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ABSTRACT

Switching of power stages in smart power ICs, which drive
an inductive load, turns on parasitic bipolar transistors and
injects minority carriers into the substrate, which can affect
the functionality of the chip. In order to evaluate protection
measures, these parasitic transistors have to be included into a
post layout simulation. In this paper, we present a methodol-
ogy for automatically generating Verilog-A models for these
parasites from layout data. As these models have to account
for high injection effects and a distributed current flow, the
convergence behavior of this models will be worse than that
of classical bipolar models. We found a reasonable trade-off
between convergence behavior and accuracy of the model.

1. INTRODUCTION

A major challenge in today’s chip design is to integrate
analog and digital circuitry on one chip. Thereby, parasitic
structures arise, which might affect the functionality. One of
these parasitic structures, which arise due to the integration
of different technologies on one chip, is the lateral parasitic
bipolar transistor in smart power ICs ([1]–[3]). The parasite is
activated, when negative voltages (down to -1.5 V) occur e.g.
in power stages for motor control. This happens even during
normal operation and causes the injection of minority carriers
into the substrate, leading to minority carrier collection by
sensitive n-tubs in I/O and analog cells, which in turn causes
potential failures.

The parasitic bipolar transistor is formed by multiple com-
ponents (Fig. 1). The n-regions of the injecting LDMOS act
as an emitter and the substrate acts as a base. Each substrate
contact and the backside of the chip form base contacts. N-
regions with a positive potential (such as the drain of other
LDMOS and n-tubs) act as collectors. The parasitic transistor
is characterized by a strongly inhomogeneous current flow and
a base width of up to a few hundred µm. More than 90% of the
injected current flows through substrate contacts, the backside
of the chip and the drain regions of other LDMOS. However,
as up to a few hundred milliampere might be injected into
the substrate, a current gain of less than 0.001 can still be
sufficient to cause failures.

Many protection strategies have been reported (e.g.[4]–[9]),
however, post layout simulation including these parasitic ef-
fects has only rarely been done. The only known method is
the integration of device simulations into the design flow [10],
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Fig. 1. Simplified cross section of a smart power IC showing the parasitic
transistor.

which is very time-consuming. Existing BJT models for circuit
simulations are not suited due to the complex structure of
the parasitic transistor. Therefore, a new compact model for
these parasites is required, whose accuracy is sufficient for
indicating inadmissible substrate currents.

In [11], we presented the physical equations which are required
to describe the behavior of the parasitic transistor. In this
paper, we will first introduce these equations and then describe,
how they can be put together in order to build a Verilog-A
model for circuit simulations with an acceptable convergence
behavior. Furthermore, we will present some convergence aids,
which are necessary to run simulations and to speed up the
simulation.

2. MODELING THE PARASITIC TRANSISTOR

We assume quasineutrality in the substrate, which is not
exactly true as the divergence of the electric field is not zero,
especially in the region around the injecting LDMOS and
the nearest substrate contacts, where minority carrier densities
might exceed the substrate doping.

From quasineutrality it follows, that the hole density p in a
p-substrate equals the sum of the electron density n and the
substrate doping NA (p = n + NA). Hence, the gradients of
both charge carrier densities are equal (∇n = ∇p).

The physical behavior of the parasitic transistor can be de-
scribed by the following equations (for a p-substrate):

• Current transport equations relate the current densities
to electron densities and the electric field. The transport
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equations under quasineutral conditions are

jn = qµn(n)VT∇n + qµn(n)nE, (1)

jp = −qµp(n)VT∇n + qµp(n) (n + NA)E, (2)

where q is the electron charge, µn,p are the mobilities for
electrons and holes, E is the electric field and VT is the
thermal voltage.

• If the minority carrier density reaches or exceeds the
substrate doping, the mobilities are reduced due to carrier-
carrier scattering. This is modeled according to the
Conwell-Weisskopf screening theory [12] by
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where µn,p0 are the intrinsic electron and hole mobilities
respectively.

