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ABSTRACT
In this paper, an adaptive sampling and modeling technique
is presented for accurate broadband modeling of highly dy-
namic systems, based on a sparse set of support samples.
The method is numerically more stable than conventional
approaches, while desired physical properties such as system
stability, causality and even passivity can be imposed. The
algorithm adaptively selects a quasi-optimal sample distri-
bution and model complexity. During the modeling process,
no prior knowledge of the system’s dynamics is used.

1. INTRODUCTION
Accurate simulation of complex multi-port LTI systems can
be computationally very expensive and resource-demanding,
which is the case for full-wave EM simulations. One often
wants to minimize the number of costly data samples, in or-
der to find an accurate broadband model in an acceptable
amount of time. In the past, several adaptive frequency
sampling algorithms were presented. Traditionally, the Ra-
tional Linear Least Squares technique (RLLS) is used to
calculate the coefficients of the rational model by solving a
Vandermonde-like system of equations. The conditioning of
this system deteriorates fast when the order of the model
increases, or when the frequency range of interest gets quite
broad [1]. Is it well known that reformulating the numera-
tor and denominator polynomial as a linear combination of
Chebyshev orthogonal polynomials of the first kind [2] im-
proves the numerical issues. The large variations of Cheby-
shev polynomials make it possible to downsize the effects
of the ill-conditioned matrix, by summing the orthogonal
Chebyshev polynomials instead of summing the powers of
s, which show little variation with increase in order [3]. It
is always possible to convert a continuous orthogonality re-
lationship into a discrete orthogonality relationship simply
by replacing the integral with a summation. Also, the in-
ner product can be defined on a discrete data set. The
decomposition of numerator and denominator polynomial
in a Generalized Formal Forsythe Orthonormal basis can be
used to further improve the conditioning of the set of normal
equations [4][5]. To model highly dynamic systems, which
require large state-space dimensions, the former techniques

can be combined with the use of splines [6]. However, for
scattered deterministic data, interpolation techniques can
provide a good solution as well. In [7], interpolation with
Thiele-type branched continued fractions was used for this
application. A tableau of quantities similar to Newton’s
divided differences is generated from which the coefficients
are gathered to obtain an interpolating rational expression.
The interpolant is recursively expanded, reaching a conver-
gent value when all new support points are selected. Simi-
larly, recursive algorithms of the Neville-type can be used,
although they are less efficient when a large number of func-
tion evaluations are required, or if the model coefficients are
explicitly needed [8]. Of course, when computing a univari-
ate rational interpolant, both interpolation methods provide
the same rational model, essentially because they all solve
the same interpolation problem. Although both methods
provide very accurate solutions, they often fail when the
data is contamined with noise.

In this paper a new adaptive algorithm will be presented
that avoids most of these problems. An iterative least-
squares pole-residue modeling technique (called Vector Fit-
ting [9]) will be used, that starts with an initial set of poles.
In successive steps, the poles are relocated and the residues
are calculated to optimize the fit. This way, each stage of the
algorithm reduces to a linear problem. This approach pro-
vides more robust results compared to other least-squares
methods, while enforcing desired physical properties such
as system stability and causality.

To avoid instabilities in the time domain, the macromodels
are often required to be passive. In [10], constraints are im-
posed on the model which are sufficient but not necessary,
and therefore may lead to an undesired loss in accuracy.
Other techniques such as [11] provide a set of passivity con-
straints which are necessary but not sufficient, hence they
provide models which can still obtain small passivity viola-
tions. Usually, the latter is combined with techniques which
are suited for small passivity violations, based on spectral
perturbation of Hamiltonian matrices [12] or perturbation
of the residues [13]. However, the quality of the model after



such post-processing techniques is often highly dependent
on the quality of the model prior to the enforcement. There-
fore, it will be shown that adaptive sampling strategies can
minimize passivity violations within the frequency range of
interest during the modeling process, while maximizing the
correspondence of the model to the simulated data.

2. VECTOR FITTING ALGORITHM
In [9], a new robust iterative fitting technique, called Vec-
tor Fitting (VF), was introduced that builds accurate pole-
residue models, based on frequency domain data samples.
The technique is stable and resolves most of the numerical
issues, encountered by other techniques. All elements of the
state-space matrix are modeled by a rational pole-residue
model, based upon a common set of support samples.

