
Design-Adaptive Device Modeling in Model Compiler for
Efficient and Accurate Circuit Simulation

Bo Wan
Cadence Design Systems
bowan@cadence.com

Emrah Acar, Sani Nassif
IBM Austin Research Center

{emrah,nassif}@us.ibm.com

C. –J. Richard Shi
Univ. of Washington, Dept. of EE
cjshi@ee.washington.edu

ABSTRACT
In this paper, a new concept of design-adaptive device
modeling is introduced and an innovative method using
adaptive device models to speed up circuit simulation is
presented. In this method, we utilize the design specific
information to generate automatically adaptive device models,
which implies partial information on the more generic device
model. During simulation, available adaptive device models
are substituted automatically for more computationally
expensive general device models. The proposed method is
model compiler based and has been implemented in our
compact device model compiler – MCAST, and targeted and
tested for three simulators: the open source circuit simulator
SPICE3, Cadence’s SPECTREv4.46 and an industry in-house
simulator. Experimental results show that the model
evaluation time of a typical design adaptive device model is up
to 10x faster compared to manually coded built-in general
device model, and the overall simulation time with design-
adaptive device models can be up to 8x faster with respect to
simulation with general device models while achieving the
same accuracy.

I. INTRODUCTION
It is becoming increasingly difficult to implement a new device
model in circuit simulators manually. Table 1 attempts to quantify
the levels of difficulties in implementing a new industry-standard
MOSFET device model.

TABLE 1. MOSFET MODEL IMPLEMENTATIONS IN UCB SPICE3F5.

Number Level 1 Level 3 BSIM3 BSIM4 BSIMSOI

If statements 501 609 822 1495 1757

Parameters
in codes 32 38 399 610 615

Intermediate
Variables 56 56 430 811 972

Total lines
of code 7,673 8,634 12,348 20,113 20,664

Manual implementation of a new device model has become a big
burden, even for a team of experts with extensive modeling and
coding experience. Not only the implementations, but also the
practices of debugging, testing, profiling and maintaining, are
cumbersome and time-taking. In many aspects, the practice of
manual device model implementation amounts to longer
qualification times. The advent of more complex and challenging

device models for nanotechnology and multi-physics technology
systems could make this situation only worse.

Compact device model compiler has emerged as a solution to
address this problem as suggested in [1]. In a nutshell, a compact
model compiler is a design automation tool that takes a high-level
behavioral description (in VHDL-AMS or Verilog-AMS
languages) of a device model as its input, and applies several
processes to automatically generate the implementation source
code for simulating a circuit with that the requested device model.
The generated source codes can be compiled and linked into a
target circuit simulator. With the use of a model compiler, the
processes for model implementation, enhancement and
qualification are greatly shortened. Moreover, the device model
can be easily maintained, modified and distributed. The
automated model-compiling process also greatly enhances the
ability of circuit designers to manipulate the physical operation
and topology of the device. With a model compiler link, circuit
designers no longer have to wait one or two years for the new
device model to become supported in a commercial circuit
simulator.

Model compiler may also help to expedite modeling efforts for
better industrial standards. In device modeling industry, having a
standard base model for a device is very difficult.
Implementations in commercial and freeware simulators may
differ greatly although the underlying equations are the same.
Using the same device model but various implementations,
different simulators may give different simulation results. Without
a standard model, it is hard to verify which one is correct or
which one is trustable. A device model is only completely defined
by its implementation in a target simulator, and therefore it may
have different definitions in different simulators. Model compiler
brings the possibility to implement a bulletproof standard model
code for different simulators, and the high-level models feeding
into model compiler are easier to standardize. Today, public
device models in Verilog-AMS and VHDL-AMS are already
starting to appear on the web in public domain [2].

Several related works about model compilers have been reported
previously [3]-[8]. Some of these works discussed implementation
of very complex industrial device models such as BSIM3,
BSIMSOI etc. and employed code-optimization techniques to
improve the efficiency of the generated device model codes.
However, none of these works has taken users’ design
information into account when implementing the device model.
Their optimizations, if any, mainly focus on the implementation
of a general device model.

