
Fast Time-Domain Simulation Through Combined
Symbolic Analysis and Piecewise Linear Modeling

Hui Zhang and Alex Doboli
Department of Electrical and Computer Engineering

Stony Brook University, Stony Brook, New York 11794
{huizhang, adoboli}@ece.sunysb.edu

ABSTRACT
This paper presents a method for fast time-domain simulation of
analog systems with nonlinear parameters. Specifically, the paper
focuses on Σ−∆ analog-to-digital converters (ADC). The method
generates compiled-code simulators based on symbolic analysis.
Code is optimized using loop invariant elimination, and constant
folding. Circuits are described as structural macromodels. Non-
linear parameters are expressed using piecewise linear (PWL)
models. The paper presents a technique for automatically creating
PWL models through model extraction from trained neural
networks (NN). As compared to existing behavioral simulation
methods for Σ−∆ ADC, this technique is fully automated and more
accurate. In our experiments, compiled-code simulation was about
100x faster than Spectre (numerical) simulation.
1. INTRODUCTION
Systems-on-chip (SOC) are emerging as the next showstopper in
microelectronics. In spite of their commercial promise, designing
mixed-signal SOC continues to be a challenging and expensive
task, which demands expertise in many orthogonal areas. Also,
there is limited CAD support to boost design productivity. It is fair
to say that SOC design has a bottleneck in the steps of designing
RF and analog IP cores, as well as integrating and verifying the
final design. Existing research (please refer to [6] for an overview)
offers remarkable solutions to synthesis of analog circuits, like
opamps, operational transconductors (OTA), comparators, and so
on. The next step is to tackle synthesis of complex analog and
mixed-signal systems, like ADC, DAC, PLL, and transceivers. For
this endeavor, however, existing analog and mixed-signal
simulators [5,6,10], which are the core of analog synthesis [6], are
still too slow to be used inside the SOC synthesis loop, experience
numerous stability problems [5], and are unable to exploit the
specifics of circuits and systems.

Vlach and Singhal [13] offer a comprehensive presentation of the
fundamental simulation algorithms. For speeding-up simulation,
behavioral models are used, so that irrelevant details are abstracted
away. Please refer to [14] for the most recent advancements in
behavioral modeling and simulation. Circuit models are of two
kinds: structural (physical) and mathematical models. Structural
models offer a qualitative insight into the circuit, but they do not
give any quantitative perspective. Hence, for analog synthesis,
structural models must be complemented by mathematical models,
which express quantitative dependencies between the design
parameters and performance attributes of a circuit. Physical
modeling methods, in general, simplify a circuit to a reduced sub-
circuit that includes only the dominant devices. Mathematical
modeling includes linear and non-linear regression, Volterra
series, Pade approximations, wavelet functions, and NN [14]. The
most important limitations of existing modeling techniques include
difficulties in handling nonlinear parameters and large circuits.
Also, large amounts of sampling data are needed for modeling.

This paper presents a new approach to fast time-domain simulation
of analog systems that contain nonlinear parameters. Without
trading-off accuracy, the proposed technique achieves speed-ups
of more than 100x as compared to Spectre (numerical) simulation
by generating compiled-code simulators. Code generation relies on
calculating symbolic expressions for the output voltages and

currents, and the state variables of a system. Code optimization
identifies and eliminates all loop invariants [11], and propagates
constant sub-expressions [11] present in the simulation loop. To
avoid the large memory requirements specific to symbolic
analysis, the suggested method exploits regularities of a net-list
[3]. It is known that regularities are very efficient for AC modeling
and simulation of linear systems [3]. Code generation uses detailed
structural macromodels for the building blocks (OTA, opamp, and
comparator), including non-idealities, like finite gain, poles and
zeros, CMRR, phase margin, fall and rise time, and so on. This
paper concentrates on Σ−∆ ADC [2] simulation as a case study.

Nonlinear parameters are described using PWL models. The paper
presents a new algorithm for extracting PWL models from trained
NN. NN are capable to learn any type of nonlinear mapping based
on their well-known property of universal approximators [15]. The
proposed method addresses the need of automatically creating
PWL models [16]. The extraction algorithm approximates the
sigmoidal functions of the intermediate neurons with an adaptively
chosen number of linear segments. PWL models result for the
nonlinear parameters through composition of the linearized
neurons. NN training used sampled design points obtained with
Analog Design Automation’s Creative Genius v1.5 analog circuit
synthesis tool.

