
Behavioral Simulator of Analog-to-Digital Converters for
Telecommunication Applications

Grzegorz Zareba, Olgierd A. Palusinski

University of Arizona
1230 E Speedway Blvd

Tucson, AZ, 85721
(1) - 520 626 70 78

zgrzes@ece.arizona.edu, palusinski@ece.arizona.edu

ABSTRACT
This paper presents a new Behavioral Simulator capable of
modeling various types of Analog-to-Digital Converters (ADCs).
Behavior of Basic Building Modules (BBMs) of ADCs, such as
for example sample-and-hold, and comparators is encapsulated in
Dynamic Linked Libraries (DLLs). Predefined behavioral models
of BBMs and a netlist describing connections between them are
used to form a behavioral representation of simulated ADC. As an
example of BBM, a behavioral model of comparator module is
presented. An 8-bit multi-stage ADC is used to demonstrate
simulation process.

1. INTRODUCTION
Analog to Digital Converters (ADCs) [1] built in CMOS
technology are essential elements of wireless communication
systems (for example in zero-IF receivers [2]). In communication
applications many features of data converters are important: high
speed, wide dynamic range, and low power consumption (for
portable devices).

To verify the performance of designed ADC several behavioral
level simulations have to be performed. Many different circuit
structures are used for ADC’s implementation [1] (flash, n-stage
pipeline, folding and interpolating technique) such that behavioral
simulation of ADCs requires a simulator, which is dedicated to a
given converter structure [3] or uses a standard mixed-mode
simulator [4]. Dedicated simulators have very limited utilization
and due to excessive programming effort needed for
implementation of converter model in such simulators they are
very rarely used. The second method of modeling ADCs is based
on a specialized simulation language (Mast, VHDL-A, or
Verilog-A), is error-prone, and extremely expensive in terms of
computer time. Another restriction in using standard simulators
(for example Simulink) is that in many cases it is very difficult or
even not possible to properly build behavioral models [4][5] and
simulate some important imperfections of converters for example
clock jitter and glitch energy in analog switches.

A new approach in behavioral modeling of ADCs presented in
this paper is based on utilization of Dynamic Linked Libraries
(DLLs) to encapsulate behavior of basic blocks of ADCs. Basic
Building Modules (BBMs) of ADCs such as comparators, folding
circuits, analog switches, binary encoders and many others are
used to form a behavioral model of various types of ADCs.

The main advantage of this approach is that all the pre-defined
BBMs are independent from the simulator core, and because DLL
modules are executable files simulation time is significantly
reduced (no translation or interpretation of simulation language
commands is needed).

Presented Behavioral Simulator has been developed in VC++
environment with some external components developed in C#
language.

2. DESCRIPTION OF THE BEHAVIORAL
SIMULATOR
The Behavioral Simulator consists of three main parts: library of
BBMs, configuration files, and simulator core (Figure 2-1).

Figure 2-1 Block diagram of the Behavioral Simulator.

The library of BBMs includes all DLL modules, which are used to
build a behavioral representation of simulated ADC. A set of
configuration files allows description of particular architecture of
an ADC using a Net-list, and a Parameters files. A simulation
session is described by simulation parameters kept in a
Configuration file.

The simulation core is divided into two separate modules:
Preprocessing Module and Simulation Module. The
Preprocessing Module is responsible for preparing a behavioral
model of an ADC in the form of a dynamic multilevel list (static
structure is not suitable because simulator is to be applied for
simulation of various converter types). The Simulation Module
performs behavioral simulation of given ADC and allows
post-processing of data obtained during simulation (including
calculation of converter’s performance metrics).

Simulation framework, presented in Figure 2-1, handles various
converter structures, major circuit imperfections, and it is much
simpler to use than existing simulators.

2.1 Preprocessing Module
The Preprocessing Module creates a dynamic multilevel structure,
which fully describes architecture of simulated A/D converter
(Figure 2-2).

Figure 2-2 Dynamic list used to define internal structure of
ADCs.

The dynamic multilevel structure presented in Figure 2-2 is
created using two text files: Net-list and Parameters file. The first
file describes connectivity between BBMs used to form internal
structure of an ADC. The second file provides parameters
associated with all used BBMs. Separation of behavioral modules
(BBMs) from their parameters allows for easy and simple reusing
of the same converter’s structure for multiple simulations with
different parameters of BBMs. In HDL based simulators all
parameters of behavioral models are kept inside these models [6].
Because of this it is necessary to implement and store several
identical designs differing only by the parameter values in order to
investigate behavioral response of the system with various sets of
parameters.

