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ABSTRACT 
In this paper, a new concept of design-adaptive device 
modeling is introduced and an innovative method using 
adaptive device models to speed up circuit simulation is 
presented. In this method, we utilize the design specific 
information to generate automatically adaptive device models, 
which implies partial information on the more generic device 
model. During simulation, available adaptive device models 
are substituted automatically for more computationally 
expensive general device models. The proposed method is 
model compiler based and has been implemented in our 
compact device model compiler – MCAST, and targeted and 
tested for three simulators: the open source circuit simulator 
SPICE3, Cadence’s SPECTREv4.46 and an industry in-house 
simulator. Experimental results show that the model 
evaluation time of a typical design adaptive device model is up 
to 10x faster compared to manually coded built-in general 
device model, and the overall simulation time with design-
adaptive device models can be up to 8x faster with respect to 
simulation with general device models while achieving the 
same accuracy.  

I. INTRODUCTION 
It is becoming increasingly difficult to implement a new device 
model in circuit simulators manually. Table 1 attempts to quantify 
the levels of difficulties in implementing a new industry-standard 
MOSFET device model. 

TABLE 1. MOSFET MODEL IMPLEMENTATIONS IN UCB SPICE3F5. 

Number Level 1 Level 3 BSIM3 BSIM4 BSIMSOI 

If statements 501 609 822 1495 1757 

Parameters 
in codes 32 38 399 610 615 

Intermediate 
Variables 56 56 430 811 972 

Total lines 
of code 7,673 8,634 12,348 20,113 20,664 

 

Manual implementation of a new device model has become a big 
burden, even for a team of experts with extensive modeling and 
coding experience. Not only the implementations, but also the 
practices of debugging, testing, profiling and maintaining, are 
cumbersome and time-taking. In many aspects, the practice of 
manual device model implementation amounts to longer 
qualification times. The advent of more complex and challenging 

device models for nanotechnology and multi-physics technology 
systems could make this situation only worse.  

Compact device model compiler has emerged as a solution to 
address this problem as suggested in [1]. In a nutshell, a compact 
model compiler is a design automation tool that takes a high-level 
behavioral description (in VHDL-AMS or Verilog-AMS 
languages) of a device model as its input, and applies several 
processes to automatically generate the implementation source 
code for simulating a circuit with that the requested device model. 
The generated source codes can be compiled and linked into a 
target circuit simulator. With the use of a model compiler, the 
processes for model implementation, enhancement and 
qualification are greatly shortened. Moreover, the device model 
can be easily maintained, modified and distributed. The 
automated model-compiling process also greatly enhances the 
ability of circuit designers to manipulate the physical operation 
and topology of the device. With a model compiler link, circuit 
designers no longer have to wait one or two years for the new 
device model to become supported in a commercial circuit 
simulator. 

Model compiler may also help to expedite modeling efforts for 
better industrial standards. In device modeling industry, having a 
standard base model for a device is very difficult. 
Implementations in commercial and freeware simulators may 
differ greatly although the underlying equations are the same. 
Using the same device model but various implementations, 
different simulators may give different simulation results. Without 
a standard model, it is hard to verify which one is correct or 
which one is trustable. A device model is only completely defined 
by its implementation in a target simulator, and therefore it may 
have different definitions in different simulators. Model compiler 
brings the possibility to implement a bulletproof standard model 
code for different simulators, and the high-level models feeding 
into model compiler are easier to standardize. Today, public 
device models in Verilog-AMS and VHDL-AMS are already 
starting to appear on the web in public domain [2]. 

Several related works about model compilers have been reported 
previously [3]-[8]. Some of these works discussed implementation 
of very complex industrial device models such as BSIM3, 
BSIMSOI etc. and employed code-optimization techniques to 
improve the efficiency of the generated device model codes. 
However, none of these works has taken users’ design 
information into account when implementing the device model. 
Their optimizations, if any, mainly focus on the implementation 
of a general device model.  

The general practice of model compiler is to define a device 
model with instance parameters as independent variables. A 
general topology of the device is also assumed. In this approach, 
the device model is developed and implemented in the most 



general way to support all possible uses of the device model in the 
end-users netlist. 

In this paper, we propose to extend this traditional approach with 
a new feature that can generate design-specific adaptive device 
models to speed up the upcoming simulation tasks. Mainly, we 
utilize two types of user design information in a model compiler 
to generate adaptive device models for circuit simulation. The 
first is the pre-specified model and instance parameters, and the 
latter is the special device topology.  