Compared to other fast simulation methods for Σ−∆ ADC [5,10],
our technique is fully automated, and uses detailed circuit models.
Hence, it offers the benefit of more accurate simulation, and thus
the advent of faster analog design closure. ADC simulation in
[5,10] relies on behavioral models, which are known to be
imprecise [5]. Also, the proposed simulation approach does not
require extensive expertise in ADC, or analog circuit design.
Finally, our simulation technique belongs to the class of compiled-
code simulators. To the best of our knowledge, this is the fist
attempt of addressing compiled-code simulation for continuous-
time systems with non-linear parameters. Existing compiled-code
simulators [1,8,9] are for discrete and event-driven systems.

This paper is organized as six sections. Section 2 discusses the
simulation methodology. Section 3 presents modeling of the ADC
blocks. Next, system modeling is detailed, and simulation results
are given in Section 5. Section 6 discusses our conclusions.
2. SIMULATION METHODOLOGY
Figure 1 presents the proposed circuit modeling method based on
PWL models. It generates nonlinear mathematical models for the
parameters of a structural circuit model. The method takes the
circuit schematic as input. First, the structural macromodel of the
circuit is retrieved from a library of manually built models.
Section 3 details some of the models. Then, sampling data is
collected for creating PWL performance models. Transistors in the
circuit schematic are sized with a circuit synthesis tool, and
simulation data on the circuit behavior is collected using transistor
level simulation (using simulators like SPICE or Spectre). This is
a one-time process, as simulation data is stored in a database.
Next, post-processing links the simulation data to the parameters
in the structural model. Section 3 details some of the equations
used in post-processing. The last step automatically produces
PWL models for the nonlinear parameters. Section 3.C presents
the proposed PWL modeling method.

Figure 1: Circuit modeling methodology

Figure 2 shows the system simulation method, and the generic
structure of cascaded Σ−∆ ADC [2]. The first step finds the
structural regularities in the ADC architecture. Figure 5 shows the
regularities for a 3rd order Σ−∆ ADC. Then, symbolic expressions
are calculated for each of the found sub-structures (patterns) using
a method that symbolically replaces time derivatives of state
variables with their differences (based on Backward Euler
Integration [13]). Section 4 discusses this step. The next step links
the parameters in the symbolic expressions to the building block
parameters. Finally, optimized code is generated for time-domain
simulation, including code for selecting the correct linear segment
in the PWL models.

Figure 2: Σ−∆ ADC structure and system simulation method

3. CIRCUIT MODELING
This section presents the modeling of the building blocks in an
ADC: OTA, opamp, and comparator circuits.
A. OTA and opamp modeling. For OTA modeling, we started
from the macromodel proposed by Gomez et al [7]. We extended
the model to fully differential mode (DM) by duplicating the
single end stage, the common mode stage, the intermediate and
output stages, and the dominant pole stage. Figure 3 shows the
model.
Next step related the device parameters in the macromodel to the
data collected through SPICE and Spectre simulation during
analog circuit synthesis. We used the relationships proposed by
Gomez et al [7]: (1) Vos resulted directly through SPICE/Spectre
simulation; (2) Ccm = 1 / (4 π |Zicm(f1)|); (3) Cd= 1/(2πf1Zidm[Im]|f1)
- Ccm; (4) Rd = Zidm[Re](Cd + Cm)2 / Cd

2; (5) C3 depends on the
position of the first pole (given by SPICE simulation); (6) L4
relates to the dominant zero (offered by SPICE simulation); (7)
1/(RoCo) is the frequency of the dominant pole; (8) Ro results from
SPICE/Spectre simulation, directly; (9) R1, R2, L1 and L2 are
determined by common mode zeros. Currents Idm and Icm depend
nonlinearly with voltages Vicm and Vidm. Nonlinear dependencies
were expressed as PWL models obtained through model extraction
from NN. The extraction method was discussed in Section 3.C.
The opamp structural model includes three stages. (1) The input
stage of the fully differential opamp model is the same as the input

stage of OTA model. (2) The intermediate stage describes the two
dominant poles in differential mode. (3) In the output stage, we
added a dc bias voltage to the differential output voltages. The
bias voltage is needed for transient analysis.

Figure 3: OTA structural macromodel

B. Comparator modeling: Figure 4 presents the comparator
model. This structural model was based on the model by
Moscovici [11]. The comparator model has the same input stage as
the OTA and opamp models. The nonlinear Gm stage expresses
the self-limiting behavior of the differential pair by using a
hyperbolic tangent function. Gm is bounded to the range -Icon and
Icon. As explained in [11], the two diodes specify a certain time for
the slew limited mode of the circuit. The I-V characteristic of the
diodes is expressed as PWL functions using the proposed model
extraction technique. R3C3 and R2C2 are the two poles of the
comparator, and R3C3 is the delay time for large input overdrive
voltages.
Following relationships were used to relate the macromodel
parameters to the data collected using SPICE/Spectre simulation
during circuit synthesis: (1) Rd, Cd, and Ccm are obtained using the
same formulas as for the OTA and opamp input stages; (2) product
K1 R1 was set to 1; (3) R2 C2 corresponds to the 2nd pole; (4) R3 C3
is the 1st pole/ delay time; and (5) Vh, Vl are related to the
minimum and maximum output voltages.