• The density of the injected electrons nE at the p-side
of the pn junction of the injecting LDMOS and the
substrate depends on the corresponding junction voltage
VPN . Fletcher boundary conditions (derived from [13])
are applied, which are valid for all injection levels. This
yields

VPN = VT ln
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where ND is the buried layer doping of the LDMOS and
ni is the intrinsic carrier concentration.

• The electron density nSC at the p-side of the pp+ junction
of the substrate contact nearest to the injecting LDMOS
depends on the corresponding junction voltage VHL. Due
to accumulation at the pp+ junction, the electron density
increases and might even exceed the electron density at
the injecting LDMOS. This results in

VHL = VT ln
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where NA+ is the doping of the p+-diffusion.
• pp+ junctions are characterized by the surface recombina-
tion velocity S, which relates the electron current density
jnSC to the electron density nSC for all injection levels
[14]. We find

jnSC = qS

(
nSC (nSC + NA)

NA
− n0

)
. (7)

• At n-tubs at a positive potential (reverse biased pn junc-
tions), the electron density nC at the p-side of the junction
increases due to a finite drift velocity vD depending on
the current density jnC . Furthermore, the current densities
include the generation current density of the space charge
region as a lower bound [15] resulting in

jnC = qvD (nC − n0) + q
w

τn
ni, (8)

where w is the space charge width, which is assumed to
be constant.

• The backside of the chip forms a Schottky-like contact,
where the electron current density jnBS is related to the
electron density nBS by the thermionic emission velocity
vn as

nBS − nBS
0 =

jnBS

qvn
. (9)

nB
0 is the equilibrium electron density at the Schottky

contact depending on the barrier height.
• The recombination current in the substrate can be related
to the hole currents through substrate contacts as

Ihole,SCν =

∫
qRdV, (10)

where R is the recombination rate.
Here, only SRH-recombination for electron densities
above the substrate doping (11) is considered. Auger-
recombination is neglected as it has only a minor in-
fluence on the results and seriously degrades the con-
vergence behavior. The general expression for SRH-
recombination worsens the convergence behavior as well.
We find R to be

R =
n

(τn + τp)
, (11)

where τn/p are the electron and hole lifetimes.
• Kirchhoffs voltage law is applied to the path including
the pn junction of the injecting LDMOS, the high-low
junction of the substrate contact nearest to this LDMOS,
the voltage drop VBi in the substrate and the potentials of
the corresponding contacts (VD at the drain of injecting
LDMOS and VSC at the nearest substrate contact) as
follows

−VSC + VHL + VBi + VPN + VD = 0. (12)

VBi is calculated by multiplying the distance d between
the emitter and the substrate contact diffusion region by
an average value for the electric field (13) as

VBi = d · E. (13)

Two different average values are considered. For low
voltages, it is assumed that the electric field decreases
with the distance to the diffusion regions (E(r) ∼ 1

r or
E(r) ∼ 1

r2 , depending on the structure and according to
Poisson’s equation in a neutral base region (∇E = 0)).
For high voltages (above the built-in junction voltage),
it is assumed, that the electric field is nearly constant
between the two regions due to accumulation at the
substrate contact. The increase of the electron density at
the substrate contact forces the diffusion current from the
emitter to flow as a drift current to the substrate contact,
amplifying the electric field between the two regions. The
transition from low to high voltages has been modeled
depending on VD and not on the electron densities, which
would be necessary in order to detect accumulation.
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Fig. 2. Approaching the relevant geometry of an LDMOS by half spheres.
The relevant diffusion regions of the LDMOS are treated as a single diffusion
region.

Otherwise, the convergence behavior is much worse.
Therefore, accumulation is not detected but assumed for
certain voltages, which decreases the accuracy of the
model for intermediate voltages. Equation (13) is a trade-
off between minimizing numerical problems and raising
accuracy.

Input to the model are the potentials VD at the drain of the
injecting LDMOS and VSC at the substrate contact nearest to
this LDMOS and output are the currents through the LDMOS,
the substrate contacts, the backside contact and the n-tubs.