Pre-specified model and instance parameters can be used to 
simplify the complexity of the model by removal of an 
independent variable. In the case of designs with many devices 
sharing the same model and instance parameters, it is worth 
generating adaptive device model for such devices to speed up 
model evaluation time and hence the simulation times. A specific 
topology of device can also be used to simplify the complexity of 
the device model. For example, for a MOSFET device model 
whose bulk and source terminals are identical, the back-gate 
effects are not of interest, and the number of device model 
equations may be deferred. Furthermore, a specific topology of 
the device makes it possible to generate low dimensional (2-D or 
1-D) table lookup model with very high accuracy. Table lookup is 
an attractive way to speed up device model evaluation. 
Previously, table lookup approaches have been applied to 
MOSFET transistor models [10][11][12][13]. However, all of 
mentioned efforts suffer from the high dimensionality, since a 
general MOSFET device is four-terminal and usually it is 3-D 
tables are generated. SOI device has even more terminals.  
Although some methods employ 2-D tables with some correction 
tables [12], accuracy is compromised to meet the massive 
memory requirements. In our adaptive device models with pre-
specified topology, table lookup models may be chosen as 2-D or 
even 1-D, and accuracy can be easily improved by increasing the 
size of the tables. This is very important for simulating analog 
circuits since they often require higher accurate models.  

To our best knowledge, no work has been reported on design-
adaptive device modeling to gain speed-up in circuit simulations. 
In this paper, we demonstrate that adaptive device modeling can 
be easily implemented in a model compiler. It cannot be done 
manually. 

II. DESIGN-ADAPTIVE DEVICE MODELS 
Traditionally, compact device models are implemented as general 
device models. The general device model will be instantiated 
during simulation, i.e., model, instance parameters and connection 
topology will be assigned. Then the devices are iteratively 
evaluated and corresponding model evaluation results are loaded 
into the residual vector and the Jacobian matrix in the target 
simulator. 

The device loading/evaluation always contributes a major, often 
dominant, part of the overall simulation time. It is always a huge 
challenge to reduce or simplify this time consuming part in the 
circuit simulation. The basic idea of our design-adaptive device 
modeling method is as follows: adapting general device model 
into more specific models with partial information obtained from 
user’s netlist (or design). Using these adaptive models instead of 

general device models would greatly reduce the overall evaluation 
time. Below, we first introduce the concept. 

Design-adaptive device model is a more specific model of a 
device. Compared to a general model, an adaptive device model 
has one or more of the following characteristics: 

• Fixed model parameters 
• Fixed some or all instance parameters 
• Specific topology 
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Figure 1. Device model set diagram. 

Figure 1 shows the set diagram for several device model types. 
The class of general device model is a superset of adaptive device 
model which itself covers adaptive fixed-topology device model. 
Adaptive table lookup model can be considered as a subset of 
fixed-topology adaptive model. 

As an example, MOSFET device model is carefully analyzed and 
some adaptive device model types are illustrated in Figure 2. 
Type (e) and (f) are fixed-topology adaptive device models. 
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Figure 2. MOSFET design adaptive device models. 

One should note that some of these adaptive device models could 
be combined together as a new and better adaptive device model 
(such as type (d) plus type (e)).  

Obviously, the most specific adaptive device model is one with 
fixed parameters and has a specific topology. For the devices 
using this model, the model parameters of the adaptive models are 



not needed in the netlist, since they can be utilized in the model 
code by the model compiler. 

In adaptive device models, all model parameters and some or 
even all instance parameters are fixed, the calculations related to 
these parameters can be pre-calculated as constants in model 
compiler. By using Abstract-Syntax-Tree (AST) based constant 
propagation optimization techniques described in [4], the 
complexity of the adaptive device model can be greatly reduced. 
Moreover, for the fixed topology like type (e) in Fig. 2 (Vbs=0), 
the back-gate effect no longer exists and the current equations for 
the connected terminals can be collapsed in the model description. 

Adaptive device models can be easily identified and constructed 
based on the   circuit netlist information especially for digital 
circuits. For example, in many digital designs, almost all 
transistors share a fixed L (length) parameter and the topology of 
type (e) (Vbs=0) is very common. In some standard cell library 
based digital designs, (include inv, nand2, nor2, aoi22, oai22, 
etc.)  Although they may have thousands of transistors, they may 
have just two adaptive device models: one for NMOS with fixed 
model, instance parameters and Vbs=0 and one for PMOS with 
fixed model, instance parameters and Vbs=0. 

