
Efficient Analog Circuit Modeling By Boolean Logic
Operations

Zhenyu Qi, and Sheldon X.-D. Tan, Pu Liu

Department of Electrical Engineering
University of California, Riverside, CA 92521, USA

{ zhenyu, stan, uliu}@ee.ucr.edu

ABSTRACT
Abstract— In this paper, we propose a novel symbolic analysis
method for analog behavioral modeling by Boolean logic opera-
tions and graph representation. The exact symbolic analysis prob-
lem is formulated as a logic circuit synthesis problem where we
build a logic circuit which detects whether or not a given symbolic
term is a valid product term from a determinant. The logic cir-
cuit is represented by binary decision diagrams (BDDs), which can
be trivially transformed into zero-suppressed binary decision dia-
grams(ZBDDs). ZBDDs are essentially determinant decision dia-
grams (DDDs) representation of a determinant. The significance of
the new method is that all product terms can be constructed implic-
itly and simultaneously, in contrast to all previous symbolic analy-
sis methods where symbolic terms are generated explicitly and se-
quentially by Laplace expansion or topological methods. We fur-
ther apply the logic synthesis idea to generating symbolic coeffi-
cients of s-expanded polynomials and present a method to com-
pute coefficients individually and selectively. Our new approach
demonstrates an inherent relationship between circuit simulation
and logic synthesis for the first time. Experimental results show the
speedup of our new method over the existing flat method and its
greater capacity over both existing flat and hierarchical symbolic
analyzers.

1. INTRODUCTION
Symbolic analysis is to calculate the behavior or the characteristics
of a circuit in terms of symbolic parameters. It is a viable approach
to deriving parametric behavioral models of analog and other time-
continuous modules. As illustrated in [2], simple yet accurate sym-
bolic expressions can also be interpretable by analog designers to
gain insight into circuit behavior, performance and stability, and
are important for verification and synthesis applications in analog
circuit design automation [3].

Exact symbolic analysis of a linear system, however, is a hard prob-
lem due to the exponential growth of symbolic expressions with
the size of circuits [2]. To alleviate this long-standing problem,
a graph-based approach was proposed in [8] that uses a special
graph called determinant decision diagrams (DDDs) to represent
the generated product terms from the expansion of a determinant.
DDD representation has led to exponential reduction of symbolic
expressions because the nodes of a DDD graph grow much more
slowly than the DDD graph paths, which represent symbolic prod-
uct terms [8].

Hierarchical approach is another effective way to cope with large
analog circuits. Hierarchical decomposition is to generate symbolic
expressions in the sequence-of-expression forms [5, 10, 12]. There
are three methods known as topological analysis [10], network
formulation [5] and DDD-based approach [12]. The major draw-
back for all those hierarchical based exact symbolic analysis is the
∗This work is funded by NSF CAREER Award CCF-
0448534, NSF Grant OISE-0451688 and UC Regent’s Faculty
Fellowship(04-05).

generated sequence of expressions is difficult to interpret and ma-
nipulate. Recently a hierarchical DDD construction algorithm was
proposed in [11] that overcomes the previous hierarchical analysis
problems and extends the exact symbolic analysis capacities.

One common problem with existing symbolic analysis is that the
symbolic terms have to be generated explicitly and sequentially by
Laplace expansion [4] or topological methods [6], which may lead
to exponential construction time even the final DDD sizes do not
grow exponentially. This is an important reason that symbolic anal-
ysis has suffered from the long-standing circuit size problem. The
introduction of DDD graph only solves the representation side of
this problem.

In this paper, we look at the generation side of the symbolic anal-
ysis problem. We propose a novel approach to generating all the
symbolic expressions implicitly and simultaneously. Our approach
is inspired by the recent symbolic approach to pointer analysis for
compilation optimization [13] where logic functions are used to
construct the symbolic invocation graphs. The main idea of the
new approach is that the symbolic expression generation is viewed
as a logic circuit synthesis process, and we design a logic circuit
that can detect whether or not a symbolic term a valid product
term from a determinant. The logic circuit, which is essentially a
Boolean function, can be represented by binary decision diagrams
(BDDs). BDDs are then trivially transformed into zero-suppressed
binary decision diagrams(ZBDDs), which are essentially DDD rep-
resentation of the determinant.

