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ABSTRACT
This paper presents an oversampling Data Recovery (DR)

architecture using Verilog-A that employs a novel Multiple-

Rotating-Clock-Phase (MRCP) concept for its operation.

The MRCP-DR architecture is a variant of the eye-tracking

DR architecture [7]. Multiple rotating clock phases, supplied

by a Delay-Locked Loop (DLL), establish a window for

detecting data edges. As a result, the window width becomes

robust against Process, Voltage and Temperature (PVT) vari-

ations. The MRCP architecture is tolerant of jitter on the

local, blind, free-running oscillator that operates at approxi-

mately the incoming data frequency. Behavioral blocks are

described and functional simulations are presented using the

Verilog-A/Spectre/Cadence platform. The Verilog-A test

benches allow the designer to perform system-level what-if

analyses and make area, power and performance estimates.

Index Terms: Data Recovery, Verilog-A, Behavioral Mod-

eling, Jitter Tolerance, Tracking, MRCP

1.   INTRODUCTION

Clock and Data Recovery (CDR) circuits are used to recover

serial data from an incoming data stream that often follows a

Non-Return to Zero (NRZ) signaling scheme. The main

component of a CDR or the Data Recovery (DR) circuit is

the Phase-Locked Loop (PLL)[1]. Therefore, CDR circuits

are broadly classified according to the type of the Phase

Detector (PD) used in the PLL. Linear CDR circuits use a

Hogge’s style Phase Detector [2] and numerous such imple-

mentations (full-rate and reduced-rate) have been presented

in literature. Non-linear CDR circuits employ Bang-Bang

Phase Detectors [3] (BBPDs) that have become popular

more recently [4], [5] for multi-Gb/s applications. The

BBPD-based CDR circuits operate at data rates at which a

flip-flop can be fabricated in a target technology and amelio-

rate many circuit-level challenges associated with linear

CDR architectures [6], [8]. 

Traditional CDR circuits (linear or non-linear) perform a 2x-

oversampling of the incoming data. One of the clock edges is

aligned with a PLL to a data edge as the other clock edge

samples the data. As an extension of this idea, the 3x-over-

sampling CDR architectures attempt to:

• track the data eye and sample at the centre of the eye [7],

• track the data edges and place the sampling clock in the

middle of two data edges [8], or

• perform a blind oversampling of the data with an odd

oversampling ratio and subsequently choose the most

likely symbol algorithmically [9], [10].

The preceding examples are only a representative subset of

oversampling DR architectures [14].

In Section 2, the MRCP architecture, which is a variant of

the eye-tracking DR architecture [7], is described using Ver-

ilog-A blocks [11]. The simulation results are presented in

Section 3 followed by the conclusions drawn from this work.

Previously, we used Matlab/Simulink [12] to explore the fea-

sibility of the MRCP-DR architecture [13], [14]. Further

comments about the choice of Verilog-A as the simulation

platform appear in Appendix A.

Figure 1.  Data recovery circuit concept (a) One rotating clock 

phase [7], (b) DR circuit [7], (c) Three rotating clock phases 

[14] (d) Multiple-Rotating-Clock-Phase architecture [14]
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2.   MRCP ARCHITECTURE

The eye-tracking architecture uses CMOS-style delay ele-

ments to create multiple delayed versions of the incoming

data that is subsequently recovered using one rotating clock

phase (as shown in Figure 1(a) and Figure 1(b)). For further

details and design guidelines, the reader is referred to [7]. In

contrast, the MRCP architecture uses three rotating clock

phases supplied by a DLL-based phase generator and the

original data stream to achieve the same functionality (as

shown in Figure 1(c) and Figure 1(d)). This is done to main-

tain a stable width for the data edge detection window in the

presence of PVT variations. The width of the data edge

detection interval is a critical parameter for realizing a pre-

dictable jitter tolerance [13]. The block diagram of the

MRCP-DR architecture appears in Figure 2. The following

sub-sections illustrate the Verilog-A implementation of the

MRCP architecture. Behavioral primitives are used to main-

tain circuit-structure and reduce simulation time while

behavioral code is used for the Phase Rotator (PR) block.

