

A Synchronization Algorithm for VHDL-AMS
Simulation with ADA Feedback Effect

ABSTRACT
The nature of analog and digital simulation is different, so
they work with two different simulation kernels.
Synchronization between these two kernels is an important
challenge in the mixed signal simulation subject. In this paper
we introduce an algorithm for mixed signal simulation that
works based on reducing the analog and digital simulation
interaction. When the simulator switches to analog simulation,
the analog solver initiates the analog parameters to start analog
simulation. Resuming the analog simulation needs some
additional steps; we reduce some switching between analog
and digital simulation. The efficiency of the new algorithm is
shown by some examples.

1. INTRODUCTION
For many years the simulation of digital and analog circuits
has been done separately. When the simulation of a mixed
signal circuit is necessary, most of the designers tend to
simulate analog and digital sections individually and they are
urged to use different analog and digital simulation tools. One
reason is that the concepts of analog and digital simulations
are different and it is not reasonable to simulate a digital
circuit with an analog simulation engine. Another reason is
that there have not been common modeling languages that are
suitable to model both analog and digital parts of design
without limitations and therefore, suitable mixed signal
simulation environments did not exist. Although VHDL-AMS
[6] is a recent modeling language that is suitable for modeling
mixed signal circuits, but the performance of its simulator
strictly depends on the implementation. Interconnection of the
analog and digital part of design can be viewed from two
different aspects. Data transfer and synchronization between
the analog and digital parts of design. Both of them should be
done effectively. The resolution of the simulation should
comply with both analog and digital circuit limitations.

 In Section 2 we present the SIRE/M1 intermediate format
that is used for mixed signal simulation kernel. Then in
Section 3, we briefly describe the implementation process
from source code compilation to SIRE/M generation. In
Section 4, we describe the scheduling algorithm which is
used for synchronization between digital and analog
engines. Section 5 contains experimental results and
conclusions.

2. MIXED SIGNAL DATA STRUCTURE
This unique intermediate format can simulate both analog
and digital circuit described in a common language such as
VHDL-AMS.

2.1 SIRE/M Data Structure
In order to simulate a VHDL-AMS model, its SIRE/M
intermediate format (IF) representation is needed. Figure. 1
illustrates the general SIRE/M structure, which is generated
for a VHDL-AMS model. A SIRE/M digital block is
defined for a block that represents a VHDL-AMS
concurrent statement, and an analog block is defined for
analog model representation correspondingly. Both the
digital and analog blocks are made up of sub-blocks. Each
digital sub-block is mapped directly to a concurrent
statement in the VHDL-AMS model. But an analog sub-
block is either mapped to an analog simultaneous statement
or to an equation that will be extracted automatically from
the analog circuit topology. These equations are KVL and
KCL equations which are defined implicitly in the VHDL-
AMS model as the topology of the analog model. Figure 1
suggests that all the sub-blocks are connected serially to
build a coherent intermediate format. These blocks are
ordered according to their order of appearance in the code.
When generating a sub-block each statement or equation is
converted to its post order representation. Consequently the
post order representations of all the sub-blocks are

1 Simulation Intermediate Representation with Extensibility / Mixed signal

Hamid Reza Ghasemi
ECE Department

University of Tehran
Tehran 14399

Tel: +98214204078
Fax: +98218778690

hrghasemi@cad.ece.ut.ac.ir

Zainalabedin Navabi
ECE Department

University of Tehran
Tehran 14399

Tel: +98218009215
Fax: +98218778690
navabi@ece.neu.edu

Figure 1: The general structure of SIRE/M.