Along the same line, we can design a dedicated coefficient condi-
tional logic and use the same BDD-based logic synthesis idea to
construct symbolic coefficients of the s-expanded polynomial of a
determinant. Unlike previous methods, the new algorithm allows
constructing individual coefficients directly, and is able to derive
symbolic s-polynomials for very large analog circuits.

The most important advantage of the new approach over existing
ones is that the time complexity is no longer tied to the number
of product terms but depends on the implicit representation of de-
signed logic during the entire construction process. This makes
the symbolic analysis problem much more tractable as sizes of
BDD/DDD graphs typically grow very slowly with circuit sizes
given a good variable ordering. The new symbolic analysis method
shows an inherent relationship between circuit simulation and logic
synthesis for the first time.

The rest of the paper is organized as follows: Section 2 briefly
reviews concepts of binary decision diagrams and determinant de-
cision diagrams as both are used in the new method. Section 3
presents the logic circuits for detecting valid product terms from
a determinant. Sections 4 shows an improved approach to con-
structing DDDs by logic operations directly from a matrix based
on the logic circuit. Section 5 introduces the logic operation based
s-expanded DDD method. Section 6 gives a brief time complex-
ity analysis of the given method. Section 7 presents experimen-

0-7803-9352-X/05/$20.00 © 2005 IEEE. 76

tal results and the comparison with existing DDD-based methods.
Section 8 concludes the paper.

2. BINARY DECISION DIAGRAMS AND DE-
TERMINANT DECISION DIAGRAMS

In this section, we briefly review the concepts of binary decision
diagrams for representing Boolean functions and determinant deci-
sion diagrams for representing determinants.

A binary decision diagram (BDD) is an ordered, directed graph
representation of a Boolean function, as shown in Fig.1(a), which
represents the Boolean function f = x3x2 + x1x2. A BDD has two
terminal vertices, namely the 0-terminal vertex and the 1-terminal
vertex. Each non-terminal vertex has two edges, called 0-edge and
1-edge. Each path from the root vertex to the 1-terminal represents
a product in the Boolean function expressed in the sum-of-product
form. Such BDD is also called reduced ordered BDD (ROBDD)
as it is obtained by eliminating all the redundant nodes whose two
edges point to the same node in the binary tree graph [1]. If the
variable ordering is fixed, BDD gives a canonical representation of
a Boolean function [1].

1−edge

0−edge

ZBDDBDD

zero suppression

(a) (b)

x1

x2x2x2x2

x3x3

x3x2 +x1x2 x3x2 +x2

00 11

Figure 1: BDD versus ZBDD.

A determinant decision diagram is a signed zero-suppressed BDD
(ZBDD) representing the determinant of a matrix [8]. ZBDD was
introduced for representing combination sets [7]. The correspond-
ing ZBDD of the BDD in Fig. 1(a) is obtained by performing the
zero suppression rule. The resulting ZBDD actually represents
combinational set {x3x2,x2}. The suppressed vertices, which have
their 1-edge pointing to the 0-terminal, essentially correspond to
all the negatively valued Boolean variables (like x1) in Fig. 1(a).
Note that a BDD can be trivially transformed into a ZBDD, while
a ZBDD can’t be directly transformed to a BDD without a well de-
fined universal set. If we use ZBDD to represent all the product
terms in a matrix determinant where each product term is treated
as a combination of entries in the matrix, and associate each vertex
with a unique sign, the ZBDD graph becomes the DDD graph [8].

3. BOOLEAN LOGIC FOR DETECTING THE
TERMS IN A DETERMINANT

The DDD graph is introduced to represent a determinant. It essen-
tially represents all the product terms in the determinant. In a DDD
graph, each product term corresponds to an 1-path from the root
vertex to the 1-terminal. If we view a DDD graph as a BDD graph,
where each symbol in a product term takes true Boolean value, all
the other symbols take false Boolean value, then the DDD essen-
tially represents the logic that detects if a given symbolic term is
a product term in the determinant, as a valid product term always
corresponds to an 1-path, and thus satisfies the logic.

This motivates us to generate the DDD graph by constructing a
logic circuit which is able to detect if a given product term is a
valid one from the determinant. This turns out to be an easy design

problem. Indeed, from the definition of determinant [4], we can
design a logic to check whether the rows and columns of all the
elements in a symbolic term cover every row and column of the
matrix exactly once.

...

A0
B0

A1
B1

A2

B2

=

abcde
00001
00010
00100

f

... ...

... ...

... ...

... ...

