 100M mode, Full-Duplex 10M mode, Half-Duplex
100M mode, and Half-Duplex 10M mode. We also have separate
Block transmission tests in each mode, in combination, short &
long packets, fixed & random patterns.
2. We create multiple configurations of the design, testing a
minimal number of blocks at the transistor level in each
configuration so that each test can run in a reasonable time. A
wrapper module supports the comparison between the design and
its model. Behavioral models are used in place of the rest of the
design.
3. We create a separate set of configurations for interface
checking. Since interface checking will require 2 or more blocks
to be at the transistor level, we will limit the testing to that
required to validate the interface only, and create one or more
separate smaller test for the block itself allowing more detailed or
longer tests, as shown in Figure 1.

Figure 1 Partitioning Internal and Interface Tests

2.1.2.1 Test Plan Matrix
Table 1 shows the Test Plan for a simplified set of configurations
and list of tests for the Ethernet Phy. Even in the planning stages,
over 50 tests and 30 configurations are proposed, with a
requirement to build and check analog or mixed models of
approximately 10 design blocks. We eliminate redundant tests,
i.e. 10BT tests of 100TX specific circuits. Not shown in the
simplified list in Table 2 are a number of sub-blocks in the
receiver to be treated separately, due to high transistor counts.

Table 1 Simplified Text Plan Matrix

 CONF X_FD100 X_FD10

Configuration

C
nf

 F
D

10
0

C
nf

 F
D

10

X
_s

m
l_

on
es

X
_s

m
l_

rn
dm

X
_l

rg
_o

ne
s

X
_l

rg
_r

nd
m

X
_s

m
l_

on
es

X
_s

m
l_

rn
dm

X
_l

rg
_o

ne
s

X
_l

rg
_r

nd
m

Functional Verif X X X X X X X X X X
Functional Verif ExtLpBk X X X X X X
TRANS model ck X X X X X X X X
TRANS IF ck Int X X X X
TRANS IF ck - pads X X X X
BIAS model ck X X X X
BIAS IF ck TRANS X X X X
BG model ck X X X X
BG IF chk X X X X
RCVR model chk - - - - - - - - - -
RCVR IF chk - - - - - - - - - -

Table 2 Simplified Configuration List for Test Planning

Configuration

C
om

m
on

_B
G

C
om

m
on

_P
L

L

B
ia

s_
Po

rt

T
ra

ns

A
nC

tr

D
ig

C
tr

R
C

V
R

C
ha

nn
el

 O
ut

C
ha

nn
el

 In

2n
d

Ph
y

Functional Verif R R R R R R R R R R
Functional Verif ExtLpBk R R R R R R R R
TRANS model ck A R A X R R R M
TRANS IF ck Int S R S S S R R M
TRANS IF ck - pads A R A S R R M S
BIAS model ck A R X A R R M M
BIAS IF ck TRANS S R S S S R M M
BG model ck X M A M R R * M
BG IF chk S S S S R R * M
RCVR model chk - - - - - R X* A
RCVR IF chk - - - - - R S* S

Model Type Legend
R RTL (digital model) * Expand subblocks
S Schematic (transistors) - Depends on expansion
G Gate (gate level netlist) A Analog Behavioral
M Mixed-Signal Behavioral
X Compare - Schematic + RTL ref model
E Extracted - from layout with parasitics

Analog
HDL

Analog
HDL

 RTL vs
Schem

Interface
Check

Sch Sch

Sch

 Test focus

DUT

2.1.3 RTL vs. Schematic Comparison
The Model Check simulations accomplish both Functional
Testing of the block checked, and a direct comparison of behavior
between the block as designed and the digital model of the block

used for System Functional Verification. To perform this
checking we use a special wrapper for the block as shown in
Figure 2, which contains interface monitors to convert any non-
logic interface values.

Figure 2 Example Schematic for RTL vs Schematic Comparison

Within this view we have 3 Mixed Signal behavioral models
which are of interest. The first is a current monitor shown in
Listing 1, with an output of the proper value if the current thru is
acceptable. Second, shown in Listing 2, we have an interface
monitor to convert the transmitter output voltages to the
corresponding logic values used in the RTL code. This assumes
proper output loading as the monitor provides NO load. Time
and voltage tolerance values for edge detection are set at the
maximum value consistent with the tolerance in the logic
compare module, shown in Listing 3.
The compare module adds a message to the log file in the case
of any mismatches. We have a simple logic model that disables
the checks when the logical outputs are not expected to match.