concatenated to generate the SIRE/M format. This format
enables the execution of the sub-blocks using a stack based
execution scheme. For example consider the simple
concurrent statement in Figure 2(a). The SIRE/M
representation of the statement is seen in Figure 2(b). All the
elements of the statement are portioned into operators and
operands and used in a stack as depicted in Table 1. The result
of executing the operations on all elements of Figure 2(b) is
calculating and scheduling an event for the source signal.
Relatively, all the digital and analog statements have a similar
execution procedure. The format allows all the sub-blocks to
be concatenated serially. Therefore the simulation engine can
run the whole SIRE/M by executing the elements or run a
single statement by initiating the execution from a given
reference to the start of a sub-block.
An Analog block has two main parts, consisting of some
analog statements and their topology equation. These sections

Figure 2: (a) a simple concurrent statement, (b) post order
representation, (c) the execution stack after executing "push 35"
in (d) part, (d) the operations that are needed to execute the
concurrent statement.

Table 1: Operators and operands in SIRE/M and their stack
operations

Element Type Stack Operation
Operands Push value or address to the stack
Operators Pop operands, Apply operator

functionality, Push the result to the
stack (i.e. '+' and '<=' are operators
in Figure 2)

Figure 3: All topology equations in SIRE/M format with their
selectors. Each selector is equivalent with one switch in circuit.

are needed for analog simulation. The first part is like the
digital block. The second one represents the topology of the
circuit. This topology is changed by variation in status of
each analog switch in the circuit. So topology equations
(KVLs and KCLs) should be changed based on the new
topology. Figure 3 shows the general format of topology
equations for all topologies of a circuit. Topology selectors
are defined as shadows of the branches in the SIRE/M that
are normally real switches in real circuits. Variations in
values of branches (switches) change the values of topology
selectors, so the new path of KVL and KCL equations is
selected for analog simulation.
All the atomic operations during execution of a statement
are simple and may be mapped to a single instruction on a
processor. The implementation of SIRE/M model is a
memory linked list model that is executed by a fast kernel
interpreter.
As an example, consider the VHDL-AMS source code in
Figure 4 and its SIRE/M is shown in Figure 5. The First
Digital and First Analog components define the start of
digital block and analog block. The First Statement
components define the start of digital or analog sub-blocks.
The Branch Operator (ABO) stands for the simultaneous if
statement in the source code that is an analog switch model.
The Shadow Branch Operator (Selector) is a topology
selector which uses the value of the Branch Operator to
select the correct KVL and KCL equations during the
simulation time. For executing the concurrent statement, the
digital kernel calls the first SIRE/M component of that
concurrent statement or passes the control of simulation
process to analog solver. The analog solver calls the first
SIRE/M component of the analog block statements.

3. IMPLEMENTATION
The procedure of simulation consists of compilation phase,
elaboration phase and mixed signal simulation.

Digital
sub-block

Digital
sub-block

Analog
sub-block

Analog
sub-block

ENTITY ShowSIREM IS END ShowSIREM;

ARCHITECTURE example OF ShowSIREM IS

Terminal Ta, Tb : ELECTRICAL;

quantity Vsrc Across Isrc Through Ta ;

quantity Vr Across Ir Through Ta to Tb;

quantity Vc Across Ic Through Tb;

quantity Vl Across Il Through Ta;

constant R1: real := 25.0;

constant C1: real := 0.000001;

constant L1: real := 0.01;

Constant Vth: real := 2.5 ;

Signal Switch : Boolean ;

BEGIN

 Vr == Ir * R1;

 if NOW < 2.5 ms use

 Vsrc == 5.0;

 else

 Vl == L1 * Il'dot;

 end use;

 Ic == C1 * Vc'dot;

 Switch <= Vc’above(Vth)

END two;
Figure 4: The VHDL-AMS code of a simple example.

CHIRE/CE2 is a memory representation of AIRE/CE3 that its
deficiencies are solved (for more information refer to
[1][2][4]). This memory representation is an object oriented
intermediate format and is designed to support VHDL-AMS.
A VHDL-AMS source code is compiled by the analyzer and
CHIRE/CE data structure is generated. After the CHIRE/CE
generation, elaboration process [3] operates on CHIRE/CE.
This process has two internal steps; CHIRE/CE general
elaboration and simulation specific elaboration. In this step
SIRE/M is generated from the CHIRE/CE representation.
Mixed signal simulation kernel starts simulation [5] on the
SIRE/M data structure and passed the results to the wave
viewer for display.