... ...
001

001

001

T1

... ...

... ...

n

=

=

a11

a21

an1

C1

C2

CN

b0b1b2

00

0 0

1

1

1

1

11
1

2

2

frow

N

3bit

3bit

3bit3bit

Tn

Figure 2: The logic circuit for detecting a valid product term
from a determinant.

Fig. 2 shows a portion of the logic schematic for checking whether
a given product term is valid from an n×n matrix. We simply com-
pare the row/column index of each nonzero element in this prod-
uct term with the index of each row/column and examine if each
row/column index appears exactly once.

The logic in Fig. 2 checks for row 1 (encoded as 001 since 3 bit
binary coding is used in this example). a11,a21...ann are the ele-
ments in the product term to be checked, 001,010...,b2b1b0 are the
binary codes for all row indices in the matrix. T1 is true only when
one of its inputs is true, ensuring that exactly one nonzero element
is in row 1. Comparators C1 to CN compare the row index of each
nonzero element with the row index of row 1. (N is the total num-
ber of nonzero elements in the matrix). The AND gate in the last
stage makes sure that all the row indices of the matrix are present in
the product term. The resulted Boolean function for the row index
legality check is frow.

We can do the same for the column index legality check where each
nonzero element is compared with the column index of each col-
umn. The resulting logic function for column index legality check
is fcol . Since both row and column legality conditions must be sat-
isfied to make a valid product term, the final logic is the conjuncture
(AND operation) of two logic functions:

fdet = frow ∧ fcol = frow fcol (1)

where ∧ operation is the logic AND operation. We may also write
the frow ∧ fcol as frow fcol in the sequel. The resulting logic fdet is
the Boolean logic we are looking for.

4. NEW LOGIC OPERATION BASED DDD
CONSTRUCTION ALGORITHM

In this section, we show that the logic circuit shown in Fig. 2 can
be further simplified and the DDD construction can be performed
efficiently by a number of simple logic operations.

4.1 Efficient BDD Construction For the Deter-
minant Detecting Logic

For the determinant detecting logic circuit in Fig. 2, we observe
that if the nonzero element ai j is not in row 1, then the comparison
result will always be 0 (i.e. Ci is always 0). On the other hand, if the
ai j is in row 1, the Ci will be ai j where ai j is a Boolean variable.
Suppose that row 1 has three nonzero elements a11 a12 and a13,
then we have

T1 = a11a12a13 +a11a12a13 +a11a12a13, (2)

77

where ”+” is the OR operation. As a result, we conclude that each
nonzero element in a row i will generate a product term for each
row’s uniqueness checking function Ti. In the product term of each
nonzero element, the corresponding nonzero element will take true
Boolean value while the rest nonzero elements in the same row will
take false Boolean value. So every nonzero element in a determi-
nant will generate one product term for constructing frow.

For a n×n matrix, the row legality checking function frow become:

frow = T1 ∧T2...∧Tn (3)

We do the same for generating the column legality check function
fcol where every nonzero element generates one product term also
for fcol . We can directly build those product terms from a determi-
nant by inspection, which simplifies the BDD construction consid-
erably. Theoretically, we have

THEOREM 1. A product term is a valid one product term of
a given matrix determinant det(A) if and only if (after the prod-
uct term is transformed into a Boolean expression), it satisfies the
Boolean function fdet(A)(= frow∧ fcol). frow and fcol are defined
above for determinant det(A).

Proof: First, we look at the ’if’ part of the theorem. Let’s look at
a product term with all possible combinations of matrix elements.
First, if it does not include any element from a certain row or col-
umn j, then all variables in the corresponding Tj are evaluated to
zero, which makes Tj = 0, which in turn makes fdet(A) = 0 since
all Ti’s are ANDed together. Second, if it has more than one ele-
ment from a certain row or column j. This again makes Tj = 0 and
immediately makes fdet(A) = 0. So the only possibility a product
term satisfies fdet(A) is when it has exactly one element from each
row and each column, which is the exact requirement for a valid
product term from the matrix determinant det(A).

Then we prove the ’only if’ part of the theory. Based on the defi-
nition of matrix determinants, a product term in a determinant has
one and only one element from each row and each column. The
legality requirement is precisely expressed in Boolean functions in
Ti, i = 1,2...n. To enforce the requirement that every row and col-
umn of a product term exists only once, we need to AND all those
Ti’s from all the rows and columns, which actually is the Boolean
expression fdet(A) = frow∧ fcol .