The general practice of model compiler is to define a device
model with instance parameters as independent variables. A
general topology of the device is also assumed. In this approach,
the device model is developed and implemented in the most

general way to support all possible uses of the device model in the
end-users netlist.

In this paper, we propose to extend this traditional approach with
a new feature that can generate design-specific adaptive device
models to speed up the upcoming simulation tasks. Mainly, we
utilize two types of user design information in a model compiler
to generate adaptive device models for circuit simulation. The
first is the pre-specified model and instance parameters, and the
latter is the special device topology.

Pre-specified model and instance parameters can be used to
simplify the complexity of the model by removal of an
independent variable. In the case of designs with many devices
sharing the same model and instance parameters, it is worth
generating adaptive device model for such devices to speed up
model evaluation time and hence the simulation times. A specific
topology of device can also be used to simplify the complexity of
the device model. For example, for a MOSFET device model
whose bulk and source terminals are identical, the back-gate
effects are not of interest, and the number of device model
equations may be deferred. Furthermore, a specific topology of
the device makes it possible to generate low dimensional (2-D or
1-D) table lookup model with very high accuracy. Table lookup is
an attractive way to speed up device model evaluation.
Previously, table lookup approaches have been applied to
MOSFET transistor models [10][11][12][13]. However, all of
mentioned efforts suffer from the high dimensionality, since a
general MOSFET device is four-terminal and usually it is 3-D
tables are generated. SOI device has even more terminals.
Although some methods employ 2-D tables with some correction
tables [12], accuracy is compromised to meet the massive
memory requirements. In our adaptive device models with pre-
specified topology, table lookup models may be chosen as 2-D or
even 1-D, and accuracy can be easily improved by increasing the
size of the tables. This is very important for simulating analog
circuits since they often require higher accurate models.

To our best knowledge, no work has been reported on design-
adaptive device modeling to gain speed-up in circuit simulations.
In this paper, we demonstrate that adaptive device modeling can
be easily implemented in a model compiler. It cannot be done
manually.

II. DESIGN-ADAPTIVE DEVICE MODELS
Traditionally, compact device models are implemented as general
device models. The general device model will be instantiated
during simulation, i.e., model, instance parameters and connection
topology will be assigned. Then the devices are iteratively
evaluated and corresponding model evaluation results are loaded
into the residual vector and the Jacobian matrix in the target
simulator.

The device loading/evaluation always contributes a major, often
dominant, part of the overall simulation time. It is always a huge
challenge to reduce or simplify this time consuming part in the
circuit simulation. The basic idea of our design-adaptive device
modeling method is as follows: adapting general device model
into more specific models with partial information obtained from
user’s netlist (or design). Using these adaptive models instead of

general device models would greatly reduce the overall evaluation
time. Below, we first introduce the concept.

Design-adaptive device model is a more specific model of a
device. Compared to a general model, an adaptive device model
has one or more of the following characteristics:

• Fixed model parameters
• Fixed some or all instance parameters
• Specific topology

Adaptive Device
Model

General Device
Model

Adaptive Table
Lookup Model

Fixed-Topology
Adaptive Device

Model

Figure 1. Device model set diagram.

Figure 1 shows the set diagram for several device model types.
The class of general device model is a superset of adaptive device
model which itself covers adaptive fixed-topology device model.
Adaptive table lookup model can be considered as a subset of
fixed-topology adaptive model.

As an example, MOSFET device model is carefully analyzed and
some adaptive device model types are illustrated in Figure 2.
Type (e) and (f) are fixed-topology adaptive device models.

All model and instance
parameters NOT fixed

General model
(a)

D

G

S

B

W NOT fixed, L fixed
Dynamic model

(c)

D

G

S

B

W & L fixed
Dynamic model

(d)

D

G

S

B

Vbs=0

Vbs=0
Dynamic model

(e)

D

G

S

B

Vgd fixed

Vgd fixed
Dynamic model

(f)

D

S

BG

Model parameters fixed
Instance parameters NOT fixed

Dynamic model
(b)

D

G

S

B G

+
-

Figure 2. MOSFET design adaptive device models.