4. SCHEDULING ALGORITHM
The synchronization unit is a basic unit in the mixed signal
simulation. It synchronizes the simulation cycle of the analog
solver and the digital kernel. Scheduling algorithm is the main
part of synchronization unit. The mixed signal simulators
usually use the canonical algorithm. We describe canonical
and Liyi [7] algorithm and then introduce our new algorithm.

4.1. Canonical Scheduling Algorithm
The execution of a discrete-event process is instantaneous,
meaning, time is not advanced during execution. The next
active time is known before execution and is simply the time

2 Compiled HDL Intermediate Representation with
Extensibility/Common Environment
3 AIRE/CE is a trademark of FTL systems

 of the event time in the event queue. On the other hand, the
execution of the analog solver advances the simulation time
during execution. The start time and the end time of the
execution are not the same. The analog solver divides
duration time between the start and the end time into some
slices for analog simulation. Only when the analog solver
has solved a slice time, it is possible to say the analog solver
advances at that time. Therefore the discrete-event process
and the analog solver have two kinds of time. The mixed
signal simulator needs to coordinate between the digital
kernel and the analog solver, and synchronizes them during
a simulation cycle precisely. It is called the canonical
scheduling algorithm. To help the discussion of the
synchronization algorithm, a graphical representation is
used (see Figure 6). The digital time line can be thought as
the representation of the execution of the digital kernel. The
analog time line represents the execution of the analog
solver. The time-points of analog generated by the analog
solver are marked as dots on the time line and each of these
dots could potentially result in events. The discrete-events
are marked as square. The black square represents the
executed events. The white square represents the events to
be executed in the future. Assuming that the digital kernel
and the analog solver are synchronized at Tc, the analog
solver advances from Tc to Tn. When reaching Tn, the
analog solver suspends, the digital kernel resumes as shown
in Figure 6 (a). The events at Tn are executed. If a Q’Above
(E) event occurs at the time interval [Tc; Tn], the analog
solver suspends, the digital kernel must take it into account,
and the corresponding sensitive process to the event will be
executed. As a result the digital kernel and the solver are
synchronized again as shown in Figure 6 (b).Figure 6 (c)
shows in the execution of the break statement at time Tn, a
discontinuity occurs; the analog solver must resume and
recalculate an analog time-point. In fact, the digital events
are the controllers.

(a)

(b)

(c)

Digital

Analog

Digital

Analog

Digital

Analog

 Q’Above(E);

Tc

Tc

Tc

Tn

Tn

Tn

Break Flag is set

Figure 6: (a) No Q’Above (E) event occurs in the time interval
[Tc; Tn]. (b) Q’Above (E) event occurs in the time interval [Tc;
Tn]. (c) A discontinuity occurs at Tn;

F irs t D ig ita lF irs t S tF irs t S w itch V c V th A b ove < = S tE nd D ig ita lE nd

A na logF irs t S tF irs t V r Ir R 1 * - 0 = = S tE nd

S tF irs t 2 .5 now < A B O

V src 5 .0 == S tE nd- 0

V l Il *do t L1 ==- 0 S tE nd

F an In

S tF irs t Ic V c d o t C 1 * 0 = = S tE nd-

1

1 2

2

3

4 5

5 S e lec to r

Ir Ic == S tE nd- 0

Fa n In

K C L
F irs t V r V c = = S tE n d+ 0

K V L
F irs t V src +

V r V c = = S tE nd+ 0K V L
F irs t V l +

Ir Ic = = S tE nd- 0K C L
F irs t Ir Il = =- 0 6

 6 A n a logE nd

E nd

Figure 5: SIRE/M representation of the mixed signal circuit in Figure 4.