In the following, we illustrate such construction using a simple 2×
2 determinant det(A2×2) as shown below:

det(A2×2) =

∣
∣
∣
∣

a11 0
a21 a22

∣
∣
∣
∣
= a11a22.

Determinant det(A2×2) only has one product term a11a22. We now
show how this product term can be generated by using the afore-
mentioned logic circuit.

First, we construct row legality check Boolean function frow. For
row 1, we have Tr,1 = a11. For row 2, we have Tr,2 = a21a22 +
a21a22. As a result, frow becomes

frow = Tr,1 ∧Tr,2 = a11(a21a22 +a21a22)

Then we construct column legality check Boolean function fcol .
For column 1, we have Tc,1 = a11a21 +a11a21. For the column 2,
we have Tc,2 = a22. As a result, fcol becomes

fcol = Tc,1 ∧Tc,2 = a22(a11a21 +a11a21)

The final BDD representing all the product terms from det(A2×2)

is

fdet(A2×2) = frow∧ fcol

= (a11(a21a22 +a21a22))(a22(a11a21 +a11a21))

= a11a22a21.

Boolean expression a11a22a21 actually is exactly the BDD repre-
sentation of the valid product term a11a22 as a21 will be suppressed
when the BDD graph is transformed into ZBDD graph (DDD).
Note that the sign of each node in the DDD will be computed when
the DDD is constructed from the corresponding BDD.

4.2 New Construction Algorithm
In this subsection, we outline the new BDD construction algorithm
for determinant detecting logic shown in Fig. 2. For a nonzero
element ai j at row i, let Pr(aik) designate the product term where
aik takes true Boolean value while the rest nonzero elements in row
i take false Boolean value, ail , l �= k. The same is true for product
term Pc(a jk) for a nonzero element ak j in a column j. Then the
BDD construction algorithm is given in Fig.3.

BDDCONSTRUCTBYLOGIC (A) {
For each row i in matrix A

Tr,i = ∑n
k=1 Pr(aik)

frow = frow∧Tr,i;
For each column j in matrix A

Tc, j = ∑n
k=1 Pc(a jk);

fcol = fcol ∧Tc, j;
fdet(A) = frow∧ fcol ;
return fdet(A);
}

Figure 3: BDD construction algorithm for the determinant de-
tecting logic.

It can be seen that BDD construction boils down to a number of
AND operations. We just AND all Tx,i from every row and column.
Once the BDD is constructed, DDD is obtained by suppressing all
the vertices with their 1-edge pointing the 0-terminal. This can be
done trivially by one traversal of the BDD graph.

4.3 Logic Synthesis Perspective
Although the DDD construction process can be simplified into a
sequence of simple logic operations, we stress that the main idea
of the new method is still based on the logic synthesis concept: we
generate the desired symbolic expression in terms of DDD graphs
(for a determinant, its cofactor or the coefficients of its s-polynomials)
by constructing proper logic circuits. So we need to first design the
circuits as shown in Fig. 2 and Fig. 4. Once those logic circuits are
designed, we can represent such circuits in terms of BDDs. In this
section, we mainly show that such a transformation process can be
further simplified into a number of simple Boolean operations for
the construction of DDDs. Actually for the construction of the s-
expanded coefficient DDD by logic synthesis based methods, we
do not have the simplified logic operations.

5. S-EXPANDED POLYNOMIAL CONSTRUC-
TION
BY LOGIC OPERATIONS

In this section, we show how to construct the symbolic coefficients
of the s-polynomial of a determinant using Boolean logic operation
method.

5.1 Review of Existing DDD-based Construc-
tion Method

An s-expanded polynomial of a determinant takes the form of

P(s) = a0s0 +a2s1 + ...+ansn. (4)

78

In [9], a DDD graph like those in previous sections (which is re-
ferred to as complex DDD) of a circuit matrix or its cofactors is
built first. Then the s-expanded polynomial in terms of multi-root
DDDs is constructed from the complex DDD. In this method, coef-
ficient DDDs of all orders in the polynomial need to be generated,
which is expensive, as the highest order is the size of the matrix.
More importantly, this is often unnecessary, as dominant poles are
usually associated with low-order coefficients of the denominator
polynomial.