Listing 1 ibias_E2L: Bias Current Interface monitor
// Verilog-AMS HDL for VFS_AMS_PHY180.ibias50u_E2L:verilogams
// last revised: 07/20/04 jbdavid
`include "constants.vams"
`include "disciplines.vams"
// DEFINE & TIMESCALE :
`timescale 1ns/10ps
//==
module ibias_E2L (// PINS :

 inout plus, minus, // monitor branch
 output out); // logic out
// REGISTER and WIRE TYPES
 electrical plus, minus;
 reg out;
// PARAMETERS: (Comment each one)
 parameter real ibias = 100u; // 100ua default
 parameter real ibias_tol = 0.75 from (0:1);
//---
 always @(above(I(plus,minus) - ibias*ibias_tol, 1n, 1u)) out = 0;
 always @(above(ibias*ibias_tol - I(plus,minus), 1n, 1u)) out = 1;
//---
 analog begin
 V(plus,minus) <+ 0;
 end
endmodule

Listing 2 eth_E2L: Ethernet Interface Monitor
// Verilog-AMS HDL for VFS_AMS_PHY180.eth_E2L:verilogams
// last revised: 07/20/04 jbdavid
`include "constants.vams"
`include "disciplines.vams"
// DEFINE & TIMESCALE :
`timescale 1ns/10ps

module eth_E2L (
 output out_neg, out_pos,
 input in_neg, in_pos); // end of port declarations
// REGISTER and WIRE TYPES
 logic out_pos;
 electrical in_pos;
 logic out_neg;
 electrical in_neg;
 reg inneg, inpos;
// INTERNAL NODES :
 assign out_pos = inpos;
 assign out_neg = inneg;
// PARAMETERS: (Comment each one)
 parameter real vth = 0.5; // diff input threshold for detection
//---
 always @(cross(V(in_pos,in_neg) - vth,1, 100p, vth*0.1)) begin
 inpos = 1; inneg = 0;
 end
 always @(cross(V(in_pos,in_neg) - vth,-1, 100p, vth*0.1)) begin
 inpos = 0; inneg = 0;
 end
 always @(cross(V(in_pos,in_neg) + vth,1, 100p, vth*0.1)) begin
 inpos = 0; inneg = 0;
 end
 always @(cross(V(in_pos,in_neg) + vth,-1, 100p, vth*0.1)) begin
 inpos = 0; inneg = 1;
 end
endmodule

Listing 3 logic_sig_compare: Reports Signal Mismatch
// Verilog-AMS HDL for VFS_AMS_PHY180.logic_sig_compare:verilogams
// last revised: 07/20/04 jbdavid
`include "constants.vams"
`include "disciplines.vams"
`timescale 1ns/10ps
//==
 module logic_sig_compare (// goes here
 input golden, intest, enable,
 output mismatch); // end of port declarations
// INTERNAL NODES :
 reg faild, enabled;
 assign mismatch = enabled&&(golden^intest);
// PARAMETERS: (Comment each one)
 parameter real tcheck_ns = 3.0; // time between mismatch and faild
 parameter real endelayLH = 0; // ns
 parameter real endelayHL = 0; // ns
// LOCAL VARIABLES: (Comment each one)
 real eventstart;
//---
 initial faild = 0;
 always @(posedge enable) #(endelayLH) enabled = 1;
 always @(negedge enable) #(endelayHL) enabled = 0;
 always @(posedge mismatch) begin
 eventstart = $realtime;
 #(tcheck_ns) if (mismatch!==0) begin
 faild = faild + 1;
 $display("SPECFAIL %m: @ %d GLD: %b TST %b",
 eventstart, golden, intest);
 end
 end
endmodule