Figure 4: Comparator structural macromodel
C. PWL Modeling of Nonlinear Parameters. NN are capable to
learn any type of nonlinear mapping based on their well-known
property of universal approximators [15]. For system simulation,
the implicit model embedded in an NN must be extracted as a
symbolic relationship, so that the models of the building blocks
can be composed together into the system model. NN cannot be
directly composed. Most model extraction techniques were
developed for classification, which is different from our problem
(for a review see [17]). Recently two new techniques have been
proposed to extract linear models for regression problems [18,19].
The main steps of the two extraction processes are as follows: A 2-
layer NN is first trained and pruned. In [18] the activation function
of each hidden neuron is then approximated with a fixed set of
PWL functions - three or five. The input space is then split into a
set of regions for each hidden neuron, such that an input point in
one of the regions activates one PWL function. For each non-
empty intersection of input regions - one for each hidden neuron -
the output activation function can be expressed as a linear
combination of the input variables. The method proposed in [19]
differs from [18] in the way the linear models are generated, and

how the limits of the input regions for each valid model are
determined. None of the methods chooses a different number of
linear segments per each hidden neuron depending on their
activation region. As a result, the PWL approximations are coarse.
The PWL extraction approach proposed here differs from [18,19]
by approximating the activation function of each hidden neuron
with a variable number of linear segments depending on the
neuron's activation region. A clustering algorithm automatically
detects the number of segments for each hidden neuron as well as
its limits. This accuracy of the PWL approximation is thus
superior to the one in [19].
Problem definition: The task is to approximate a nonlinear
mapping represented by a trained feed-forward NN with a PWL
mapping. We consider a three layer feed-forward network with N
neurons in the input layer II, H neurons in the hidden layer HH,
and O neurons in the output layer OO. The weight matrix between
the input and the hidden layer is WIH = {wji, j = 1...H; i =
1...N+1}, where wji is the weight of the connection between input
neuron i and hidden neuron j. The input layer and the hidden layer
are both augmented with a bias neuron with a constant output of
one. The weight matrix between the hidden and the output layer is
WHO = {wkj, k = 1...O; j = 1...H+1} with wkj the strength of the
connection between output neuron k and hidden neuron j. Hidden
neurons have a sigmoidal activation function, and the output
neuron a linear one.
Extraction finds a set of L linear models of the following form:

LL = al
1 x1 + al

2 x2 + ... + al
N xN + al

N+1,
l = 1 ... L; al

(.) ∈ ℜ, where xi is the output of a neuron in the II
layer. The region in the input space where the l-th model is valid is
defined by a set of linear constraints of the form:

CCl = cm
1 x1 + cm

2 x2 +... + cm
I xN + dm {≤; ≥} 0;

m =1...Ml; cm
i, dm ∈ ℜ. Ml is the number of constraints for model

l.
Model l is active, if all constraints in CCl are satisfied for a set of
input values x1... xI, and inactive, if at least one of the constraints
is violated. The input space region, which satisfies a constraint set
CCl, is called the valid region of model l. All constraint sets CCl
must satisfy the following two requirements:
• Validity: The valid regions of any pair of linear models must

not intersect in any point in the input space:
CCp∩ CCr = ∅, for p ≠ r.

• Minimality: The set of constraints in CCl is minimal. Thus,
removing any constraint changes, the valid region of the
model.

The first step of the proposed PWL model generation technique is
the training of a neural network (NN) using the back-propagation
algorithm until a desired accuracy is achieved on a test data set.
Second, a pruning method eliminates insignificant weights and/or
hidden neurons. Third, the sigmoidal activation function of each
hidden neuron is approximated with a PWL function with a
variable number of segments. A clustering algorithm automatically
determines the number of segments, its limits, and the linear
approximation on each segment. Finally, the PWL functions of the
hidden neurons are composed together to generate the PWL
functions of the model output. The regions were each linear output
model is active are found by iteratively solving a linear system of
inequalities, and adjusting its limits. In this paper, we focused on
clustering and PWL model extractions, as they are the more
important components of the method. Additional details are given
in [4].
Clustering Algorithm: The activation function of hidden neurons is
the sigmoidal function φ(x)=1/(1+e-λ x), with 0 < λ ≤ 1. The
weighted sum inputs into a hidden neuron and into an output
neuron are respectively hj = ∑i=1

N wji xi , and hk = ∑j=1
H wkj yj. xi is

the output of the input neuron i. The output of the hidden neuron j
is yj=φ(hj), and that of the output neuron yk is yk = hk.