One should note that some of these adaptive device models could
be combined together as a new and better adaptive device model
(such as type (d) plus type (e)).

Obviously, the most specific adaptive device model is one with
fixed parameters and has a specific topology. For the devices
using this model, the model parameters of the adaptive models are

not needed in the netlist, since they can be utilized in the model
code by the model compiler.

In adaptive device models, all model parameters and some or
even all instance parameters are fixed, the calculations related to
these parameters can be pre-calculated as constants in model
compiler. By using Abstract-Syntax-Tree (AST) based constant
propagation optimization techniques described in [4], the
complexity of the adaptive device model can be greatly reduced.
Moreover, for the fixed topology like type (e) in Fig. 2 (Vbs=0),
the back-gate effect no longer exists and the current equations for
the connected terminals can be collapsed in the model description.

Adaptive device models can be easily identified and constructed
based on the circuit netlist information especially for digital
circuits. For example, in many digital designs, almost all
transistors share a fixed L (length) parameter and the topology of
type (e) (Vbs=0) is very common. In some standard cell library
based digital designs, (include inv, nand2, nor2, aoi22, oai22,
etc.) Although they may have thousands of transistors, they may
have just two adaptive device models: one for NMOS with fixed
model, instance parameters and Vbs=0 and one for PMOS with
fixed model, instance parameters and Vbs=0.

III. ADAPTIVE LOW-DIMENSIONAL TABLE
LOOKUP MODELS

In a compact device model, even in our reduced adaptive device
model, the model evaluation may be very expensive. The basic
idea of our adaptive low-dimensional table lookup method is to
replace the computation-intensive blocks by two-dimension or
one-dimension tables to save the evaluation time.

Figure 3 shows some MOSFET topologies that can be used to
generate low-dimensional table lookup models.

Vbs=0

Vbs=0
Adaptive model

(d+e)

D

G

S

B

Vgd fixed

Vgd fixed
Adaptive model

(d+f)

D

S

BG

+

- Vgd fixed

Vgd fixed
Adaptive model

(d+e+f)

D

S

B

Vds

Vgs Vgs Vgs

2-D table lookups:
IDS=IDS(Vgs,Vds) etc.

Vbs=0

2-D table lookups:
IDS=IDS(Vgs,Vbs) etc.

Vbs

1-D table lookups:
IDS=IDS(Vgs) etc.

+

-

Figure 3. Topology-aware table lookup model.

After discovering the fixed model and instance parameters and
fixed topologies from the netlist, the model evaluation process
can be simplified as 1-D or 2-D tables. The model output
variables such as branch currents, derivatives, charges and right-
hand-sides, are fortunately functions of one or two terminal
voltages. Even the range of the terminal voltages such as Vgs,
Vds, etc. can be obtained from the netlist. It is very easy to build
2-D or 1-D tables for these adaptive device models in an
automatic manner.

In MCAST, uniformly separated tables are adopted to hold model
evaluation data. It is efficient to locate points surrounding the
interpolation point and it works very well even for high accuracy
requirement for analog circuits.

These low-dimension tables are built by MCAST and will be
exported with adaptive table lookup models. Some utility routines
are provided as well. Target simulators will load data tables when
setting up these models and call these routines to locate
corresponding table lookup models and interpolate values during
simulation.

In target simulators, computational efficiency is improved by
using simple bilinear interpolation. It is computationally efficient
and accurate enough in our process.

IV. DESIGN-ADAPTIVE DEVICE MODELING FLOW
IN MCAST

The proposed design adaptive device modeling method has been
automated in MCAST. Figure 4 shows its flow.