S(jωi) =
N∑

n=1

cn

jωi − an
+ d + jωih (1)

S(jωi) represents the data samples simulated at the dis-
crete complex frequencies jωi, ∀i = 0, ..., K. an and cn are
the poles and residues respectively, ∀n = 1, ..., N . d is a
constant and h is a linear factor.

The Vector Fitting technique linearizes the non-linear iden-
tification problem by fixing the denominator. It starts with
an initial set of K poles, and converges towards a global
broadband solution in an iterative way by relocating the
poles. The unknown system variables are estimated by solv-
ing 2 linear least-squares fits, and it is imposed that the
poles and residues are real or occur in complex conjugate
pairs. To enforce Bounded-Input-Bounded-Output (BIBO)
system stability, unstable poles are flipped into the left half
of the complex plane.

3. ADAPTIVE SAMPLING
In order to have a ”good” approximation of the system, it
is important that all coupling effects, resonances and via’s
are modeled accurately. Since no prior knowledge of the
system is assumed, a possible approach is to select a set of
support samples which are uniformly distributed over the
frequency range of interest. Although this method can be
useful when the data is cheap to simulate, it can be com-
putationally expensive and resource demanding when the
simulation of data samples is costly. Reducing the spectral
density of the data samples can be an option when the data
behaves smoothly, however a higher accuracy of the model
is obtained if the samples are selected more optimally with
adaptive sampling techniques [5]. These techniques auto-
matically select a quasi-optimal sample distribution, and
an appropriate model complexity .

Figure 1 shows the best fitting model of a Lowpass Filter
when 21 samples are selected equidistantly spread over the
frequency range of interest (2-6 GHz). Figure 2 shows the
best fitting model of the same example, with adaptively
selected samples. Clearly, the adaptive technique obtains
a much higher accuracy (3 significant digits) compared to
the uniform distribution (1 significant digit), using the same
amount of simulation time.
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Figure 1: Magnitude Lowpass filter (full line) and
fitting model (dotted line) with uniform sampling
distribution at left. Complex error between fitting
model and verification data at right. Accuracy fit :
-22.9730 dB
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Figure 2: Magnitude Lowpass filter (full line) and
fitting model (dotted line) with adaptive sampling
distribution at left. Complex error between fitting
model and verification data at right. Accuracy fit :
-65.6536 dB

The flow chart of the algorithm is shown in Figure 3. It con-
sists of an adaptive modeling loop, and an adaptive sample
selection loop. The goal is to minimize the error of the
fitting model according to the following error criterium

dB(|Sref (jω)− Sfit(jω)|) < −60 (2)

The algorithm starts with 4 samples equidistantly spaced
over a certain frequency range of interest. Depending on the
number of available data samples, multiple rational models
are built with different order of numerator and denominator,
exploiting all degrees of freedom. All rational fitting mod-
els are evaluated in the data points, and compared against
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Figure 3: Flowchart of the Adaptive Sampling and
Modeling Algorithm

one another. If the error between the model, evaluated in
the selected sample points and the simulated data samples
exceeds a certain threshold, the model is rejected, and the
model’s complexity is increased. All models with different
order of numerator and denominator are ranked, and the 2
best models (i.e. with lowest overall error) are retained. The
difference between these 2 models is called the estimated fit-
ting error, and new samples should be chosen in such way,
that the maximum estimated fitting error is minimized.

Note that the estimated fitting error is always an estima-
tion of the real error, as this would only be known after
performing a lot of computationally expensive verification
simulations. Although the estimated fitting error provides a
good measure to determine the frequency where the uncer-
tainty of the model is maximal, it can sometimes cause the
algorithm to converge prematurely. A good way to increase
the reliability of the method, is to combine this estimated
fitting error with a heuristic engine. Each time new models
are generated, the algorithm checks the heuristic rules, and
terminates when they are all satisfied.