Figure 2-2 presents a simplified structure of the multilevel list
describing simulated ADC. The multilevel list consists of BBM
Objects, which corresponds to a set of BBMs used to create
behavioral representation of simulated ADC. BBM Objects are
used to link the behavioral description of the block (kept in DLL
files) with the simulator. Each BBM Object has a pointer to a
Data Object. The Data Object is used to keep a set of parameters
of the particular BBM, for example value of droop rate in the case
of a sample-and-hold module. All parameters of BBMs are kept in
the Parameters file, and are copied into the Data Objects during
creation of the ADC model.

The Preprocessing Module provides a convenient tool for
modifying parameters of BBMs. A screenshot of a dialog used for
editing parameters of BBMs is presented in Figure 2-3.

Figure 2-3 Preprocessing Module – dialog for setting up
parameters of comparator module.

2.2 Dynamic L inked L ibrar ies
DLLs are similar to the standard library in that they both contain
sets of functionality that have been packaged for use by
applications [7]. The difference is visible when the application
links to the library. In the case of a standard library module (LIB)
the application is linked to the library during the compile and
build process. In the case of a DLL the application links to the
library when the application is run. The DLL file remains a
separate file that is referenced and called by the application.

The main reason for using DLLs in developed simulator is that
DLL files can be updated and modified without having to update
the application executable. Another advantage of using DLLs is
that any programming language or environment (VB, VC++, or
C#) capable of generating DLL modules can be used to create a
behavioral description of BBMs.

Figure 2-4 illustrates the way in which a DLL module
communicates with the Simulation Module.

Figure 2-4 Communication inter face between the simulator
and a DLL module.

The main interface between a DLL module and the simulator is a
Data Object (Figure 2-2 and Figure 2-4). Each Data Object is
directly “connected” to a BBM represented by BBM Object. The
Data Object is divided into three separate sections: parameters,
inputs, and outputs section. The Parameters section keeps all

parameters of the block, which are read from the Parameters file
during initialization of the BBM Object. This section is used by
the DLL module to determine current parameters of the BBM, and
can be modified only by the simulator core; the DLL module can
only read these parameters. The Input section holds current values
of the input terminals and is read by the DLL module before new
output values are calculated. When the BBM module is activated
it calls RunBlock(BBlock *) method from the DLL module and
waits until the DLL module updates the Output section. The
RunBlock(BBlock *) method implements the behavior of the
BBM, the BBlock data structure is the communication interface
between the DLL module and the simulator. Behavior of a BBM
can be described using for example, mathematical formulas,
look-up tables, or logical statements.

2.3 Simulation Module
The Simulation Module is partially based on an event driven
simulation technique [8] and a data flow technique [9]. The data
flow technique is similar to the technique employed in data flow
computers e.g. an action is taken only if all inputs of the object
have valid data, and then results of performed operation is
distributed among all objects connected to the output of the
activated object. Combination of these two techniques results in a
significant reduction of the simulation time.

Another important feature of developed simulation algorithm is
reduction of generated events due to introduction a new group of
BBMs called passive modules. In a standard event-driven
simulator all objects, which are used during simulation can
generate events. In the case of large systems, the number of
events, which are to be processed during simulation, can slow
down the simulation. To overcome this problem in addition to a
standard group of BBM, which generate events, a new group of
passive BBMs have been designed. Passive BBMs cannot
generate events; their activation depends on other modules: both
active and passive BBMs. Proper interaction between all BBMs is
achieved by utilization of the data flow technique.

Before the simulation starts the Preprocessing Module initializes
the event queue. During initialization each active module posts its
first event and sets the time when the second event will be posted
(the time of next event is kept inside the BBM Object). When an
active module is called it automatically posts next event, and then
activates all passive modules connected to its output or control
terminal. Each activated module (BBM Object in Figure 2-2)
checks its input(s) to determine if the input values are valid. If the
input values are valid the DLL module is called to calculate the
new output value. When the new output value is known the
module distributes it among all modules connected to its output. If
at least one input value is not valid the passive module calls the
module connected to its input. This process is repeated until all
inputs of the activated passive module are valid, and then the DLL
module is called to calculate the new output value. Any passive
module can call its DLL module only if all its input terminals
have valid values, which is similar to the data flow concept.