The clustering algorithm approximates the nonlinear sigmoidal
activation function of each hidden neuron with a group of PWL
functions. The clustering process determines the number of linear
regions as well as their limits. The idea is to group input points -
sampled from the input region of interest - that correspond to the
same slope of the activation function. The main feature of the
clustering algorithm is the stopping criteria, which ends the
algorithm when an optimal number of clusters are found.
The first step consists in finding the activation values of each
hidden neuron by using all the available input data points (xn) to
evaluate the weighted sum hj, and the output yj of the sigmoidal
function yj= φ(hj(xn)). Then, the output points (yj) are sorted in
ascending order, and only distinct activation points are selected for
clustering - Ni. The clustering algorithm is a modified
agglomerative clustering technique [17]. First, a linear segment
passing through each pair of consecutive output values is defined
by computing its slope and intercept. The distance between two
such segments is defined as the cosine of the angle between them

dcos(cr1, cr2)= (vr1vr2
T)/(|vr1||vr2|)

cr(.) are the indices of two segments or clusters, and vr(.) are the co-
ordinates of the vector through the two points of the initial
clusters.
The clustering starts with a number of clusters equal to the number
of linear segments between consecutive output points. It then
iteratively attempts to merge the closest pair of clusters until a
stopping criteria is reached. The criteria to stop merging is:

J(t) = Nc(t)/(Ni-1) + 1/Ni ∑Ni
n=1 |ylj(xn) - yj(xn)|

Nc(t) is the number of clusters at step t, ylj(xn) is the linear output
for input point xn, and yj(xn) is the original sigmoidal output. The
first term of the above relation penalizes a large number of
clusters, while the second term penalizes a large linearization
error. At the beginning of clustering, the linearization error is zero,
and the penalty for the number of clusters is one: J(0) = 1. As
merging of closest clusters continues, the first term goes down,
while the second term goes up. Therefore, at the beginning, the
values of the criterion function J(t) decrease, while the penalty for
a large number of clusters dominates compared to the linearization
error. As merging progresses, the linearization error becomes more
important in the sum, and at one point the values of J(t) go up. At
that moment, clustering stops. The resulting number of clusters
determines the number of linear regions for hidden neuron j.
The linear output ylj(xn) is computed as follows. Each cluster has
two limiting points, and a linear segment that passes through them.
The slope (acr) and intercept (bcr) of the linear segment, which
goes through the limits of cr-th cluster, are computed. The linear
output of point xn - within the limits of cluster cr - is ylj(xn) = acr xn
+ bcr.
The closest pair of clusters at each step in the algorithm is defined
as follows: The distance between any two adjacent clusters cr1 and
cr2 is measured as:

d(cr1,cr2) = max (dcos(k1, k2) + 1/(nr1+nr2) ∑ |ylj(xk) - yj(xk)|,
{k, k1, k2 ∈ cr1 ∩ cr2}

k(.) is the index of a segment defined at Step 0 of the algorithm,
which is now part of either cr1 or cr2 clusters at step t. The first
term - the maximum cosine distance between any pairs of
segments in the two clusters - is a measure of how closely oriented
are the segments in the two clusters, while the second term is the
average of the absolute linearization error that would be
introduced by merging clusters cr1 and cr2. The pair of clusters
with the minimum distance d(cr1,cr2) is merged.
After each merging the value of the criterion function J(t) is re-
evaluated, and if it is bigger than the value at the previous step J(t-
1) the algorithm stops. The results of the algorithm are: the
number of clusters -Nc

j - for the activation function of the hidden
neuron j, the coordinates in the input space of the upper and lower
bounds of each cluster, and the slope and intercept of each cluster.

The slope and intercept are obtained from the linear segment that
goes thorough the limiting points of each cluster. The resulting
linear segments cover all the activation values of the hidden
neuron, and any two adjacent segments overlap only in one point.
The end of the second step of the linear model extraction method
consists in expressing the limits in the input space, for which each
linear region of a hidden neuron is active. The limits are specified
as a set of linear constraints. For example, for neuron j, linear
region r, the set of constraints (CCjr) is:

Cj1 = ∑i=1
N wji xi ≤ Mr , and Cj1 = ∑i=1

N wji xi ≥ mr
x1 ≤ M1 , x1 ≥ m1 ... xN ≤ MN , xN ≥ mN

where mr and Mr are the minimum and maximum values of the
linear function in region r, mi and Mi are the limits of each input
variable as they result from the clustering process.
Extraction of the PWL models: Once the activation function of the
hidden neurons is approximated by a PWL mapping, the next step
consists in finding the valid combinations of linear regions for the
hidden neurons. Such a combination is given by a set of indices,
where each index is the active linear region of a hidden neuron:

OOp={rp
1, rp

2... rp
H }, rp

j ∈ {1, 2, ... Nc(j) },
and p=1...Nc(1)Nc(2)... Nc(H),

Nc(j) is the number of linear regions of hidden neuron j. Each
combination is a region in the input space given by the intersection
of the constraint sets CCp=CC1r,p1∩ CC2r,p2 ...∩ CCHr,pH. Valid
combinations are those for which the set of constraint in CCp
defines a non-empty region in the input space.
The constraints are placed in the set CCp in an iterative process as
follows: first, the set of constraints from the first hidden neuron
(CC1 r,p1) is added to CCp, then each constraint from the
subsequent sets CCj, j=2...H is checked for similarity against all
constraints already in CCp. If a new constraint is similar to one
already in CCp then the intersection between them is placed in
CCp, otherwise the new constraint is added to CCp. Two inequality
constraints are similar, if they have equal coefficients in the same
input variables and the same inequality type. For example, x1 ≤
3.0, and x1 ≤ 2.0 are similar, and the intersection between them is
x1 ≤ 2.0. In this way the number of constraints in CCp is minimal.
Next, the sets of constraints CCp are checked for validity, and their
limits are refined. The validity of CCp is checked by a linear
programming solver with the first constraint chosen as objective
function, the optimization type - minimization (for ≥) or
maximization (for ≤), and the rest of the inequalities as constraints.
If the linear solver returns an acceptable solution then the input
region defined by the CCp is non-empty, and therefore the
combination is valid.
The goal of refining the limits of the constraints in each valid set
CCp is to eliminate redundancy in the constraint limits. The limits
of each constraint in the set CCp are adjusted iteratively using the
linear optmizer. At each step, a constraint becomes the objective
function, and a minimization or maximization is done depending
on the inequality type of the constraint, with the rest of the
inequalities as constraints. The limit of the optimized constraint is
adjusted, if the returned solution is more restrictive. The adjusting
procedure stops when none of the constraint limits undergoes any
changes.
For each valid combination region defined by CCp the output of
the NN is expressed as a linear combination in the input variables:

yl = a1
l x1 + a2

l x2 + ... aN
l xN +aN+1

l.
Coefficients ai

l are functions of the weights of the NN, and of the
slopes and intercepts of the linear regions of the hidden neurons
determined in the clustering algorithm. The set of linear models
defined by coefficients ai

l, together with the set of constraints of
the valid combinations CCp are the results of extraction.
The validity requirement (that the intersection between two sets of
constraints CCp1 and CCp2 is the empty set) is always true. The

reason is that the set of constraints of each linear model (CCp) is
obtained by intersecting the CCjr constraints for each hidden
neuron. Each CCjr corresponds to a linear region of a hidden
neuron. Any two CCjr of the same hidden neuron do not intersect
because the Nc(j) linear regions defined by clustering do not
overlap. Two constraint sets CCp1 and CCp2 do not intersect
because at least one hidden neuron must be in a different region.

Figure 5: Structural patterns in a 3rd order cascaded Σ−∆ ADC
4. SYSTEM SIMULATION
Figure 2(b) presents the methodology for compiled-code system
simulation. Code generation is based on symbolic composition of
the circuit macromodels depending on the structural patterns that
link them together. The generated code describes the sequence of
steps for calculating output, state and internal variables (i.e.
voltages and currents) over time. For Σ−∆ ADC, the output
voltage is computed, and used to find typical ADC performance
figures, like SNR and DR [2]. Code is also generated to select -
during simulation - the correct PWL region of non-linear devices.
The first step in the methodology identifies the structural patterns
that connect the building blocks (circuits) together. The
partitioning-based algorithm proposed in [3] can be employed for
this step. Figure 5 shows the structural patterns found in the 3rd
order cascaded Σ−∆ ADC. For example, 3-Integrator Chain
Macromodel was obtained through composition of the three
structurally identical macromodels for the OTA active-C
integrator. Similar structural patterns can be identified for higher
order Σ−∆ ADC, or for ADC of different topologies.

At the system-level, structural patterns compose two or more
blocks having their behavior described as symbolic relationships
between input, output, and state variables. Blocks are either basic
blocks (OTA, opamp, and comparator circuits), or composed
blocks, which correspond to previous composition steps (like
integrators, ADC stages etc). Symbolic equations were formulated
for each structural pattern by formulating Kirchhoff's laws for the
interconnected blocks. After symbolically solving these equations,
a set of mathematical expressions resulted for relating over time
the unknown signals (voltages, currents, and charges) of the
blocks to circuit parameters, and the known signals. Then, these
expressions were encoded as C++ functions, and optimized for fast
execution. In our experience, the most time effective optimizations
were propagation of common expressions, and elimination of loop
invariants [12]. The system model for simulation was obtained
through composition of the symbolic expressions for the patterns.