III. ADAPTIVE LOW-DIMENSIONAL TABLE 
LOOKUP MODELS 

In a compact device model, even in our reduced adaptive device 
model, the model evaluation may be very expensive. The basic 
idea of our adaptive low-dimensional table lookup method is to 
replace the computation-intensive blocks by two-dimension or 
one-dimension tables to save the evaluation time. 

Figure 3 shows some MOSFET topologies that can be used to 
generate low-dimensional table lookup models.  
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Figure 3. Topology-aware table lookup model. 

After discovering the fixed model and instance parameters and 
fixed topologies from the netlist, the model evaluation process 
can be simplified as 1-D or 2-D tables. The model output 
variables such as branch currents, derivatives, charges and right-
hand-sides, are fortunately functions of one or two terminal 
voltages. Even the range of the terminal voltages such as Vgs, 
Vds, etc. can be obtained from the netlist. It is very easy to build 
2-D or 1-D tables for these adaptive device models in an 
automatic manner. 

In MCAST, uniformly separated tables are adopted to hold model 
evaluation data. It is efficient to locate points surrounding the 
interpolation point and it works very well even for high accuracy 
requirement for analog circuits. 

These low-dimension tables are built by MCAST and will be 
exported with adaptive table lookup models. Some utility routines 
are provided as well. Target simulators will load data tables when 
setting up these models and call these routines to locate 
corresponding table lookup models and interpolate values during 
simulation. 

In target simulators, computational efficiency is improved by 
using simple bilinear interpolation. It is computationally efficient 
and accurate enough in our process.  

IV. DESIGN-ADAPTIVE DEVICE MODELING FLOW 
IN MCAST 

The proposed design adaptive device modeling method has been 
automated in MCAST. Figure 4 shows its flow.  
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Figure 4. Adaptive device modeling in model compiler MCAST. 

Our device model compiler is composed of a parser, an internal 
data representation framework, a code optimization core and a 
code generator. Through the model compiler, high-level 
description for the device model will be translated into C/C++ 
implementation codes, which can be compiled and linked into 
target simulator.  

In MCAST, within the model compiler architecture, a netlist 
reader is also deployed to explore user design information (circuit 
netlist) along with some optional user control information (table 
lookup density, etc.)  The optimization core then uses this 
information to generate the implementation code for the adaptive 
device models.  

Code generator will output two other sets of information along 
with the C/C++ device codes. The first is an updated netlist with 
device instances bound to corresponding adaptive device models. 



The simulator will use this new netlist to simulate the circuit. The 
second output is table lookup package, including adaptive table 
lookup models, table lookup data library and utility procedures, 
etc.  The simulator will load these tables during the device setup 
time and look them up during simulation. 

Several optimization techniques including adaptive device 
modeling are implemented in the optimization core. 

V. IMPORTING ADAPTIVE DEVICE MODELS INTO 
TARGET SIMULATORS 

MCAST imports a designer’s netlist and generates several 
adaptive device models. These adaptive device models and/or a 
general model need to be imported into the target circuit 
simulator. Unfortunately, the registrations of these new models 
into different simulators are different. In the following, we present 
the implementation of multiple adaptive device models into 
SPICE3f5 and SPECTREv4.46. 

A. SPICE3f5 
SPICE has a 26-letter limitation for new devices. It is impossible 
to assign a letter to every adaptive device model. Instead, all of 
the automatic models generated by MCAST use the same model 
letter “N”. MCAST will need to generate new netlist file to 
specify the multiple adaptive device models and to bind 
corresponding devices with these models. Figure 5 shows the 
comparison between the old netlist and the new netlist with 
dynamic binding. In the new netlist, the model “type” will be 
used to differentiate auto models: ADM1 means adaptive device 
model 1. A new input handling subroutine inp2n.c was written in 
INP directory to accept dynamic terminals and dynamic instance 
parameters for all adaptive device models under one model name. 

Several Perl and Shell scripts were written to automatically load, 
compile and link multiple adaptive device models. Since the 
adaptive device models are only useful for this design, user has 
the option to start a script to unload them after the simulation. 

B. SPECTRE 
Unlike SPICE3, SPECTRE has a mechanism called compiled-
model interface (CMI).  CMI allows models compiled as shared 
objects to be dynamically loaded and installed at run time. New 
device model source code can be decoupled from the SPECTRE 
executable. In this way, it is much easier to import multiple 
adaptive device models without re-building the SPECTRE 
executable. For other circuit simulators with dynamic loaded 
libraries, the loading and unloading of multiple adaptive device 
models can be done similarly. 