5.2 Generation of the Coefficient of a Specific
Order of s

With the new logic synthesis idea, we can construct each individual
coefficient s-expanded DDD one at a time. To illustrate this, we use
the 2×2 example in Section 4.1 again with the assumption that it
can be further expanded as below:

∣
∣
∣
∣

a11 0
a21 a22

∣
∣
∣
∣
=

∣
∣
∣
∣

a+bs 0
c+ds e+ f s

∣
∣
∣
∣
= ae+(a f +be)s+b f s2

where a11 = a + bs, a is a resistive admittance and b can be a ca-
pacitive or inductive admittance. a21 and a22 are similar. Suppose
we are interested in symbolic coefficient of s1, which is (a f +be)s.

The basic idea is to construct a logic which filters out incorrect
product terms and retains correct combinations. The desired logic
is the conjuncture of the following two conditions: first, the product
term should belong to the determinant; second, it has the right order
of s. In this case, it contains only one s (order one). For instance,
a f s and bes are all the legitimate product terms, whereas product
terms like ads fails the first condition and b f s2 fails the second
condition.

The first logic, which we still name fdet , is essentially the same as
the one constructed in Section 4.2. The only difference is that the
row and column legality check in Eq.(3) are now performed on each
individual admittance instead of nonzero entries in the matrix, since
no two admittances from the same row or column should appear
concurrently in any valid product term. For example, the Tr,2 now
becomes

Tr,2 = c ds e f s+c ds e f s+c ds e f s+c ds e f s

So the number of products in each Tx is the number of admittances
in each row or column.

The second logic circuit is to find the all the product terms with
correct order of s. We call such logic circuit coefficient condition
logic forder. Let’s assume first that all n admittances are reactive
(capacitive and inductive).

The corresponding logic circuit is shown in Fig. 4, which basically
just counts the number of reactive elements (with complex variable
s) and then compares the number with a fixed number (desired or-
der). In other words, this logic circuit essentially detects if a given
product term has the desired order (given as m) of s. fcoe f f is the
resulting coefficient BDD of a certain required order. fdet is the
output of logic to detect if a given product is valid product term or
not of a determinant as shown in Fig.2.

In this logic circuit, we have n k-bit full adders cascaded together.
One k-bit input of the full adders is always zero and the other k-
bit input is driven by the output of the previous stage adder. In
each adder stage, the capacitive or inductive admittance variable yi
drives the carry-in c0. The basic idea is to count the number of
those reactive admittances in a product terms. So the sum, which
is the output of the last stage adder will be compared with a fixed
binary number. If the fixed number is m, the logic circuit will be
satisfied when the number reactive admittance in the given product
term is m.

Then we have the following theorem:

THEOREM 2. Given a set of n Boolean variables {y1y2...yn},
the coefficient condition logic forder in the circuit of Fig. 4 is

forder = y1y2...ymym+1...yn + y1y2...ymym+1ym+2...yn

+ . . . +y1y2...yn−myn−m+1...yn , (5)

where forder is sum of Cn
m(= n!

m!(n−m)!) product terms and each term

consists of n Boolean variables, among them, m take true value and
the rest (n−m) variables take false value.

 0

k Bit Full Adder

m

A0 B0 Ak−1 Bk−1

Carryouts

f_det

f_coeff

are all zero

 0

 0

2 Bit Adder

k Bit Vector Comparator

k Bit Full Adder

2 Bit Adder

y1

ym

forder

Figure 4: The logic circuit for coefficient generation in Theory 2

Proof: Logic expression forder defined in Eq.(5) is satisfied if and
only if there are m variables among all the inputs yi, i = 1...n are
logic true, and the rest n−m variables are logic false, as one of
the product terms in Eq.(5) will be evaluated to ’1’. On the other
hand, the logic circuit in Fig. 4 will be evaluated to ’1’ when there
are m yi are ’1’ assuming that k is larger enough so that there is no
overflow for all addition operations. Therefore, the logic circuit for
forder in Fig. 4 corresponds to the logic expression of Eq.(5).

With Theorem 2, the second logic which selects the right order
number can be easily constructed. We simply take all the reactive
admittances with s (capacitors and inductors) as input Boolean vari-
ables, and choose m to be the order number desired. This logic is
exactly what we are looking for. All the adders in Fig. 4 are of bit k,
which is large enough so that the there is no overflow for all adders.
In practice k is the 2-based logarithm of the highest possible s-order
of the network function, or the circuit matrix size.