Before each simulation session a user can set simulation
parameters such as: simulation time, simulation mode, sampling
frequency and type of the input signal. A simulation setup dialog
is presented in Figure 2-5.

Figure 2-5 Simulation setup dialog.

3. BASIC BUILDING MODULES
Basic Building Modules (BBMs) have been designed as separate
modules from which several architectures of ADCs, such as flash,
pipelined and folding, can be built and simulated. The interaction
between the Simulator Module and BBMs during simulation
process is limited to control and management operations. The
Simulator Module is primarily responsible for distributing data
between all BBMs and checking for new events in the event
queue.

The behavior of a BBM is entirely encapsulated inside the DLL
module; therefore simulation results depend on interaction
between BBMs (DLLs) and imperfections included in the
behavioral description of BBMs.

Each BBM is defined by three main elements: a BBlock data
structure, a set of terminals, and a DLL file (Figure 3-1).

Figure 3-1 Structure of BBM.

The BBlock data structure defines parameters and variables used
by BBMs during simulation. The set of terminals includes: Input,
Output and Control lines, which define the interface between
particular BBM and the rest of the circuit.

The functionality of the BBM is defined inside the DLL module.
The DLL determines the behavior of BBM, how inputs are used
and how outputs are generated.

Utilization of DLL modules gives very good flexibility in defining
internal structure (behavior) of a BBM. There are no restrictions
in programming language, which can be used to prepare the DLL
module. Any programming environment, which supports
generation of DLL modules, can be used to create behavior of a

BBM (for example VC++,C# or Visual Basic). There are also no
restriction in terms of possible data structures and commands used
to describe behavior of BBMs. Advanced mathematical formulas
and look-up tables can be easily used. In the classical simulation
languages such Verilog and VHDL [10] only limited data
structures and commands can be used to create behavioral models
of simulated circuits, which sometimes complicates creation of
models and additionally extends simulation time.

Several BBMs have been developed to support simulation of
flash, multi-stage, pipelined, and folding ADCs:

• Input Signal Module

• Clock Source Module and Clock Delay Module

• Comparator

• Register, Shift Register and Digital Parallel Register

• Sample and Hold

• Folding circuit

• Voltage Reference with Resistor Ladder

• Sub-ADC and Sub-DAC – for pipeline architecture

• Digital Correction – for pipeline architecture

• Binary encoder

• Analog Switch

The main advantage of encapsulation of BBMs in DLL files is
that the behavior of a particular Module is kept away from the
behavior of other Modules and from the Simulation Module. In
many cases restrictions imposed on standard behavioral or
mixed-mode simulators led to necessity to combine two or more
features or imperfections of functionally separated BBMs. For
example, including variations of reference voltage in the model of
comparator [5] will hide the real behavior of the Reference
Voltage module and will result in less accurate simulation results.

3.1 Example of BBM – model of comparator
Behavior of a comparator circuit is approximated using five main
regions of operation (Figure 3-2).

Figure 3-2 Regions of operation of comparator module.

These five regions include: two regions, in which the comparator
works as an amplifier (finite gain), and three regions, in which the
comparator is saturated. Two regions in which the comparator is
saturated lie on the right and left side of the hysteresis points. The
third region of saturation is located between the hysteresis points.
In this case the output of comparator can have two different
values: min and max. To determine the proper output value, the
slope of the input signal has to be known.

Following equations are used to determine the output value in
described regions of operation of Comparator module.

Saturation regions: REG_NEG + REG_FLT

out minV V=

Linear region: REG_MIN

()
2

max min
min in

out

A V V
H V

V
A

⋅ −
− −

=

where

minH - negative hysteresis point (when the input signal increases),

A - finite gain,

inV - input voltage.

Linear region: REG_MAX

()
2

max min
max in

out

A V V
H V

V
A

⋅ −
− −

=

where

maxH - positive hysteresis point (when the input signal decreases).