The loadable models are particularly important considering 
confidential intellectual property. 

VI. EXPERIMENTAL RESULTS 
To demonstrate the effect of adaptive device modeling, several 
MOSFET models, including level 1, level 3, BSIM3, BSIM4 and 
BSIMSOI, have been implemented in MCAST, linked and built in 
the open source circuit simulator, Berkeley’s SPICE3f5, 
Cadence’s SPECTREv4.46, and an industry in-house simulator, 

and compared with human optimized codes (existing built-in 
device model codes in SPICE3f5). Some notions are used in the 
comparisons: “Built-in” model is the one manually implemented, 
“Auto w/ Opt” model is the one automatically generated by 
MCAST with optimizations except adaptive device modeling, 
“ADM (d+e)” model is the one automatically generated by 
MCAST with optimizations, including adaptive device modeling, 
and “ADM (d+e)+Table” is the adaptive table lookup model. 
Here (d+e) represents the type of the adaptive device model and it 
means fixed parameters (d) with Vbs=0 topology. Type (d+e) is 
selected since it is the most popular type of adaptive device 
models found in MOSFET. The accuracy and efficiency of the 
generated adaptive device models are demonstrated by the 
simulation results. 

Old netlist read in by MCAST

.MODEL mypmos PMOS (LEVEL=8 TOX=4.2E-9 …)

.MODEL mynmos NMOS (LEVEL=8 TOX=4.2E-9 …)

M1 out in vdd vdd mypmos w=30u l=6u
M2 out in gnd gnd mynmos w=10u l=6u

New netlist generated 
by MCAST

* GENERAL MODEL GPMOS GENERATED BY MCAST 
.MODEL myp GPMOS TNOM=22 TOX=4.2E-9 ...
* GENERAL MODEL GNMOS GENERATED BY MCAST
.MODEL myn GNMOS TNOM=22 TOX=4.2E-9 ...

* DYNAMIC MODEL DM1: type (d+e), PMOS
* model parameters: TNOM=22 TOX=4.2E-9 ...
* instance parameters: w=30u l=6u
* topology: Vbs=0 (e)
.MODEL mypmos DM1

* DYNAMIC MODEL DM2: type (d+e), NMOS
* model parameters: TNOM=22 TOX=4.2E-9 ...
* instance parameters: w=10u l=6u
* topology: Vbs=0 (e)
.MODEL mynmos DM2

* USE DYNAMIC MODEL
* NO INSTANCE PARAMETER NECESSARY
N1 out in vdd vdd mypmos
N2 out in gnd gnd mynmos

* STILL USE GENERAL MODEL
N3 out in vdd vdd myp w=25u l=6u
N4 out in gnd gnd myn w=8u l=6u

 
Figure 5.  New netlist for simulating models with MCAST. 

A. Accuracy 
The automatic generated adaptive device models from MCAST 
are inherently very accurate. Figure 6 shows the comparison of 
the transient analysis of a simple inverter. The automatic 
generated adaptive device models yield exactly the same results 
as manually implemented built-in model in SPICE3f5: the 
absolute errors are less than 5e-6 compared to the built-in model.  



 
Fig. 6. Accuracy comparison: transient analysis of an inverter. 

Figure 7 shows the transient simulation results of another 
benchmark circuits – VCO. The results with adaptive device 
models match well with that of the built-in models.  

 

 
Fig. 7 Accuracy comparison: transient analysis. 

The accuracy of the adaptive table lookup model can be easily 
improved by increasing the table sizes. In our practice, 4000 
points are good enough for 2-D table lookup to get the same 
accuracy as the built-in model. 

B. Adaptive device modeling speedup 
Several analog and digital circuits are selected as benchmark 
circuits to test the speedup effects of adaptive device modeling. 
Their characteristics are summarized in Table 3. From this table, 
one should note that adaptive device models exist in both analog 
and digital circuits. In some circuits, adaptive device models 
repeat themselves hundred of thousand of times. For example, in a 
standard cell library based digital design (ACCAS) two adaptive 
device models cover all of the 1038 transistors. 