VHDL-AMS/Verilog-
A device source code

Intermediate format

VHDL-A/Verilog-A
parser

Optimization core

Code generation

C/C++ device codes
for adaptive models

Dynamic linking

Circuit simulator
source files

Circuit simulator with
ability to simulate new
device and user specific

design

User Design Info
(original netlist)

Netlist Reader

Compile and link
As adaptive loaded
library or shared

objects

Netlist Writter
New netlist with
adaptive models

binding with devices

Control Info
(Table lookup density,

threshold #, etc.)

Lookup Table
Generator

Lookup tables
binding with

adaptive models

Figure 4. Adaptive device modeling in model compiler MCAST.

Our device model compiler is composed of a parser, an internal
data representation framework, a code optimization core and a
code generator. Through the model compiler, high-level
description for the device model will be translated into C/C++
implementation codes, which can be compiled and linked into
target simulator.

In MCAST, within the model compiler architecture, a netlist
reader is also deployed to explore user design information (circuit
netlist) along with some optional user control information (table
lookup density, etc.) The optimization core then uses this
information to generate the implementation code for the adaptive
device models.

Code generator will output two other sets of information along
with the C/C++ device codes. The first is an updated netlist with
device instances bound to corresponding adaptive device models.

The simulator will use this new netlist to simulate the circuit. The
second output is table lookup package, including adaptive table
lookup models, table lookup data library and utility procedures,
etc. The simulator will load these tables during the device setup
time and look them up during simulation.

Several optimization techniques including adaptive device
modeling are implemented in the optimization core.

V. IMPORTING ADAPTIVE DEVICE MODELS INTO
TARGET SIMULATORS

MCAST imports a designer’s netlist and generates several
adaptive device models. These adaptive device models and/or a
general model need to be imported into the target circuit
simulator. Unfortunately, the registrations of these new models
into different simulators are different. In the following, we present
the implementation of multiple adaptive device models into
SPICE3f5 and SPECTREv4.46.

A. SPICE3f5
SPICE has a 26-letter limitation for new devices. It is impossible
to assign a letter to every adaptive device model. Instead, all of
the automatic models generated by MCAST use the same model
letter “N”. MCAST will need to generate new netlist file to
specify the multiple adaptive device models and to bind
corresponding devices with these models. Figure 5 shows the
comparison between the old netlist and the new netlist with
dynamic binding. In the new netlist, the model “type” will be
used to differentiate auto models: ADM1 means adaptive device
model 1. A new input handling subroutine inp2n.c was written in
INP directory to accept dynamic terminals and dynamic instance
parameters for all adaptive device models under one model name.

Several Perl and Shell scripts were written to automatically load,
compile and link multiple adaptive device models. Since the
adaptive device models are only useful for this design, user has
the option to start a script to unload them after the simulation.

B. SPECTRE
Unlike SPICE3, SPECTRE has a mechanism called compiled-
model interface (CMI). CMI allows models compiled as shared
objects to be dynamically loaded and installed at run time. New
device model source code can be decoupled from the SPECTRE
executable. In this way, it is much easier to import multiple
adaptive device models without re-building the SPECTRE
executable. For other circuit simulators with dynamic loaded
libraries, the loading and unloading of multiple adaptive device
models can be done similarly.

The loadable models are particularly important considering
confidential intellectual property.

VI. EXPERIMENTAL RESULTS
To demonstrate the effect of adaptive device modeling, several
MOSFET models, including level 1, level 3, BSIM3, BSIM4 and
BSIMSOI, have been implemented in MCAST, linked and built in
the open source circuit simulator, Berkeley’s SPICE3f5,
Cadence’s SPECTREv4.46, and an industry in-house simulator,

and compared with human optimized codes (existing built-in
device model codes in SPICE3f5). Some notions are used in the
comparisons: “Built-in” model is the one manually implemented,
“Auto w/ Opt” model is the one automatically generated by
MCAST with optimizations except adaptive device modeling,
“ADM (d+e)” model is the one automatically generated by
MCAST with optimizations, including adaptive device modeling,
and “ADM (d+e)+Table” is the adaptive table lookup model.
Here (d+e) represents the type of the adaptive device model and it
means fixed parameters (d) with Vbs=0 topology. Type (d+e) is
selected since it is the most popular type of adaptive device
models found in MOSFET. The accuracy and efficiency of the
generated adaptive device models are demonstrated by the
simulation results.