Such rules, called reflective functions [14], compare

• Correspondance of the phase

• Correspondance of the magnitude

• Correspondance of the Euclidean distance in the com-
plex plane

between

• Fitting model and simulated data samples

• Fitting models, calculated from overdetermined set of
equations (approximants)

• Fitting models, calculated when all interpolation con-
ditions are satisfied (interpolants)

• Fitting models, based on a different set of support sam-
ples

• Fitting models, based on a subset of selected support
samples

• Fitting models, based on neighbouring and overlapping
frequency ranges

while detecting

• Passivity violations

• Other unphysical effects

4. PASSIVITY CONSIDERATIONS
To avoid instabilities in the time and frequency domain,
the macromodels are required to be passive. In this paper,
we will focus mainly on scattering representations of the
data, but a similar reasoning holds in the case of hybrid
representations. For more detailed information, we refer
the reader to [12][13].

Definition 1 : A system with scattering matrix S(jω) is
passive if the transfer function is bounded real

I − S(jω∗)S(jω) ≥ 0 ∀ω (3)

which is equivalent to

max(σ(S(jω))) ≤ 1 ∀ω (4)

where σ(S(jω)) represent the singular values of S at com-
plex frequency jω.

Definition 2 : A system with scattering matrix S(jω) is
asymptotically passive if (4) is satisfied for ω →∞

In [5], only gain-violations were checked at a fixed set of dis-
crete frequencies, to check the model for unphysical effects.
However, the reliability of this technique depends mainly
on the density of the sweep and can be computationally
expensive, which is not desired. More accurate results are
obtained when regions of passivity violations are determined
algebräıcally, using the eigenvalues of the Hamiltonian ma-
trix H. In [15], some theorems are introduced. Hereby, we
assume that S(jω) has no poles on the imaginary axis.

Theorem 1 : A system S(jω) is passive ⇐⇒ the Hamilto-
nian H has no imaginary eigenvalues.

H =
(

A−BR−1DT C −BR−1BT

CT Q−1C −AT + CT DR−1BT

)
(5)



where

Q = DDT − I (6)

R = DT D − I (7)

provided that Q and R are non-singular. A,B,C,D are the
state-space equation representation matrices of S(jω).

The converse also holds. A strictly stable system S(jω) is
not passive ⇐⇒ H has imaginary eigenvalues.

Theorem 2 : 1 ∈ σ(S(jωi)) ⇐⇒ jωi is an eigenvalue of H

A formal proof of these theorems can be found in [15].

Using these 2 theorems, it is straightforward to detect the
boundaries of passivity violations. After calculating the
slopes of the singular value curves at these frequencies, an
eigenvalue sweep on the sign of these slopes provides the
exact regions of passivity violations [12].

If the passivity violations are sufficiently small, these defects
can be resolved by spectral perturbation of the Hamiltonian
matrix or perturbation of the residues. However, the quality
of the model after such post-processing techniques is often
highly dependent on the quality of the model prior to the
enforcement. The smaller the passivity violations, the easier
it is to correct the behaviour. By taking care of the pas-
sivity conditions during the modeling process and adaptive
sample selection, the overall model quality can be improved
right from the start. This approach can be applied until
the maximal passivity violation within the frequency range
of interest is below a given threshold, and small enough to
be resolved with first-order matrix perturbations or other
techniques.

This check can also be used in the heuristic engine as a
reflective function, since it provides additional information
to the sample selection and convergence detection process
(see Example 1).

Therefore, additional samples are selected at complex fre-
quency jω within a passivity violation region [ωk, ωk+1]
where

max(σ(jω)), ∀ω ∈ [ωk, ωk+1] (8)

is maximal until

max(σ(jω)) < ε, ∀ω ∈ [ω0, ωK ] (9)

Using the bisection method, the optimum can be found
quite easily with minimal computational overhead.

5. EXAMPLE 1 : BANDPASS FILTER
To illustrate the presented technique, a one-port Bandpass
filter was modeled over the frequency range [0.02 GHz -
1.00 GHz]. All data samples are simulated with the planar
full-wave electro-magnetic simulator Agilent EEsof Momen-
tum [16]. The desired model accuracy of the S-parameters
is -60dB or better, which corresponds to a maximal error
on the magnitude of 0.001. For the sake of illustration,
only samples are selected at frequencies were unpassive be-
haviour was detected. In reality, this is only one criteria of
the heuristic engine.
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Figure 4: Illustration of each step of the algorithm
(when 4, 5 and 6 samples are selected). Magnitude
Bandpass filter (full line) and best fitting model
(dotted line) at left. The real fitting error at right.
Accuracy fit : -82.4049 dB