3. APPROACH FOR THE ELECTRON DENSITY

Usually, the electron density is calculated by solving the
Shockley equations [13], which build a set of nonlinear,
coupled, partial differential equations. As it is not possible
to solve these equations analytically in three dimensions, we
neglect the influence of the electric field on the electron density
distribution and solve the static diffusion equation [13] in
spherical coordinates. In order to apply the solution for our
problem, we consider the relevant components of the parasitic
transistor (LDMOS, substrate contacts, n-tubs) as constantly
doped diffusion regions whose geometry is approached by half
spheres (Fig. 2).

This allows us to superpose the solution for each sphere,
yielding the electron density in the substrate as

n (x, y, z) =

m∑
i=1

Ni
e
− ri√

Dnτn

ri
. (14)

Ni are variable coefficients and ri are the distances to the
centers of the half spheres.

After inserting layout and technology data, the exponential
terms in (14) reduce to numbers and the electron density and
its gradient become

n (x, y, z) =
m∑

i=1

aiNi, (15)

∇n (x, y, z) =
m∑

i=1

biNi. (16)

where ai and bi are layout-dependent coefficients.

There is no such function for the electric field. Therefore, we
introduce the variables Eα, which represent the electric field
at half spheres. At n-tubs, Eα is set to zero, i.e. electrons reach
n-tubs solely by diffusion.

Then, the current densities (1,2) at half sphere α are described
by the variables Eα and Ni as

jnα =
m∑

i=1

ciNi +
m∑

i=1

diNiEα, (17)

jpα =
m∑

i=1

eiNi +
m∑

i=1

fiNiEα, (18)

where ci, di, ei, fi are layout-dependent coefficients.

Equations (15, 16, 17, 18) are inserted in (4, 5, 6, 7, 8, 9, 10,
11). Therefore, once the layout data is known, the unknowns
of the equation system are Ni, Eα, VPN and VHL. There is
one Ni for each half sphere and one Eα for each substrate
contact and the backside contact.

Furthermore, we assume a constant electron density at all half
spheres belonging to the same diffusion region. For such two
half spheres applies the following equalities apply

n (x1, y1, z1) = n (x2, y2, z2) (19)

⇒
m∑

i=1

giNi =
m∑

i=1

hiNi. (20)

The backside of the chip is modeled by half spheres as well.

4. AUTOMATED MODEL GENERATION

At first, all diffusion regions and the backside are transformed
into half spheres. The lowest point of each half sphere is
a reference point, where the boundary conditions have to
be fulfilled and where the current densities are taken as
average values for the calculation of the terminal currents. The
reference points of half spheres belonging to the backside are
on the backside.

Then, the mobility equations are set up for each diffusion
region. Equation (3) is set up for all diffusion regions, where
a significant mobility reduction can be expected, i.e. for the
injecting LDMOS and for all substrate contacts. A constant
mobility (µn,p = µn,p0

) is used for all n-tubs.

In the next step, the boundary conditions (5, 6, 7, 8, 9) are
set up for only one half sphere of a diffusion region. For the
others, a boundary condition in the form of (20) is setup. There
are two boundary conditions for the high-low junctions of
substrate contacts ((6) and (7)). Equation (7) is used for each
substrate contact and (6) only once for the substrate contact
nearest to the injecting LDMOS.

The substrate is discretized in order to apply (10). A recombi-
nation current is calculated for each volume element (21) and
assigned to the nearest substrate contact.

Ireci =
q

(τn + τp)
n̄∆x∆y∆z. (21)

The hole current through a substrate contact equals the sum
of the corresponding recombination currents.