Basic blocks. We used the OTA in Figure 3 as an example for
sketching the finding of symbolic formula that link input, output,
and state variables of a basic block. The OTA circuit has a 4-port
model (2 ports for across voltage Vidm and 2 ports for across
voltage Vout) characterized by the symbolic expression:

I = TA × V + STA,

I = [Iip, Iin, Iop, Ion]t and V = [Vip, Vin, Vop, Von]t. Matrix TA, called
function sub-matrix, has its symbolic entries determined by the
values of the components in the structural circuit macromodel.
Matrix STA, named the state sub-matrix, relates to the state
variables and the previous state of the circuit. For OTA, we
assumed voltages Vi and Vo as known, and currents Ii and Io as
unknowns. The opposite reasoning would have been also correct.
Symbols TAij and STAi were obtained by symbolically solving the
nodal equations of the OTA structural macromodel, and replacing
the derivates of state variables with their differences according to
Euler Backward Integration formula [13]: δx = (x(t)-x(t-1))/h,
where x(t) and x(t-1) are the state values at the current and
previous time moments, and h is the discretization step.
For example, symbol TA11 = Cc /h + Ccd /(h + Cd Rd), and TA31 =
Cd (Vos - Vcd(t-1))/(h + Cd Rd) + Ccm (Vos - Vcm1(t-1)) / h. Note that
the symbol TA31 depends on the circuit parameters, as well as state
values at the previous time moment. Symbolic function and state
sub-matrices were calculated for all building blocks, and stored in
the circuit library.

Figure 6: Composition rule for the Σ−∆ stage
Composed blocks. Symbolic composition rules (SCR) were found
for each structural pattern in a system. SCR relate the symbolic
function and state sub-matrices of a composed block to those of its
composing blocks. SCR are calculated using the definition of the
block sub-matrices, and constraining that voltages and currents at
the connecting links are the same. The symbolic elements of the
composed function and state sub-matrices are found after
eliminating the currents and voltages at the common links from the
equation set.
Figure 6 exemplifies the finding of the symbolic function and state
sub-matrices for a Σ−∆ OTA Active-C Integrator Macromodel (see
Figure 5). The stage consists of the OTA macrocell linked to the
opamp-C macrocell through two links (Figure 6(a)). The OTA is
modeled by the symbolic function sub-matrix TA1

4x4, and by the
symbolic state sub-matrix STA1

4x15. There are 15 state variables in
the OTA structural macromodel. The symbolic function sub-
matrix TA2

4x4 and the symbolic state sub-matrix STA2
4x17 describe

the opamp-C macrocell. The opamp-C macrocell has 17 state
variables. Figure 6(b) presents that the SCR for the stage includes
symbolic functional sub-matrix TAc and state sub-matrix STAc. For
example, assuming that Vi and If (DAC currents) are known, and
that Ii and Vo are unknown, then symbol
TAc

11 = [(TA2
22–TA1

33)(TA2
11TA1

11–TA1
14TA2

41+TA1
11TA2

44) +
(TA2

21+TA1
34)(TA2

12TA1
11–TA1

13TA2
41+TA1

11TA2
43)+TA1

31 (TA1
13

(TA2
11+TA1

44) - TA1
14(TA2

12+TA1
33))] / [(TA2

12 + TA1
43)(TA2

41 +
TA1

34) - (TA2
11+TA1

33)(TA2
11+TA1

44)].
Similar expressions describe all parameters TAc

ij and STAc
ij.

Once the symbolic function and state sub-matrices were calculated
for each basic and composed block, C++ code was generated. The
code is a sequence of assignment statements for numerically
calculating the elements in the sub-matrices. Code generation
carefully identified any redundant sub-expressions. For example,
for the OTA model, sub-expression h + Cd Rd was identified as
being common to all matrix elements, including elements TA11 and
TA31. Hence, the sub-expression was isolated as a new variable,
and re-used in all instances. This code optimization (similar to
constant folding in compiler theory [12]) saved significant amount
of computations during the time-domain simulation process.
The time-domain simulation algorithm implements a loop for the
time range to be simulated. The time increment is h, the parameter
also used by Backward Euler Integration formula. At each time