So the final logic for coefficient construction is obtained by fcoe f f =
fdet ∧ forder, as represented in Fig. 4. Notice that admittances with-
out s (like those related to resistors) would not contribute in forder.
Say, if the s0 term is desired, we just choose m = 0 and the logic
is simply y1y2...yn, which means any admittance with s should be
discarded from the s0 term.

5.3 Generation of Terms with Several Specific
s-Orders

The logic introduced in 5.2 only generates terms with one specific
s-order. As pointed out in 5.1, the first few s-order terms are often
of particular interest. For this purpose, we can certainly repeat the
above operation for several times, which is in fact not so efficient.
Notice that in Fig. 4, the conditional logic before the final com-
parator remains the same for all coefficients of different orders of s.
Once the logic is generated for a certain order m, the only change
required for another interested order l is to replace one of the com-
parator inputs from m to l. The rest of the logics in Fig. 4, as well
as the logic for the determinant generation, remain the same.

79

5.4 Cancellation Removal
The symbolic cancellation can be easily handled in the proposed
method. If term ab cancels with cd symbolically, we just multi-
ply (AND operation) the generated coefficient BDD, fcoe f f , with
product terms ab, ab, ab, cd, cd, cd. In other word, we do not al-
low product terms with both a and b, c and d appearing at the same
time. This is exactly the cancellation removal process.

6. TIME COMPLEXITY ANALYSIS
The time complexity of the proposed method can roughly be related
the general time complexity of BDD operations, which are propor-
tional to sizes of the resulting BDD graphs of two operations. But
the sizes of the BDD graph are highly depends on the variable or-
dering, which in the best case has linear time complexity and in the
worst case (parity functions) will still have exponential growth with
size of the number of Boolean variables (circuit sizes in our case).
But many practical circuits have very small BDD sizes compared
to the number of their minimum product terms, which makes BDD
methods very useful for many logic synthesis and verification ap-
plications. In our BDD/DDD based symbolic analysis, we see the
similar time complexity. But from symbolic analysis perspective,
such time complexity is significant as the time complexity is no
longer related to the number of product terms any more. Instead it
depends on the size of BDDs representing the product terms at all
the time.

7. EXPERIMENTAL RESULTS
The proposed algorithm has been implemented. A number of ana-
log circuits ranging from large Opamp circuits, active filters to
mesh-structured RC filter circuits are analyzed symbolically. All
results are collected on a Linux workstation with dual 3.0Ghz Xeon
CPUs and 2GB memory.

We first test the new algorithm on a number of full matrices with
different sizes. The results are also compared with the Laplace
based DDD construction algorithm as shown in Fig. 5. Notice that
the total number of product terms of a full n×n determinant is n!.
We found that Laplace expansion can only construct DDDs for up
to 11×11 full matrix in reasonable time (less < 10hrs) and memory
(less < 1GB), while logic operation based algorithm can construct
DDDs for up to 16×16 full matrix. Notice that the difference of the
number of product terms between a full 16×16 determinant and a
full 11× 11 one is about six orders of magnitude (2.09× 1013 −
2.99×107).

4 5 6 7 8 9 10 11 12 13 14 15 16
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Size of full matrix

C
P

U
 t

im
e

o
f

co
n

st
ru

ct
io

n
 (

se
co

n
d

s)

Comparsion of DDD construction algorithms on full matrices

Laplace Expansion
Logic Operaqtions

Figure 5: CPU time comparison of Laplace expansion and logic
operation DDD construction algorithms.

Next, we test the new program on a number of analog circuits and
structured RC filter circuits. The selected circuits are three Opamp
circuits, CMOS Opamp, µA741, µA725 [11], one active band-pass
filter [10], and a number of mesh-structured RC circuits. For in-
stance, circuit p5x20x2 has 5 rows and each row is an RC ladder
circuit with 20 RC segments. The last digit 2 is the number of

the vertical lines for connecting the 5 RC ladder chain circuits at
evenly distributed points. Circuit p10x100 or similar other circuits
are tree-like structured circuits.

First we compared our new determinant construction algorithm with
the Laplace expansion algorithm and the exact hierarchical DDD
algorithm [11], which is the most efficient exact symbolic analy-
sis algorithm reported so far. We compared the resulting sizes of
DDD graphs for the denominator of a transfer function for each
circuit and CPU time of the DDD construction for the whole trans-
fer functions. Then we generate s-expanded rational functions us-
ing logic operation based method and compare with method in [9],
which is the most efficient fully s-expanded polynomial construc-
tion method reported.