Saturation regions: REG_FLT + REG_POS:

out maxV V=

Presented behavioral model of Comparator Module can be used to
investigate following imperfections: finite gain, input offset
voltage, slew rate, and hysteresis. All listed imperfections can be
selectively turned on and off.

4. SIMULATION SETUP
Simulation of ADCs with utilization of developed Behavioral
Simulator consists of several steps. In the first step, a design of
ADC built using defined BBMs has to be prepared. The simulator
requires two text files to create behavioral representation of the
ADC: Net-list and Parameters files. It would be very
inconveniently, although possible, to create these two files by
hand.

Two options were considered in terms of creating Net-list files:
separate graphical module attached to the simulator framework
and use of existing graphical interface from available simulation
tools. The first option would involve extensive programming;
therefore the second option was chosen. Among many available
simulation tools, PSpice appeared to be very suitable for this task.

PSpice Schematics is an original interface of PSpice simulator
used to create schematics of electronic systems. Because
developed simulator uses different basic elements than those
included in PSpice Schematics libraries, a new library with all
designed BBMs was created. Once the schematic is completed,
the net-list can be generated. The net-list generated by PSpice
Schematics is not compatible with the net-list required by the
Behavioral Simulator. A special translation application,
Net2Net.exe, was developed (using C# language [11]) to convert
PSpice net-list into the Behavioral Simulator’s Net-list. The
Net2Net.exe application generates also Parameters file. Initially,

all parameters of used in the design BBMs are set to their default
values. Later, these default values can be changed using the
Preprocessing Module.

4.1 Simulation Modes
Three main simulation options are available in the simulator
(Figure 2-5): test, static, and dynamic simulation. The first option
is used for testing new BBMs and evaluating their performance.
The static and dynamic simulations are used to obtain static and
dynamic performance metrics of simulated converters.

In the static simulation mode offset and gain error are calculated
as well as Differential Nonlinearity (DNL) and Integral
Nonlinearity (INL) errors. The dynamic simulation mode is used
to achieve information about dynamic performance of the
converter, mainly SFDR.

The static and dynamic simulation differs only in the shape of the
input signal and some post processing procedures used to
determine output data format, which will be used to calculate
performance metrics. For a static simulation a ramp signal is
generated by the Input Module, for the dynamic simulation a
sinusoidal signal is required.

4.2 Simulation Results
A special BBM called Register is used to collect simulation
results. A Register module captures data at certain moments in
time according to the control signal. Functioning of Registers is
similar to functioning of Current/Voltage Markers in PSpice. A
Register module can be placed at any point of the circuit.
Captured data are stored in a text file. Registers can have from 1
to 16 input lines, and therefore can capture a vector with
maximum 16 input values plus a time value at which the input
vector was captured. To illustrate the use of Registers an example
of simple circuit is presented in Figure 4-1.

Figure 4-1 Example circuit with Register modules.

Register U20 is used to capture the input signal according to the
clock signal generated by Clock Module U21. Register U22 is
used to capture output values of comparators U12, U13 and U8.
Data collected by Register U22 can be seen as the output values
generated by a 2-bit flash ADC.

It is necessary to place one Register module at the output of the
simulated converter in order to collect output values generated
during simulation. A text file created by the ‘output’ Register can
be used to calculate performance metrics of the converter (INL,
DNL, or SFDR) or just to examine the output data.

Registers are ideal modules therefore they do not affect the
functioning of the simulated converter and can be placed at any
output terminal of any BBM.

5. SIMULATIONS OF ADCs
A simple 8-bit multi-stage ADC was chosen to demonstrate the
simulation process. The simulated ADC comprises 17
comparators, 17 analog switches, 3 binary encoders, one voltage
reference with resistor ladder, and several Registers (in total 46
BBMs). The schematic of the converter is presented in Figure 5-1.

Figure 5-1 Schematic of 8-bit multistage ADC.

Several simulations were performed, starting from the simulation,
where all BBMs were ideal. The main purpose of using ideal
modules is to confirm proper functioning of the design. When the
design is validated, some imperfections can be included.

Presented circuit was simulated with the following imperfections:

Reference voltage with resistor ladder:

• stability 99.5%

• resistor ladder mismatch 0.5 %

Comparators:

• input offset voltage: random, +/- 3 mV

Simulation time in the static simulation mode is less than 10
seconds (PIII 733 MHz, 256 MB RAM). Simulation results
presented in Figure 5-2 include: offset and gain error, DNL and
INL errors before and after gain correction.