2.2 BLOCK-LEVEL VERIFICATION
The primary analog model needed to complete the Transmitter
block Verification is for the Bias_port block. Here we define a
model for a current mirror, where the Reference input voltage as

a function of input current (the diode curve for the diode
connected Mos) is captured in a look-up table. On the output
side we model the current gain dependency on the output
voltage.
To capture the data for this lookup table we run two simulation
sweeps, one sweeping the input current to generate the diode
curve, the other sweeps the load voltage to capture the current
gain, down into the triode region of the output device. If done to
a zero volt difference, this will ensure that the table will contain
a 0 gain entry for the case where the Source-Drain voltage of the
output is 0, as it would be if the current mirror is driving a
standard E2L interface element. This allows us to know that for
a bias source, the correct logic value for “on” is 1, as the output
is referenced to the supply. For a bias sink, “on” = 0. In the case
of the architecture used by this team, when the powerdown state
is asserted (siddq = 1) the outputs are clamped to remove any
voltage from the receiver, ground for a bias source, and supply
for a bias sink. This feature has not yet been added to the model
shown here.
While most simulation environments will measure and report
the desired values, turning this data into a specification report,
and lookup files has in the past typically required programming
expertise, and hundreds of lines of code such as that previously
presented by this author[5]. However the Virtuoso Specification
Driven Environment[12] used for this second phase allows
specification limits to be associated with measures, and is easily
configured to build the look up tables required for this model.
Once all the desired tests, sweeps and calibrations are
developed, their execution can be exported to a perl script, and
added to the design teams regression suite.

Listing 4 Bias_port vloga view (simplified)
// VerilogA for VFS_AMS_PHY180, Bias_port, vloga
// last revised: 8/07/04 jbdavid
// DESCRIPTION :
// this is a calibrated behavioral model
//
// LIMITATIONS : no output clamp on SIDDQ
`include "constants.vams"
`include "disciplines.vams"
//===
module Bias_port(I_REXT_REF100, SIDDQ, VDD,
 VSS, I_REXT_100,); // PINS :
 output [1:0] I_REXT_100;
 input I_REXT_REF100;
 input SIDDQ, VDD, VSS;

 electrical [1:0] I_REXT_100;
 electrical I_REXT_REF100;
 electrical SIDDQ, VDD, VSS;
// PARAMETERS: (Comment each one)
// Model calibrated at ‘20:48:06’ on ‘Sat Aug 7 2004’ by ‘jbdavid’
 parameter real VdsatIN = 1.013308; //VdsatIN=0.5
 parameter real VthSIDDQ = 1.2;
 parameter real VminOut = 0.7;
 parameter real Roffext = 1.000571e+12; // Roffext = 1G
 parameter real Cdsrext100_1 = 2.698685e-13 ; // Cdsrext100_1 = 200f
 parameter real Cdsrext100_0 = 2.698685e-13 ; // Cdsrext100_0 = 200f
// LOCAL VARIABLES: (Comment each one)
 integer siddq; // = 1(true) if siddq > vth other wise 0
 real Iref_rext, Vdd; // variable to minimize use of access functions
 real Hext100_1 ;
 real Hext100_0 ;
 real vdsatin;

//--
 resistor #(.r(Roffext)) RinIext (I_REXT_REF100, VSS);
 capacitor #(.c(Cdsrext100_1)) C8 (I_REXT_100[1], VDD);
 capacitor #(.c(Cdsrext100_0)) C9 (I_REXT_100[0], VDD);
//---
 analog begin
 siddq = V(SIDDQ,VSS) > VthSIDDQ?1:0; // "bias" signal, dont need edge
 vdsatin = VdsatIN;
 if (!siddq) begin
 V(I_REXT_REF100 ,VSS) <+ vdsatin;
 end
 Iref_rext = I(I_REXT_REF100 ,VSS);
 Hext100_1 = $table_model(V(VDD,I_REXT_100[1]),
 "Hext100_1.tbl", "1CL");
 I(VDD, I_REXT_100[1]) <+ Iref_rext*Hext100_1;
 Hext100_0 = $table_model(V(VDD,I_REXT_100[0]),
 "Hext100_0.tbl", "1CL");
 I(VDD, I_REXT_100[0]) <+ Iref_rext*Hext100_0;
 I(VDD , VSS) <+ 3* Iref_rext;
 end
endmodule

3. CASE-STUDY RESULTS
For a completed 10/100 Ethernet Phy. project in 0.18u CMOS,
the following simulations were run for estimates of the total
verification effort, using three different settings for the analog
solver. The first uses the Spectre® solver, the second adds
acclerated model evaluation to the spectre solver, and the third
uses the Ultrasim™ FastSpice solver.