The analog solver shakes hands with the digital kernel at each
digital event time. The analog solver must synchronize with
each discrete-event time-point whenever it reaches the time-
point.

4.2. Liyi Scheduling Algorithm
The difference between the canonical and Liyi algorithm [7] is
the control to the time step when the analog solver reaches Tn
This algorithm allows the analog solver to calculate a time-
point beyond Tn as shown in Figure.7. If there is no
Q`Above(E) event generated from Tc to Tn, the analog solver
calculates a time-point beyond Tn, then it suspends. The
simulation control is turned over to the digital kernel. The
events at Tn are executed. If the values of quantities are
referenced by processes, these values at Tn are calculated by
interpolation using the time-points on the right and left of Tn.
We need not invoke the analog solver to calculate a time-point
at Tn. Therefore the computation cost can be reduced.
Figure.7 (a) shows the case. If the two time points on each
side of Tn are named as Ti and Ti+1 respectively, Q represents
the quantity values at each time-points, the linear interpolation
value at Tn is:

)(1
1

ii
ii

in
in QQ

TT
TT

QQ −
−
−

+= +
+

 (1)

 It is marked as a rhombus on the analog time line. After the
events at Tn are executed, if there is no break flag set, the
analog solver resumes at Ti+1. Figure.7 (b) shows the case.

(a)

(b)

Digital

Analog

Digital

Analog

Tc

Tc

Tc

Tn

Tn

Tn

Break Flag is set

Ti

Ti

Ti+1

Ti+1

Figure 7 :(a) No Q`Above(E) event occurs in the time interval
[Tc; Tn], the analog solver suspends at Ti+1. (b) A
discontinuity occurs at Tn, the analog solver must do back
tracking, the values at Ti+1 are discarded.

When the analog solver suspends beyond Tn, the digital
kernel resumes at Tn. If the break statement is executed in
some process, the break flag is set, the analog solver must
do back tracking to calculate a time-point at Tn, and the
values at Ti+1 are discarded. In the next simulation cycle the
analog solver starts from Tn to the next digital event. The
analog solver needs back tracking only once.

4.3. New Scheduling Algorithm
The analog simulation consists of two main phases: the
initial value calculation phase and the next value calculation
phase. The initial value calculation phase is performed once

 for the first time-point when the analog simulation starts. For
the next time-points the next value calculation phase is
entered, if some suspended time-points are eliminated, the
initial value will not be calculated for these eliminated
suspended time-points so the simulation time will be reduced.
The events are partitioned into two sets. 1- The set of events
that affect only the digital part. For these events there is no
need to suspend the analog simulation because they do not
change the status of the analog part of circuits. 2- The set of
events that affect the analog part. The new scheduling
algorithm works the same as the canonical algorithm for these
events. According to the pseudo-code of Figure 8, if a quantity
can potentially affect a signal driven by analog-digital
interconnection element (e.g. above attribute in VHDL-AMS),
and that signal can directly or indirectly change values of a
simultaneous statement, there is a feedback from the quantity
to the analog part of the circuit. Such quantities belong to
QSetF, and all other quantities belong to QSetNf. These
feedbacks will be named “ADA: Analog, Digital, Analog”
feedbacks in this paper. These feedbacks are shown in Figure
9.
The new algorithm works identical to the canonical algorithm
except two differences. The first difference is Liyi difference
explained in previous section.

Figure 8: Pseudo-code of quantity partitioning

Digital Part
of DesignAnalog Part of

Design

S3

S6

S4

S8

S2

S1

S5

S7

Above Attrib
ute

Above Attrib
ute

Above Attribute

Effect on a

simultaneous
statement

Effect on a

simultaneous

 Statement

q

q

q

Figure 9:The bold lines show direct and indirect ADA feedbacks.