Figure 5-2 Dialog with simulation results.

The graphical illustration of the DNL and INL errors is presented
in Figure 5-3 and Figure 5-4.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Figure 5-3 DNL error of simulated ADC.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Figure 5-4 INL error of simulated ADC.

6. Conclusions
Presented Behavioral Simulator allows modeling various
converter structures including flash, multi-stage, pipelined, and
folding ADCs. Imperfections of Basic Building Modules (BBMs)
are part of the behavioral description of BBMs and not of the
simulator. This approach simplifies modeling and reduces
simulation time as well as gives more realistic simulation results.

Imperfections of BBMs can be selectively turned on and off,
therefore it is possible to investigate and estimate an influence of
a chosen limitation of a single BBM on the converter
performance. The Behavioral Simulator can evaluate static and
dynamic responses of the ADC such as offset and gain error,
DNL, INL, and SFDR.

Two examples show time efficiency of developed simulator. First,
an ideal model of 8-bit multistage ADC described in previous
section has been built using Simulink. Time needed to complete
simulation in Simulink has exceeded 6 minutes, while the
developed simulator has completed simulation in less then 10
seconds. The results of both simulations were identical. Adding
any imperfections in the model developed in Simulink, would
extend preparation time of the circuit, and would significantly
extend the simulation time, (because the number of blocks used to
implement these imperfections would be increased as well).
Another inconvenience in the case of Simulink is access to
parameters, which further extends time needed to obtain final
simulation results. Second example is a BBM developed to
support simulations of switching activities in a binary decoder
used in current steering Digital-to-Analog converters (DACs).
This BBM is needed for estimation of clock jitter in such DACs.

Model of the BBM developed in Matlab allowed for simulations
up to 8-bit binary encoders, with simulation time about 20
minutes. The same block converted into a DLL module allows for
simulations up to 16-bit binary encoders with simulation time less
than 30 seconds (10 seconds for 8-bit encoder). Simulations of
more than 8-bit binary encoders in the case of using Matlab are
not practical due to enormous time needed to obtain simulation
results.

7. ACKNOWLEDGMENTS
This work was partially carried out at the Center for Low Power
Electronics and Connection One Research Center.

8. REFERENCES
[1] David F. Hoeschele. Analog-to-Digital and

Digital-to-Analog Conversion techniques. John Wiley &
Sons, New York, 1994.

[2] Da-You Sun, Jian Xu, Zero-IF topology, Electronics
Letters, Volume: 36, Issue: 12, 8 June 2000, Pages:
1009-1010.

[3] Venkata K. Navin at all. A Simulation Environment for
Pipelined Analog-to-Digital Converters. IEEE International
Symposium on Circuits and Systems, June 9-12, 1997,
Hong-Kong.

[4] Gashing Ruan. A Behavioral Model of A/D Converters Using
a Mixed-Mode Simulator. Custom Integrated Circuits
Conference, 1990, Proceedings of the IEEE 1990.

[5] F. Maloberti, P. Estrada, P.Malcovati and A. Valero.
Behavioral Modeling and Simulations of Data Converters.
Proceedings of International Workshop on ADC Modeling
and Testing (IWADC '00), Vienna, Austria, pp.229-236,
September 2000.

[6] E. Christen, K. Bakalar. VHDL-AMS – A Hardware
Description Language for Analog and Mixed-Signal
Applications. IEEE Transactions on Circuits and Systems,
Analog and Digital Signal Processing, Vol. 46, No. 10,
October 1999.

[7] D. Chapman, J. Heaton. Visual C++ in 21 Days;
Professional Reference Edition. Sams Publishing, A
Division of Macmillan Computer Publishing, 1999.

[8] R. A. Saleh, A. R. Newton. Mixed-Mode Simulation, Kluwer
Academic Publishers, Boston, 1990.

[9] K. Hwang, F. A. Briggs. Computer Architecture and Parallel
Processing, McGraw Hill Inc., 1985.

[10] S. Ghosh. Hardware Description Languages – Concepts and
Principles. IEEE Press Series on Microelectronic System,
New York, 2000

[11] B. Wagner. C# Core Language Little Black Book, The
Coriolis Group, LLC, 2002.