Table 1 summarizes the results. In this table, #nodes is the num-
ber of nodes in the circuits and #paths is the number of product
terms in the denominator of the transfer function. |DDD|(LS) and
|DDD|(H) are the number of DDD nodes for denominators of a
transfer function for logic operation based and hierarchical meth-
ods respectively. Notice that Laplace expansion method uses the
same circuit matrix and variable ordering as that of logic operation
based method. So their DDD size should be the same. CPU(F)
gives the CPU time using Laplace expansion method to construct
the required transfer functions; CPU(H) and CPU(LS) are the CPU
times for the hierarchical construction method and logic operation
based method respectively.

The results for constructing coefficients of s-expanded polynomials
are listed in the last two columns, where s-exp(F) refers to method
in [9] and s-exp2(LS) refers to the proposed logic operation-based
approach. Assume that we are only interested in the lowest 7 orders
of both coefficients in both the numerator and denominator of the
transfer function.

From Table 1, we observe first that the new algorithm can construct
the DDD graphs for all the cases, while hierarchical method fails
for some cases. The failure typically comes from excessive mem-
ory use as approximately only 1GB is available for user programs
in our Linux computer. For the hierarchical method, we typically
use 5 or 10 as the limit for the number of internal nodes for each
subcircuit as they are the best subcircuit sizes for exact hierarchical
analysis as shown in [11]. For Laplace expansion based method,
only very small circuits can be analyzed and the new method has
much greater capacity.

We observe also that in addition to circuit size, variable ordering
plays a critical role in construction time. However, the hierarchical
and logic operation based algorithms do not use exactly the same
variable ordering as variable ordering is computed for each sub-
circuit in the hierarchical method. As a result, there is no consis-
tent speedup trend between these two methods. For some smaller
circuits like band pass, the hierarchical method fails to deliver re-
sults because the variable ordering used make the construction pro-
cess very slow and memory intensive, which eventually runs out of
memory.

But in general, we find that logic operation based construction method
will lead to smaller DDD sizes than the hierarchical method. The
reason is that variable ordering for the new method is done in the
entire circuit, while the variable ordering is done for each subcircuit
separately in the hierarchical method. But there is an exception: for
circuit µA741, DDD sizes are 2314 for hierarchical method versus
4985 for the new method. This suggests DDD variable ordering al-
gorithm, which is mainly based on the Markorwtiz’s algorithm [8]
has much room for further improvement for many practical and
unstructured analog circuits. For mesh-structured circuits, the hier-
archical method seems faster than the new algorithm although they
use more DDDs to represent the final expressions. On the other
hand, when the structures become more complicated (more vertical
lines) as in the cases of p6x20x4 and p7x20x4, hierarchical method
fails to give any result.

80

Table 1: DDD Construction results on the different analog circuits.
Circuit #nodes #paths |DDD|(LS) |DDD|(H) CPU(F) CPU(H) CPU (LS) s-exp(F) s-exp(LS)

CMOS Opamp 14 79643 1895 8803 0.44 2.21 0.11 12 7
µA741 24 108032 4985 2314 0.60 0.25 0.30 425 74

band pass 38 7.95×108 39056 – – – 3.31 - 743
p5x20x2 100 5.53×1020 3312 18631 – 2.90 1.30 - 22
p5x20x4 100 2.10×1021 18791 392326 – 202.63 3.01 - 124
p6x20x2 120 9.17×1024 6800 18701 – 2.87 4.90 - 85
p6x20x4 120 4.83×1025 41599 – – – 10.31 - 3764
p7x20x2 140 1.52×1029 13776 25263 – 5.61 5.61 - 341
p7x20x4 140 1.11×1030 87215 – – – 22.31 - 10620
p10x100 1000 N/A 5647 67840 – 17.02 44.06 - -
p20x100 2000 N/A 11597 150400 – 92.59 196.34 - -
p10x300 3000 N/A 17047 – – – 1447.10 - -
p20x200 4000 N/A 23297 – – – 2651.77 - -

We also notice that CPU time for p5x20x4 is significantly larger
compared with p5x20x2. The reason is that circuit p5x20x4 has
more complicated circuit structure than p5x20x2, as p5x20x4 has
4 vertical RC lines compared with 2 vertical RC lines in p5x20x2.
We observe that circuit structure has significant impacts on the CPU
time of BDD/DDD operations with our simple variable ordering
algorithm.