2.1. Bang-Bang Phase Detector

The UP and DN outputs from the BBPD provide an indica-

tion of the early/late data transitions. The BBPD was mod-

eled as a circuit structure with behavioral flip-flops and

gates. Three parameters were specified for all flip-flops and

gates at the top-level: propagation delay, rise-time and fall-

time. The flip-flops were modified from the ones available in

the ahdlLib to provide a reset signal, a configurable supply

and a choice of input/output levels. The (Early/Center/Late)

clock phases were derived from a Voltage-Controlled Delay

Line (VCDL) that was part of a DLL in order to maintain a

constant phase spacing. A simple CMOS-style delay was

created using the absdelay(.) function to study its effect on

the performance of the original architecture. It should be

noted that the delays cannot be chosen arbitrarily and will be

dictated by the speed of the target technology.

2.2. Digital Filter

The INC/DEC outputs shown in Figure 2 delay/advance the

phase and are never asserted simultaneously [7]. This block

is clocked by a delayed half-rate clock to provide phase

Figure 2.  MRCP-DR architecture block diagram
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change decisions. Two variants of the filter were tested dur-

ing the simulation cycle. The first one was the original filter

[7] implemented as a circuit structure with behavioral gates

and flip-flops. The second variant was a majority voting cir-

cuit based on a up/down counter that controlled the phase

rotating circuit. Due to the anticipated circuit overhead in the

count decoding circuitry, we decided to use the original filter

in conjunction with the phase rotator.

2.3. Phase Rotator

In order to provide the original architecture with infinite

phase tracking ability, one of several available clock phases

was chosen using a cyclic phase pointer [7]. This block oper-

ates at a much lower frequency (CLK/M) where ‘M’ is the

update interval (measured in number of bits). Therefore, it

can use Current-Mode Logic (CML) library cells. For the

actual circuit, a (left/right) rotating register made of flip-

flops could be used to select one available phase at a time.

The conceptual diagram for a K-phase rotator is shown in

Figure 3. Consider a barrel rotator [17] that can rotate its

contents left or right as a result of the INC/DEC command

respectively. One needs to enable any one output (any one

but only one from every row) upon start-up to select a single

phase. As the jitter accumulates, a decision is made by the

BBPD/Digital Filter to either advance/delay (DEC/INC) the

phase. A PR block encoded as a behavioral module was used

for this purpose. For the modified PR block with the Early/

Centre/Late clock phases, the code is a logical extension of

the a single PR case and appears in Listing 1. Depending on

the direction of the jitter as signaled by INC/DEC, the clock

phases are selected on a rotating basis from the eight avail-

able DLL phases. The outputs from the PR code are deci-

sions only. The actual switching process would depend on

the chosen circuit implementation of the switches.

In the current version of the design, dynamic phase spacing

between Early/Centre/Late clocks is not targeted, but simple

changes can be made to the Verilog-A code/circuit to incor-

porate this functionality. This would enable the designer to

get an estimate of the horizontal eye-opening limited by the

phase resolution of the VCDL. An important note is that the

Figure 3.  Phase rotator concept diagram
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switching should happen at the point of the smallest slope of

the available phases in order to reduce glitching. 

2.4. DLL-based Phase Generator

The DLL block diagram is shown in Figure 4 along with a

code fragment for the variable delay block. The DLL is a

classical structure with a Phase-Frequency Detector (PFD)

Listing 1.  Multiple Clock Phase Rotator (with static spacing)

// ----- Conference      :    BMAS 2005, San Jose, CA, Sept. 22-23, 2005
// ----- Author              :    Syed Irfan Ahmed

`include "discipline.h"
`include "constants.h"
`define MAX_PHASES 8

module ph_rot_new_3x (clk, inc, dec, reset, pose, posc, posl);
input clk, inc, dec, reset;
output pose, posc, posl;
electrical clk, inc, dec, reset, pose, posc, posl;
parameter real tdel_rot = 10p   from (-1:inf);
parameter real tr_rot = 10p  from (-1:inf);
parameter real tf_rot = 10p from (-1:inf);
parameter real vdd_rot = 1.8 from (0:2.5);
parameter real vss_rot = 0  from (-1:2.5);
parameter integer init_count = 1 from (0:32);
parameter phase_step = 2 from (1:4);

real threshold;
integer countc, countl, counte;      // center, late, early

analog begin
    threshold = vdd_rot/2.0;
    