Table 3 Top Level Run Results

Configuration Trans
Count

Ams
(spectre)

Ams
(Accel.)

Ams
(Ultrasim)

Functional Verif 0 2.75 min 2.75 min --

Functional Verif
(schematics)

 -- -- 31 hr

TRANS model ck 547 64.8 hr 19.7 hr 3.5 hr

TRANS IF ck Int 1126 114.7 hr 37.8 hr 4.5 hr

VSdE[12] was used to calibrate the behavioral models, with the
work estimates and run times shown in Table 4. The testplan
provides both block level specification test and data collection
for calibration. Even as improvements in transient solvers allow
evaluation of larger circuit blocks in a given time frame,
considering that these blocks would be used in over 50 tests for
this design, even the 22% speed up provided with the FastSpice
solver is significant. We expect reuse of models and calibration
setups to provide additional productivity improvement.

Table 4 Block Level Modeling and Calibration Development

Block Modeling Testplan Runtime

Bias_port 12 hours 8 hours 20 min

Common_BG 12 hours 12 hours 20 min

After accounting for all the tests and configurations, we project
this methodology would provide at least a 7x reduction in
overall simulation time with the Spectre solver, and 3x with the
faster Ultrasim solver. It also increases the capability for parallel
operation. These benefits justify the investment in model
development and calibration setup.

4. CONCLUSIONS
A methodology for Mixed Signal functional verification has
been developed which provides functionally verified digital
models to the system verification effort, and Functional &
Performance Verification reports to the mixed signal design
team. The time to complete each separate test has been
minimized through the partitioning of the transistor level tests,
with a small reduction in total CPU hour requirements, but a
great increase in opportunities to reduce the total cycle time thru
parallelism, and use of spare cycles on existing compute
hardware. The effort to create, validate, and calibrate analog or
mixed signal models where required, is shown to be a
worthwhile investment.

5. ACKNOWLEDGMENTS
My thanks to a number of coworkers at Cadence for assistance
with this project, review of the paper and the example design
database.

6. REFERENCES
[1] J. Yang, J. Kim, S. Byun, C. Conroy, B. Kim, “A Quad-

Channel 3.125GB/s/ch Serial-Link Transceiver with
Mixed-Mode Adaptive Equalizer in 0.18um CMOS”,
ISSCC Dig. Tech. Papers, pp 176-177, Feb 2004.

[2] “PCI Express™ Base Specification Revision 1.0a”, PCI-
SIG, www.pcisig.com, April 2003.

[3] H. David, M. McTague, “Fully Buffered DIMM (FB-
DIMM) Design Considerations” presented at Intel
Developer Forum, developer.intel.com, Feb 2004

[4] D.J. Deleganes, M Marany, G. Geannopoulos, K. Kreitzer,
A.P. Singh, and S. Wijeratne, “Low-Voltage-Swing Logic
Circuits for a 7GHz X86 Integer Core”, ISSCC Dig. Tech.
Papers, pp 154-155, Feb 2004.

[5] J. David, “Functional Verification of a Differential
Operational Amplifier”, Proc. Intl. Cadence Usergroup
Conference 2001, paper F50, Dec 2001

[6] J. Vandenbussche, G. Gielen, M. Steyart, Systematic
Design of Analog IP Blocks, Boston:Kluwer, 2003

[7] L. W. Nagel, “SPICE2: A Computer Program to Simulate
Semiconductor Circuits,” University of California,
Berkeley, Memo. no. ERL-M250, May 1975.

[8] Y.Chu, D. L. Dietmeyer, J. R. Duley, F. J. Hill. M. R.
Barbacci, C. W. Rose, G. Order, B. Johnson, and M.
Roberts, “ Three Decades of HDLs – Part I: CDL through
TI-HDL,” IEEE Design Test Comput., vol. 9, pp 69-81,
June 1992.

[9] K. Kundert, O. Zinke, The Designer’s Guide to Verilog-
AMS, Boston:Kluwer, 2004

[10] Dan Fitzpatrick, Ira Miller, Analog Behavioral Modeling
with the Verilog-A Language Boston: Kluwer, 1998

[11] Samir Palnitkar, Verilog HDL Mountain View: SunSoft,
1996

[12] Virtuoso® Specification-driven Environment User Guide,
Product version 4.1 San Jose: Cadence Design Systems,
2004 sourcelink.cadence.com