For tree-like structured circuits, we find that the number of paths
is out of numerical range of floating point number in the computer
as indicated by N/A. For circuits p10x300 and p20x200, the hier-
archical method also fails to construct DDDs due to limited mem-
ory resource. One critical engineering problem with BDD or DDD
is that we need to do garbage collection (CG) to recycle unused
DDD nodes. This is especially important for logic operation inten-
sive applications like the hierarchical and the new method as many
BDD/DDD logic ”AND” operations are used. The garbage collec-
tion can be done very easily in the new method as we perform the
GC at the end of every ”AND” operations.

For generating coefficients of s-expanded polynomials, both meth-
ods give exactly the same results in terms of DDD sizes and path
counts for the orders of coefficients computed. However, the exist-
ing method [8] fails for most large circuits – either it doesn’t finish
after 10 hours, or the DDD grows too large for the memory. On the
other hand, the new method is able to get coefficients of the lowest
7 orders for circuits up to 140 nodes. We did not construct the co-
efficients for very large circuits due to excessive memory use of the
coefficient DDDs beyond the memory in our Linux workstation.

8. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a novel approach to constructing sym-
bolic expressions in terms of DDD graphs for very large analog
circuits. We formulate the DDD-based symbolic analysis process
as a logic circuit synthesis problem and DDD can be constructed
by a number of logic operations instead of Laplace expansion as
before. The significance of our method is that the DDD construc-
tion time is no longer directly tied to the number of product terms
of a determinant, but approximately to the size of the final DDD
sizes, which makes the symbolic analysis problem more tractable
than before in practice. Logic operation based approach was also
used to construct specific coefficients of s-expanded polynomials
of a determinant directly and implicitly.

Our experimental results have validated the proposed method and
showed that the new method has great speedup over Laplace expan-
sion based methods in both complex DDD and s-expanded DDD
construction on small analog circuits, and is able to analyze larger
analog circuits exactly than existing flat and hierarchical symbolic
analyzers.

To enable best BDD construction process, a better ordering algo-
rithm and dynamic variable ordering should be employed in the
future.

9. REFERENCES
[1] R. E. Bryant, “Graph-based algorithms for Boolean function

manipulation,” IEEE Trans. on Computers, pp. 677–691,
1986.

[2] G. Gielen and W. Sansen, Symbolic Analysis for Automated
Design of Analog Integrated Circuits. Kluwer Academic
Publishers, 1991.

[3] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis
methods and applications for analog circuits: A tutorial
overview,” Proc. of IEEE, vol. 82, no. 2, pp. 287–304, Feb.
1994.

[4] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed.
Baltimore, MD: The Johns Hopkins University Press, 1989.

[5] M. M. Hassoun and P. M. Lin, “A hierarchical network
approach to symbolic analysis of large scale networks,”
IEEE Trans. on Circuits and Systems I: Fundamental Theory
and Applications, vol. 42, no. 4, pp. 201–211, April 1995.

[6] P. M. Lin, Symbolic Network Analysis. Elsevier Science
Publishers B.V., 1991.

[7] S. Minato, “Zero-suppressed bdds for set manipulation in
combinatorial problems,” in Proc. Design Automation Conf.
(DAC), 1993, pp. 272–277.

[8] C.-J. Shi and X.-D. Tan, “Canonical symbolic analysis of
large analog circuits with determinant decision diagrams,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, no. 1, pp. 1–18, Jan. 2000.

[9] ——, “Compact representation and efficient generation of
s-expanded symbolic network functions for computer-aided
analog circuit design,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 7, pp.
813–827, April 2001.

[10] J. A. Starzky and A. Konczykowska, “Flowgraph analysis of
large electronic networks,” IEEE Trans. on Circuits and
Systems, vol. 33, no. 3, pp. 302–315, March 1986.

[11] S. X.-D. Tan, W. Guo, and Z. Qi, “Hierarchical approach to
exact symbolic analysis of large analog circuits,” in Proc.
Design Automation Conf. (DAC), June 2004, pp. 860–863.

[12] X.-D. Tan and C.-J. Shi, “Hierarchical symbolic analysis of
large analog circuits via determinant decision diagrams,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, no. 4, pp. 401–412, April
2000.

[13] J. Zhu and S. Calman, “Symbolic pointer analysis revisited,”
in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
June 2004.

81