Ihole,SCν =
∑

Ireci . (22)

Then, Kirchhoffs voltage law (12) is set up.
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The last equations to be set up are the current equations for
each terminal. The current density at the reference point of a
half sphere is used as an average value and multiplied by the
surface area of the half sphere, yielding the current through a
half sphere. In order to get the terminal currents, all currents
through half spheres belonging to one terminal are summed
up

Ii =
∑

(j̄n + j̄p)A. (23)

For n-tubs, only the electron currents are summed up:

In−tubi =
∑

j̄nA. (24)

Finally, this set of equations is reduced by substituting certain
variables. In each linear equation (8, 9, 20), the coefficient
Ni of the corresponding half sphere is isolated, substituted
by this equation in all other equations and the equation is
removed from the set of equations. In each equation of the
kind of (22), the variable Eα is isolated and removed from
the set of equations in the same way.

The mobility equations (3) and the equations for the junction
voltages (5, 6) could be eliminated as well, but we keep these
equations as they allow the user to see, whether the results are
reasonable or not. Furthermore, intermediate variables for the
electron densities at the reference points of the half spheres
and their gradients are introduced for debugging purposes.

Kirchhoffs voltage law (12) and equations of the form of (7)
remain as simultaneous equations. It is always a good idea to
have as less simultaneous equations as possible leading to a
compact description like simulator built-in transistor models.
In our case we reduce the number of simultaneous equations
to the minimum we could figure out. Experimental results
with more simultaneous equations result in further conver-
gence problems. In order to use the indirect simultaneous
formulation using node equations in Verilog-A, (7), a current
density equation, and (12), Kirchhoffs’s voltage law, have to be
adjusted to properly reflect the tolerance group and accuracy
of currents. Equation (12) is scaled by a factor of 10−5 and
(7) by 10−3. Then, both equations are written as

10−3jnSC − 10−3qS

(
nSC (nSC + NA)

NA
− n0

)
= 0, (25)

-10−5VSC+10−5VHL+10−5VBi+10−5VPN+10−5VD = 0. (26)

Except for the terminal current equations, the size of the model
depends only on the number of substrate contacts and not on
the number of n-tubs or on the number of half spheres, in
which the diffusion regions are partitioned.

The behavioral model is implemented in Verilog-A and simu-
lated with Spectre R© [16]. Due to the intermediate variables
it consists mostly of procedural and a few simultaneous
equations. It is directly useable in circuit simulations, because
all contacts are electrical terminals of the module. The use
of a simulator/language with proper support of procedural
equations is mandatory due to better convergence and shorter

Listing 1 Approximation for −1 + sqrt(1 + x)

analog function real special_sqrt;
input x;
real x;
if (x >= 1e-3)

special_sqrt = -1+sqrt(1+x);
else

special_sqrt = 0.5*x-0.12493754*pow(x,2);
endfunction

Listing 2 Extension of sqrt(x), ln(x) and pow(x,−0.33)

analog function real ext_sqrt;
input x;
real x;
if (x > 0)

extsqrt = sqrt(x);
else

ext_sqrt = 0;
endfunction
analog function real ext_ln;
input x;
real x;
if (x >= 1)

ext_ln = ln(x);
else

ext_ln = x-1;
endfunction
analog function real ext_pow;
input x;
real x;
if (x >1e-3)

ext_pow = pow(x,-0.33);
else

ext_pow = 10;
endfunction

runtimes. Hence, Verilog-A, which is more directed to proce-
dural equations – simultaneous equations have to be indirectly
formulated by using node equations – is well suited.

5. CONVERGENCE AIDS

In order to improve the convergence behavior of the generated
model, a few aids have been implemented. One problem occurs
in the equations (5) and (6), as they contain a sum of numbers
of different orders of magnitude. The core of the problem is
the expression ln

(
k

(−1 +
√

1 + x
))
, where x ranges from 0

to about 1. If x is too small, the expression 1+x yields 1 and
the expression −1+

√
1 + x yields 0 and the total expression

yields a singularity. Therefore, we approximate the expression
−1 +

√
1 + x by a taylor series for very small x. The term√

1 + x can be developed, resulting in 1 + x
2 − x2

8 + ... . In
order to gain a smooth transition from the taylor series to the
original function, we adjust the second coefficient. Therefore,
we approximate −1 +

√
1 + x by x

2 − x2

8.004 (see Listing 1).