Old netlist read in by MCAST

.MODEL mypmos PMOS (LEVEL=8 TOX=4.2E-9 …)

.MODEL mynmos NMOS (LEVEL=8 TOX=4.2E-9 …)

M1 out in vdd vdd mypmos w=30u l=6u
M2 out in gnd gnd mynmos w=10u l=6u

New netlist generated
by MCAST

* GENERAL MODEL GPMOS GENERATED BY MCAST
.MODEL myp GPMOS TNOM=22 TOX=4.2E-9 ...
* GENERAL MODEL GNMOS GENERATED BY MCAST
.MODEL myn GNMOS TNOM=22 TOX=4.2E-9 ...

* DYNAMIC MODEL DM1: type (d+e), PMOS
* model parameters: TNOM=22 TOX=4.2E-9 ...
* instance parameters: w=30u l=6u
* topology: Vbs=0 (e)
.MODEL mypmos DM1

* DYNAMIC MODEL DM2: type (d+e), NMOS
* model parameters: TNOM=22 TOX=4.2E-9 ...
* instance parameters: w=10u l=6u
* topology: Vbs=0 (e)
.MODEL mynmos DM2

* USE DYNAMIC MODEL
* NO INSTANCE PARAMETER NECESSARY
N1 out in vdd vdd mypmos
N2 out in gnd gnd mynmos

* STILL USE GENERAL MODEL
N3 out in vdd vdd myp w=25u l=6u
N4 out in gnd gnd myn w=8u l=6u

Figure 5. New netlist for simulating models with MCAST.

A. Accuracy
The automatic generated adaptive device models from MCAST
are inherently very accurate. Figure 6 shows the comparison of
the transient analysis of a simple inverter. The automatic
generated adaptive device models yield exactly the same results
as manually implemented built-in model in SPICE3f5: the
absolute errors are less than 5e-6 compared to the built-in model.

Fig. 6. Accuracy comparison: transient analysis of an inverter.

Figure 7 shows the transient simulation results of another
benchmark circuits – VCO. The results with adaptive device
models match well with that of the built-in models.

Fig. 7 Accuracy comparison: transient analysis.

The accuracy of the adaptive table lookup model can be easily
improved by increasing the table sizes. In our practice, 4000
points are good enough for 2-D table lookup to get the same
accuracy as the built-in model.

B. Adaptive device modeling speedup
Several analog and digital circuits are selected as benchmark
circuits to test the speedup effects of adaptive device modeling.
Their characteristics are summarized in Table 3. From this table,
one should note that adaptive device models exist in both analog
and digital circuits. In some circuits, adaptive device models
repeat themselves hundred of thousand of times. For example, in a
standard cell library based digital design (ACCAS) two adaptive
device models cover all of the 1038 transistors.

TABLE 3. BENCHMARK CIRCUIT CHARACTERISTICS
ADM – ADAPTIVE DEVICE MODEL

ATLM – ADAPTIVE TABLE LOOKUP MODEL
Inde

x Circuit #MOS # ADM #ADTLM

1 One-shot 22 4 2
2 VCO 10 2 2
3 Power AMP 4 0 2
4 Ring Oscillator 12 0 2

5 Boeing
Comparator 38 2 2

6 Complex Cell 30 1 4
7 INV 2 0 2
8 INV Chain 8 0 2
9 NAND2 4 0 2
10 NOR2 4 0 2
11 AOI22 8 0 2
12 OAI22 16 0 2
13 ACCAS 1038 0 2
14 DFF 24 0 2
15 SRAM 6910 9 4
16 26-bit Adder 4274 18 6
17 13-bit Multiplier 9545 24 16
18 12-bit Divider 3081 22 8

Figure 8 shows a comparison among different model
implementations, including adaptive device model, built-in model
and auto model with normal optimizations in MCAST, of
different types of models, such as level 1, level 3, BSIM3, BSIM4
and BSIMSOI. The experiment is circuit-independent and only
the model evaluation times are normalized and compared. In pure
comparison of the evaluation costs of the different models, the
adaptive device models are 1.6x-2.69x times faster than the
manually coded built-in models and 1.6x-4x times faster than the
normal optimized auto models. The adaptive table lookup model
is at least three times faster than conventional analytical models.