instance, the algorithm calculates only a subset of all voltages and
currents in an ADC netlist. The subset includes output signals,
state variables, and the voltages and currents relevant to the
nonlinear devices. The C++ code for the symbolic expressions is
used. For nonlinear devices, the simulation algorithm must also
identify the correct PWL region. The identification step first
calculates the voltages and currents through the nonlinear devices
assuming that PWL regions for the current time instance remain
the same as those for the previous time moment. If the assumption
is incorrect then the algorithm re-iterates the calculating of the
voltages and currents trough the nonlinear devices by assuming
the closest PWL regions, and so on. The iteration process stops
when the closest feasible PWL regions were found.
Inside the time-domain simulation loop, the elements of the
function sub-matrices remain constant most of the time. Only the
parameters of the state sub-matrices must be updated for each new
time step to capture the dynamics of state variables. Function sub-
matrices change only if they include non-linear devices that
change their current PWL region. This observation is important to
speed-up simulation, because a large number of computations can
be moved outside the simulation loop. This optimization process is
similar to removing loop invariants in a compiler [12]. In our
experience, this code optimization greatly reduced the total
simulation time of a converter.
5. EXPERIMENTS
A. PWL extraction. For validation, the proposed PWL model
extraction is applied to model the amplitude frequency response of
an OTA [19] for different layout parasitic levels. The data was
obtained using SPICE simulations of the analog circuit sampled in
a large number of frequency and parasitic values. A three layer
neural network with I=2 inputs and H=7 hidden neurons was
trained, such that the performance on both training and testing data
are very good. A larger number of hidden neurons did not improve
the approximation. The trained NN was then pruned. From the
initial set of weights, eight weights were eliminated and one
hidden neuron. The clustering method was applied to each hidden
neuron. Two of the hidden neurons have constant outputs given
by the bias weight - the weights to the input variables were all
pruned. The rest of the hidden neurons were clustered into 6, 9, 3,
and 8 clusters.

Figure 7: Results of the PWL model extraction method

From a total of 1296 combinations of linear regions of the hidden
neurons, only 136 had a non-empty solution set. For each valid
combination, a linear model of the network output was computed.
The result of the PWL extraction method is presented in the left
part of Figure 7. The dotted plot represents the PWL model output,
while the line represents the true values simulated with SPICE.
Each curve corresponds to a different layout parasitics. It can be
seen that the PWL approximation is very accurate. Previous
approaches to extract linear models from trained NN [18, 19]
(using a fixed number of segments for each hidden neuron) do not
have the same accuracy. The right part of Figure 7 shows the
model extraction results for the OTA Gm as a function of Vidm at
the OTA input ports. Spectre simulation data was shown with dots,
output of the NN with stars, and output of the PWL model with

circles. The trained NN had 3 hidden neurons, from which one
was eliminated after pruning. Clustering extracted 7 and 8 linear
segments from each hidden neuron. Only 14 linear models out of a
total of 56 had solutions. As the figure shows, the accuracy of the
extracted PWL model is very good compared to the trained NN.
B. Σ−∆ ADC simulation. Table 1 compares simulation time for
Spectre simulator and the proposed symbolic method. The table
relates the speed-up of the proposed method as a function of the
ADC complexity (order). Results are shown for 1st to 5th order
cascaded Σ−∆ ADC. The resulting speed-up is significant, it varies
between 90 and 144 times. Please note that these speed-ups were
obtained without affecting the accuracy of simulation. The same
netlist (composed of circuit macrocells) was simulated in both
cases. The huge speed-up is due to employing compiled-code
simulation, and the two optimizations for the expressions of
function and state sub-matrix elements (propagation of common
sub-expressions, and elimination of loop invariants from the time-
domain simulation loop). The symbolic method shows a linear
increase of the simulation time with the order, thus the number of
state variables. This is explained by the fact that only state
variables are recomputed inside the loop. The time complexity of
the numerical simulator grows at a much faster rate. We expect
that the speed up will grow with the order of the ADC.

Table 1: Simulation time for symbolic method vs. Spectre
Σ∆ ADC order Spectre (s) Symbolic (s) Speed-up

1 507.1 3.5 144.88
2 533.9 5.88 90.79
3 852.3 8.24 103.43
4 1284.9 10.69 120.19
5 1752.0 12.91 135.70