Another problem during the iterations is that the argument of
the square root and the logarithm becomes negative. Therefore,
the domain is extended to all real numbers (see Fig. 3, 4, 5
and Listing 2).

The extended square root function is the original square root
function for positive numbers and zero for negative numbers.
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ext sqrt(x)

Fig. 3. Extended square root function

1 x

ext ln(x)

Fig. 4. Extended logarithm function

10

10−3 x

ext pow(x)

Fig. 5. Extended pow(x,-0.33) function

Simulations have shown, that a more elegant extension with a
smooth derivative slows down the simulation time.

The logarithm function is extended by a linear function for
values below 1, such that the derivative of the extended
function is smooth.

For (4), the power function x− 1
3 has to be extended. The

extended function returns 10 for values below 10−3 and x− 1
3

otherwise.

6. RESULTS

To show the feasibility of our approach we have generated
a model and simulated it for the structure shown in Fig. 6.
We compare circuit simulation results employing the new
model with device simulation results. In order to use device
simulations, we applied the topology reduction method as
presented in [2].

The structure consists of one large 500 µm x 500 µm n+ diffu-
sion L2 representing the drain regions of an nLDMOS, whose

L2
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LSC SC1 N1

N2

SC2
N3

1
5
0
0
µ
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2300µm

Fig. 6. Modeled and simulated structure
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Fig. 7. Top view of the modeled structure.

1
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0
0
µ
m

2300µm

Fig. 8. Backside of the modeled structure.

voltage drops down to -1.5 V. The 9 dark gray rectangles are
grounded p+ diffusion regions acting as substrate contacts and
the 12 gray rectangles are n-tubs at 5 V. The substrate doping
is NA = 1e16cm−3 and the substrate thickness is 375 µm.

Fig. 7 and 8 shows the transformation of the diffusion regions
into half spheres. The large n+ diffusion is transformed into
6x6 half spheres and the backside into 8x5 half spheres.

The model consists of about 90 procedural and 10 simultane-
ous equations. The average time required for the dc analysis is
about 1.1 s and the average CPU time is about 30 s on a Sun-
Fire-480R with 1.2 GHz. In contrast to the circuit simulation,
the device simulation runs about 3 weeks (∼ 220 000 grid
points). The results for some selected currents are shown in
Fig. 9 and Fig. 10. They are in good agreement with device
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simulation results. The accuracy of the modeled n-tub currents
is within a factor of 2.5, which is sufficient to detect inad-
missible parasitic currents. The substrate contact current ISC2

shows a larger error. This is due the simplifications in (11),
but does not affect the accuracy of the n-tub currents. In (11),
high electron densities have been assumed. This is not the case
for substrate contact SC2, which is more than 600 µm away
from the injecting LDMOS. This simplification is justified
since substrate contacts, where the electron densities are below
the substrate doping, do not significantly affect the electron
propagation. Therefore, n-tub currents are also sufficiently
modeled in far distant regions.
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Fig. 9. Simulation results from device simulation (index Dev) and circuit
simulation employing the new model (index Mod).
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Fig. 10. Further simulation results of the structure in Fig. 6 for VL2 = –1.5V
showing selected currents from device simulation (gray bars) and circuit
simulation (lightgray bars).

7. CONCLUSIONS

We have presented a methodology for automatically generating
models for parasitic transistors in smart power ICs for circuit
simulation. We made a compromise between minimizing nu-
merical problems and raising the accuracy of the model. The
simulation time is sufficiently short and the accuracy of the
model is sufficient to indicate inadmissible substrate currents.
The accuracy decreases if there are too few substrate contacts
near the injecting LDMOS as the impact of the electric field on
the electron density distribution is neglected. In future work,
we will extend our model for p++ substrates with a p- epitaxy
and for active protection measures, where n-tubs are shorted
with p+ diffusions.
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