1

3.44

9.25

13.97

1

3.4

8.43

11.83

1

3.4

7.68
8.47

1

3.3

5.786.07

1

3.1

55.08

0

2

4

6

8

10

12

14

E
v
a
l

C
o
s
t

(
N
o
r
m
a
l
i
z
e
d
)

BSIMSOI BSIM3 Level 1

AM(d+e)+Table AM(d+e) BuiltIn Auto w/ Opt

Fig. 8 Normalized model evaluation cost comparison.

 From Figure 8, we can also observe that 1) the simpler the model,
the less overhead there is for the automatic generated model. For
example, the auto model with optimizations is just 2%-3% slower
than built-in model for MOSFET level 1 and level 3 model and 2)
the more complex the device model, the more speedup there is
using adaptive device model. In terms of device evaluation cost,
the speedup for the BSIMSOI adaptive device model is 2.69x and

for adaptive table lookup model it could go up to 9.25x faster than
the manually coded built-in model.

We also compared the performances in transient analysis. Nine
analog and digital benchmark circuits, including power amplifier,
12-bit divider, etc., were used to demonstrate the speedup effects
of the adaptive device modeling of the MOSFET model of BSIM3
versus the built-in model (Fig. 9). For a fair comparison, fixed
time-step is used for both models and only transient CPU times
(device setup time not included) are compared. The performance
of the built-in model is normalized to one. For most of the
benchmark circuits, the speedup using adaptive models without
table lookup is more than two times. For analog circuit, using
adaptive models with table lookup can speed up simulation by a
factor of 4. For digital circuits where many devices are in uniform
size and have a fixed topology such as bodies connected to
sources can be found, the simulation speedup using design
adaptive table lookup models is at least 6x-8x.

0

2

4

6

8

10

IN
V

IN
V4

AC
CA
S

Ad
de
r

Mu
l

Di
vi
de
r

VC
O

P_
AM
P

Co
mp

S
p
e
e
d
U
p

W/O table lookup W/ table lookup

Figure 9. Normalized speedup of the adaptive device models compared to

the built-in model over nine benchmark circuits.

C. Overheads
Significant speedup in simulation time can be obtained using our
proposed design adaptive modeling method. However the design
adaptive modeling and table lookup methods introduce some
overhead, namely requires some time to generate and load ADM
models. However, after the first model generation, the models
stored in the memory can be used efficiently in many tasks
demanding repetitive simulations such as cell characterization,
optimization, noise and timing analyses. Furthermore, the
generated device models can be cached and are easily reusable in
an embedded circuit simulator via an application programming
interface. Considering the potential use of our proposed technique
in a higher level design automation task, the device setup time
(additional time needed to load multiple tables in our method) is
ignored in our comparisons of transient analysis.

VII. CONCLUSION
We have introduced the concept of design-adaptive device
modeling and presented a method for generating adaptive device
models to gain significant speedup in circuit simulation tasks.
Adaptive device models are design specific but much more
efficient to evaluate and can be dynamically loaded and unloaded

into target circuit simulator. The proposed method facilitates the
design information from the simulated netlist to generate adaptive
device models. Our prototype implementation can work with
compact device and behavioral models described by high-level
languages VHDL-AMS and Verilog-AMS and generate adaptive
device model implementation codes automatically.