The second experiment studied the importance of circuit non-
idealities (like poles, zeros, input and output impedances etc) on
the accuracy of ADC simulation. Figure 8 shows the signal to
noise ratio (SNR) and dynamic range (DR) plots for the ADC. The
maximum SNR is 64dB, and DR is 67dB. Similar values resulted
through Spectre simulation. This motivates the correctness of the
symbolic method. The figure also shows the importance of using
detailed circuit models, such as models including poles and zeros,
rather than ideal models. In the right part of Figure 8, the three
plots with dotted lines correspond to simulations, which used
circuit macromodels with one pole and two poles. In the first two
cases, the system still worked as an ADC, but the SNR went down
by about 5dB and 13dB, and the DR by about 4dB and 12dB
respectively due to the poles. In the third case, the poles prevented
the system from a correct functioning. This example argues that
using detailed circuit models is compulsory. Handling various
non-idealities is much easier using the proposed symbolic
technique, in which system modeling is fully automated. Existing
behavioral simulation methods for Σ−∆ ADC (like [5] and [10])
require extensive designer expertise to develop the models, and are
cumbersome, if more non-ideal elements were to be considered.
6. CONCLUSIONS
This paper presents a novel method for fast time-domain
simulation of analog systems with nonlinear parameters. The
paper focuses on Σ−∆ ADC as a case study. Using compiled-code
simulation, the proposed technique achieves speed-ups of more
than 100x as compared to Spectre simulation. Simulation accuracy
is not affected. Code generation relies on calculating symbolic
expressions for the output and state variables, as well as the
voltages and currents of nonlinear devices in a system. Code
optimization identifies and eliminates from the simulation loop all
loop invariants, and propagates constant sub-expressions. ADC
simulation uses detailed structural macromodels for the building
blocks, including non-idealities, like finite gain, poles, zeros,
CMRR, phase margin, fall/rise time etc. Nonlinear parameters are
expressed using PWL models extracted from trained NN. Using a
modified clustering method, the method automatically determines

the best number of linear regions to approximate each hidden
neuron activation function. The adaptive clustering improves the
accuracy of extracted PWL models over other extraction
approaches. As compared to existing behavioral simulation
methods for Σ−∆ ADC, this technique is fully automated and uses
more accurate circuit models.

Figure 8: SNR and DR plots for Σ∆ ADC

REFERENCES
[1] R. Bryant et al, “COSMOS: A Compiled Simulator for MOS

Circuits”, Proc. DAC, 1987, pp. 9-16.
[2] J. Cherry, W. M. Snelgrove, “Continuous-Time Delta-Sigma

Modulators for High-Speed A/D Conversion’’, Kluwer, 2000.
[3] Doboli et al, “A Regularity-based Hierarchical Symbolic Analysis

Method for Large-scale Analog Networks’’, IEEE Trans. Circuits &
Systems- II, No 11, pp. 1054-1068, 2001.

[4] S. Doboli, A. Doboli, “Piecewise-Linear Modeling of Analog Circuits
using Trained Feed-Forward Neural Networks and Adaptive
Clustering of Hidden Neurons”, Joint Conf. Neural Networks, 2003.

[5] K. Franken, G. Gielen, “A High-Level Simulation and Synthesis
Environment for ∆Σ Modulators’’, IEEE Trans. CAD, No. 8, pp.
1049-1061, 2003.

[6] G. Gielen et al, “Computer-Aided Design of Analog and Mixed-
Signal Integrated Circuits”, Proc. of IEEE, Vol. 88, Dec. 2000.

[7] G. J. Gomez et al, "A Generic Parameterizable CMOS OTA
Macromodel", IEEE Trans. Circuits & Systems-I, 1995.

[8] D. Lewis, “A Hierarchical Compiled Code Event-Driven Logic
Simulator”, IEEE Trans. CADICS, Vol. 10, pp. 726-737. 1991.

[9] P. Maurer, “Event Driven Simulation Without Loops or Conditions”,
Proc. ICCAD, 2000.

[10] F. Medeiro, “Top-Down Design of High Performance Sigma-Delta
Modulators’’, Kluwer, 1998.

[11] A. Moscovici, “High Speed A/D converters - understanding Data
Converters through SPICE”, Kluwer, 1999.

[12] S. Muchnik, “Advanced Compiler Design and Implementation”,
Morgan Kaufmann, 1997.

[13] J. Vlach, K. Singhal, "Computer methods for circuit analysis and
design", New York: Van Nostrand Reinhold, 1983.

[14] IEEE Trans. on CADICS, Special Issue on Behavioral Modeling and
Simulation of Mixed-Signal/Mixed –Technology Circuits and
Systems, Vol. 22, February 2003.

[15] K. Funahashi, “On the Approximate Realization of Continuous
Mappings by Neural Networks”, pp. 183-190, 1988.

[16] D. Leenaerts, W. Van Bokhoven, “Piecewise-Linear Modeling and
Simulation”, Kluwer, 1998.

[17] A.Tickle et al, “The truth will come to light: directions and
challenges in extracting knowledge embedded within trained artificial
neural networks”, IEEE Trans. Neural Networks, 9(6), pp. 1057--
1068, 1998

[18] R. Setiono et al, “Extraction of rules from artificial neural networks
for nonlinear regression”, IEEE Trans. Neural Networks, 13(3), pp.
564--577, 2002.

[19] S.Doboli, G. Gothoskar, A. Doboli, “Modeling of Analog Circuits
based on Model Extraction from Trained Neural Networks”, Proc. of
IEEE Intl. Workshop on Behavioral Modeling and Simulation, 2002