(a)

Digital

Analog

 Q’Above(E); if Q has an ADA feedback

Tc Tn

(b)

Digital

Analog

Tc Tn
Digital Simulation resumes at first event that

is generated by analog solver

 Q’Above(E); if Q has not an ADA feedback

Figure 10: Q’Above (E) event occurs in the time interval [Tc;
Tn]; (a) if Q has an ADA feedback, analog simulation will be
suspended. (b) if Q has no ADA feedback, analog simulation
will not be suspended;

The second difference is when the analog solver generates
an event, it checks the event generated by a quantity If the
quantity belongs to QSetF the analog solver suspends the
simulation and the scheduler handles the events until that
time, otherwise the analog solver can continue the analog
simulation until it reaches the end time or another event
generated by a quantity from QSetF. When the analog
simulation is suspended, the current simulation time goes
back to the first event that is not handled by the scheduler
and the digital simulation kernel starts the simulation until it
reaches the last analog simulation time as shown in Figure
10.

5. RESULTS AND CONCLUSIONS
We present two kinds of models. The first kind is analog to
digital converter (ADC). This model has no ADA feedback.
We choose an 8-bit and a 16-bit ADC. The input is a sine
waveform. The simulation result of ADC8 is shown in
Figure 11. The second kind is clock generator that has some
ADA feedbacks. We choose a clock generator that has two
interconnections, one with an ADA feedback and the other
one without ADA feedback. And a clock generator that
generates two outputs with two different periods and duty
cycles. The part of VHDL-AMS codes of these examples
are shown in Figure 12. The simulation result of
ClockGen_1 is shown in Figure 13. The clock is generated
based on capacitance voltage charged and discharged.

Figure 11: The simulation result of 8-bit ADC

Figure 12: The clock generator and an 8-bit ADC description

The simulation time of all examples is 1 sec. The comparison
of Liyi algorithm with the new algorithm is shown in Table 2.
The performance of the new algorithm depends on the number
of interconnections between the analog and digital part of
design and the number of ADA feedbacks. If all digital-analog
interconnections of the circuit have an ADA feedback, the
performance of both algorithms will be the same.

Figure 13: The simulation result of clock generator example

Table 2: The two scheduling algorithm and their performances

models Liyi algorithm New algorithm Speed up

ADC8 140.72 s 100.61s 28.5%

ADC16 272.91 s 171.38 s 37.2%

ClkGen1 14.75 s 12.00 s 18.6%

ClkGen2 21.38 s 17.25 s 19.3%

6. REFRENCES
[1] "AIRE/CE: Advanced Intermediate Representation with
Extensibility/Common Environment ver. 4.6," FTL Systems.
[2] A.M. Gharehbaghi, M.H. Reshadi, Zainalabedin Navabi
“Intermediate Format Standardization Ambiguities, Deficiencies,
Portability issues, Documentation and Improvements”, Design
Automation Conference 2000.
[3] Behnam Robatmili, Hamidreza Ghasemi, Dara Rahmati,
Zainalabedin Navabi, “A Scalable Method for HDL Elaboration”
IST 2003.
[4] Dara Rahmati, Abolfazl Salimi Zebardast, Mohammad H.
Reshadi, Zainalabedin Navabi, “Handling Complex VHDL
Semantics with an OO Intermediate Format,” Canadian
Conference on Electrical and Computer Engineering, May 2001.
[5] Dara Rahmati, Hamid reza Ghasemi, Behnam Robatmili,
Zainalabedin Navabi, “A Hybrid Interpreted-Compiled Code
VHDL Event Driven Simulator“ IST 2003.
[6]IEEE Std 1076.1- 1999 IEEE Standard VHDL Analog and
Mixed-Signal Extensions, 18 March 1999.
[7] XIAO Liyi, YE Yizheng, LI Bin” A New Synchronization
Algorithm for VHDL-AMS Simulation”. J. Comput. Sci & Tech
Jan. 2002, Vol.17,No.1