The proposed method has been implemented in our compact
model compiler MCAST and targeted for three circuit simulators:
the open source SPICE3f5, Cadence’s SPECTREv4.46, and an
industry in-house simulator. Experimental results on a set of test
circuits have demonstrated that the generated adaptive device
models are very accurate with the error limited to numerical noise
range, and the speedup for circuit simulation can be as much as 8x
faster than simulation with human optimized built-in models.

VIII. REFERENCES
[1] K. Kundert, “Automatic Model Compilation – An Idea Whose Time

Has Come”, The Designer’s Guide, May 2002.
http://www.designers-guide.com/Opinion/modcomp.pdf

[2] Silvaco,http://silvaco.com/cgibin/news/showItem/2004_03_02_01.ht
ml, March 2004.

[3] L. Lemaitre, C. McAndrew and S. Hamm, “ADMS-Automatic
Device Model Synthesizer”, Proc. IEEE Custom Integrated Circuits
Conference, pp. 27-30, May 2002.

[4] B. Wan, B. P. Hu, L. Zhou and C. –J. R. Shi, “MCAST: An Abstract-
Syntax-Tree based Model Compiler for Circuit Simulation”, Proc.
IEEE Custom Integrated Circuit Conference, pp. 249-252, Sept.
2003.

[5] Tiburon Design Automation, http://www.tiburon-da.com/
[6] S. Liu, K. C. Hsu, P. Subramaniam, “AAMIT-ADVICE Modeling

Interface Tool”, Proc. IEEE Custom Integrated Circuits Conference,
pp. 6.6/1-6.6/4, May 1988.

[7] A. T. Yang, and S. M. Kang, “iSMILE: A Novel Circuit Simulation
Program with Emphasis on New Device Model Development”, Proc.
IEEE 26th Design Automation Conference, pp. 630-633, June 1989.

[8] R. V. H. Booth, “An Extensible Compact Model Description
Language and Compiler”, Proc. IEEE/ACM BMAS, pp. 39-44, Oct.
2001.

[9] H. Carter, “Modeling and Simulating Semiconductor Devices
Using VHDL-AMS”, Proc. IEEE/ACM BMAS, pp. 22-27, Oct.
2000.

[10] A. Rofougaran and A. A. Abidi, “A Table Lookup FET Model for
Accurate Analog Circuit Simulation,” IEEE Trans. Computer-Aided
Design, vol. 12, pp. 324-335, Feb. 1993.

[11] M.G. Graham and J. J. Paulos, “Interpolation of MOSFET Table
Data In Width, Length, and Temperature”, IEEE Trans. Computer-
Aided Design, vol. 12, pp. 1880-1884, Dec. 1993.

[12] T. Shima, T. Sugawara, S. Moriyama and H. Yamada, “Three-
Dimensional Table Look-Up MOSFET Model for Precise Circuit
Simulation”, IEEE J. Solid-State Circuits CS-17, 3, pp. 449-454,
1982.

[13] T. Shima, H. Yamada and R. L. M. Dang, “Table Look-Up MOSFET
Modeling System Using a 2-D Device Simulator and Monotonic
Piecewise Cubic Interpolation”, IEEE Trans. Computer-Aided
Design CAD-2, 2, pp. 121-126, 1983

http://www.designers-guide.com/Opinion/modcomp.pdf
http://silvaco.com/cgibin/news/showItem/2004_03_02_01.html
http://silvaco.com/cgibin/news/showItem/2004_03_02_01.html
http://www.tiburon-da.com/

	INTRODUCTION
	DESIGN-ADAPTIVE DEVICE MODELS
	ADAPTIVE LOW-DIMENSIONAL TABLE LOOKUP MODELS
	DESIGN-ADAPTIVE DEVICE MODELING FLOW IN MCAST
	IMPORTING ADAPTIVE DEVICE MODELS INTO TARGET SIMULATORS
	SPICE3f5
	SPECTRE

	EXPERIMENTAL RESULTS
	Accuracy
	Adaptive device modeling speedup
	Overheads

	CONCLUSION
	REFERENCES