In order to detect the regions of unpassive behaviour, we
calculate in each step the eigenvalues of the Hamiltonian
matrix. After extracting the eigenvalues on the positive part
of the imaginary axis, we can pinpoint the exact locations
of the passivity violation, and select a new sample where
the maximum violation is found. As an illustration, the
eigenvalues are shown below, and the boundaries of these
regions are marked with an arrow. Note that quite often,
there is a significant correspondence between this maximum
and the frequency where the real error is maximal. The



consecutive steps of the algorithm are shown in Figure 4,
each time when an additional sample is selected.

Eigenvalues Hamiltonian matrix (4 samples):

+0.00000000000000 - 0.35556635157541i
-0.00000000000000 - 0.36797493144273i
-0.00000000000000 + 0.35556635157541i <--
+0.00000000000000 + 0.36797493144273i <--
+0.00920677614147 - 0.67657524224380i
+0.00920677614147 + 0.67657524224380i
-0.00920677614147 - 0.67657524224380i
-0.00920677614147 + 0.67657524224380i

Violation : [0.3555663,0.3679749] GHz

Eigenvalues Hamiltonian matrix (5 samples):

+0.00000000000000 - 0.65156791824123i
-0.00000000000000 - 0.67230698556846i
-0.00000000000000 + 0.65156791824123i <--
+0.00000000000000 + 0.67230698556846i <--
+0.19217333633158 + 0.00000000000000i
-0.19217333633158 + 0.00000000000000i
+0.01014688998501 - 0.37471499581693i
-0.01014688998501 - 0.37471499581693i
+0.01014688998501 + 0.37471499581693i
-0.01014688998501 + 0.37471499581693i

Violation : [0.6515679,0.6723069] GHz

Eigenvalues Hamiltonian matrix (6 samples):

+0.00539549345271 - 0.38963154992961i
-0.00539549345272 + 0.38963154992961i
-0.00539549345272 - 0.38963154992962i
+0.00539549345272 + 0.38963154992961i
-0.00677392820199 - 0.50292408510574i
-0.00677392820201 + 0.50292408510575i
+0.00677392820199 - 0.50292408510573i
+0.00677392820201 + 0.50292408510572i
+0.01921270798832 - 0.64595773831741i
+0.01921270798832 + 0.64595773831741i
-0.01921270798832 - 0.64595773831741i
-0.01921270798832 + 0.64595773831742i

Violation : None

In the case of Single-Input-Single-Output, there is only one
singular value curve, which corresponds to the magnitude of
the data. Once 6 samples are selected, the desired accuracy
of -60dB was reached, and the algorithm terminates. Al-
though in this example the system is globally passive, this

is not necessarily always guaranteed.

6. EXAMPLE 2 : QUARTER WAVELENGTH
To illustrate the numerical robustness of the technique, the
entire system matrix of a 2-port Quarter Wavelength filter
was modeled over the frequency range [1 GHz - 12 GHz].
The desired model accuracy of the S-parameters is -60 dB,
and the maximum threshold for the singular value curves
was set to 1.001. The use of a threshold is required, since
ringing effects may occur when some samples are clustered
around a certain frequency. In this example, we use the full
heuristic engine. The final results are shown in Figure 5.
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Figure 5: Magnitude data from different ports
Quarter Wavelength filter (full lines) and fitting
models (dotted lines) at left. Real error of all fitting
models at right. Selected samples are marked with
a cross. Accuracy fits : -65.9112 dB

The algorithm terminates when 30 samples are selected.
The accuracy of the model and the maximal passivity vio-
lations are below the predefined thresholds.

7. CONCLUSIONS
A numerically robust Adaptive Sampling and Modeling tech-
nique was presented, that generates accurate and stable
broadband pole-residue models. The use of Vector Fitting
avoids most of the numerical issues, which are encountered
with other least-squares fitting techniques. The algorithm
adaptively selects a minimal set of support samples and con-
verges without any prior knowledge of the system’s dynam-
ics. It avoids oversampling and undersampling, as well
as overmodeling and undermodeling. During the modeling
process, passivity violations within the frequency range of
interest are minimized.
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