 

 

 

TABLE 3. BENCHMARK CIRCUIT CHARACTERISTICS 
ADM – ADAPTIVE DEVICE MODEL 

ATLM – ADAPTIVE TABLE LOOKUP MODEL 
Inde

x Circuit #MOS # ADM #ADTLM 

1 One-shot 22 4 2 
2 VCO 10 2 2 
3 Power AMP 4 0 2 
4 Ring Oscillator 12 0 2 

5 Boeing 
Comparator 38 2 2 

6 Complex Cell 30 1 4 
7 INV 2 0 2 
8 INV Chain 8 0 2 
9 NAND2 4 0 2 
10 NOR2 4 0 2 
11 AOI22 8 0 2 
12 OAI22 16 0 2 
13 ACCAS 1038 0 2 
14 DFF 24 0 2 
15 SRAM 6910 9 4 
16 26-bit Adder 4274 18 6 
17 13-bit Multiplier 9545 24 16 
18 12-bit Divider 3081 22 8 

 

Figure 8 shows a comparison among different model 
implementations, including adaptive device model, built-in model 
and auto model with normal optimizations in MCAST, of 
different types of models, such as level 1, level 3, BSIM3, BSIM4 
and BSIMSOI. The experiment is circuit-independent and only 
the model evaluation times are normalized and compared. In pure 
comparison of the evaluation costs of the different models, the 
adaptive device models are 1.6x-2.69x times faster than the 
manually coded built-in models and 1.6x-4x times faster than the 
normal optimized auto models. The adaptive table lookup model 
is at least three times faster than conventional analytical models. 
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Fig. 8 Normalized model evaluation cost comparison. 

 From Figure 8, we can also observe that 1) the simpler the model, 
the less overhead there is for the automatic generated model. For 
example, the auto model with optimizations is just 2%-3% slower 
than built-in model for MOSFET level 1 and level 3 model and 2) 
the more complex the device model, the more speedup there is 
using adaptive device model. In terms of device evaluation cost, 
the speedup for the BSIMSOI adaptive device model is 2.69x and 



for adaptive table lookup model it could go up to 9.25x faster than 
the manually coded built-in model. 

We also compared the performances in transient analysis. Nine 
analog and digital benchmark circuits, including power amplifier, 
12-bit divider, etc., were used to demonstrate the speedup effects 
of the adaptive device modeling of the MOSFET model of BSIM3 
versus the built-in model (Fig. 9). For a fair comparison, fixed 
time-step is used for both models and only transient CPU times 
(device setup time not included) are compared. The performance 
of the built-in model is normalized to one.  For most of the 
benchmark circuits, the speedup using adaptive models without 
table lookup is more than two times. For analog circuit, using 
adaptive models with table lookup can speed up simulation by a 
factor of 4. For digital circuits where many devices are in uniform 
size and have a fixed topology such as bodies connected to 
sources can be found, the simulation speedup using design 
adaptive table lookup models is at least 6x-8x. 
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Figure 9. Normalized speedup of the adaptive device models compared to 

the built-in model over nine benchmark circuits. 

C. Overheads 
Significant speedup in simulation time can be obtained using our 
proposed design adaptive modeling method. However the design 
adaptive modeling and table lookup methods introduce some 
overhead, namely requires some time to generate and load ADM 
models. However, after the first model generation, the models 
stored in the memory can be used efficiently in many tasks 
demanding repetitive simulations such as cell characterization, 
optimization, noise and timing analyses. Furthermore, the 
generated device models can be cached and are easily reusable in 
an embedded circuit simulator via an application programming 
interface. Considering the potential use of our proposed technique 
in a higher level design automation task, the device setup time 
(additional time needed to load multiple tables in our method) is 
ignored in our comparisons of transient analysis.  

VII. CONCLUSION 
We have introduced the concept of design-adaptive device 
modeling and presented a method for generating adaptive device 
models to gain significant speedup in circuit simulation tasks. 
Adaptive device models are design specific but much more 
efficient to evaluate and can be dynamically loaded and unloaded 

into target circuit simulator. The proposed method facilitates the 
design information from the simulated netlist to generate adaptive 
device models. Our prototype implementation can work with 
compact device and behavioral models described by high-level 
languages VHDL-AMS and Verilog-AMS and generate adaptive 
device model implementation codes automatically.  

The proposed method has been implemented in our compact 
model compiler MCAST and targeted for three circuit simulators: 
the open source SPICE3f5, Cadence’s SPECTREv4.46, and an 
industry in-house simulator. Experimental results on a set of test 
circuits have demonstrated that the generated adaptive device 
models are very accurate with the error limited to numerical noise 
range, and the speedup for circuit simulation can be as much as 8x 
faster than simulation with human optimized built-in models. 
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