    @ ( initial_step or cross (V(reset) - threshold, +1) ) begin
              countl  = init_count;
              countc = (init_count + phase_step) % `MAX_PHASES;
              counte = (init_count + phase_step + phase_step) % `MAX_PHASES;

    end       // --------------------------------------- End of initialization
         
@ ( cross(V(clk) - threshold, +1)) begin  
    
        if (V(inc) >= threshold && V(dec) < threshold && V(reset) < threshold) begin
               countl = countl - 1 ;
                           if (countl < 1)  begin
                                    countl = `MAX_PHASES;
                           end
               countc = countc - 1 ;
                           if (countc < 1)  begin 
                                     countc = `MAX_PHASES;
                           end
               counte = counte - 1 ;
                            if (counte < 1)  begin 
                                     counte = `MAX_PHASES;
                            end
        end   // --------------------------------------- End of INC operation
        
        else if (V(dec) >= threshold && V(inc) < threshold && V(reset) < threshold) begin 

countl = countl + 1;
                            if (countl > `MAX_PHASES)  begin 
                                      countl = 1;
                            end
               countc = countc + 1 ;
                            if (countc > `MAX_PHASES)  begin 
                                      countc = 1 ;
                            end
               counte = counte + 1 ;
                            if (counte > `MAX_PHASES)  begin 
                                     counte = 1 ;
                            end
        end    // --------------------------------------- End of DEC operation     

end //    ------------------------------ end cross V(clk)

        //   -------------- Phase change (decision only) ouputs start here

         V(posc) <+  transition (countc, tdel_rot, tr_rot, tf_rot);
         V(pose) <+  transition (counte, tdel_rot, tr_rot, tf_rot);
         V(posl)  <+  transition (countl, tdel_rot, tr_rot, tf_rot);
                               
end      //   ----------------------end analog statements   
`undef MAX_PHASES 
endmodule

and a Charge Pump (CP). This circuit-like arrangement

offers the possibility of injecting noise and jitter at any node

without additional modeling complexity. One can simulate

the effect of noise and/or jitter on the individual stages, the

control voltage node (Vcont) and the local clock generator.

We have also introduced a static_offset parameter in the vari-

able delay blocks at the block level for added simulation

flexibility. More realistic models included non-linear effects

but required a detailed discussion; therefore, a simple linear

model is being used here for the variable delay blocks.

2.5. Jitter Tolerance Simulation Test Bench

Figure 5 shows the jitter tolerance test bench from [15] that

we have included for completeness. Briefly, a jitter sinusoid

(JSIN) phase modulates a carrier at the data frequency pro-

ducing a jittered clock (JCLK). This JCLK signal drives a

variable-length Linear Feedback Shift Register (LFSR) gen-

erating a Pseudo-Random Bit Sequence (PRBS) of the speci-

fied length. This jittered data is subsequently recovered by

the MRCP-DR circuit. An ERROR output is generated using

a replica-LFSR circuit after lowpass filtering. A novel jitter

tolerance simulation technique has also been presented in

[15] that significantly reduces simulation times and is appli-

cable to any kind of CDR circuit.

3.   SIMULATION RESULTS

3.1. Assumptions and Functional Verification

The timing parameters for gates and flip-flops have been

derived from a 0.18- m CMOS design [16]; tr = tf = 100 ps,

Tcq=75 ps for all flip-flops and gate delays=50 ps. The blocks

in our model are capable of CMOS or CML input and output

Figure 4.  DLL-based phase generator block diagram (Main 

code fragment for the variable delay element shown)
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levels and we are using these parameters as a guideline only.

The update interval (M) for the multiple clock phase rotator

is 16 bits. The adjacent clock phase separation is constant at

0.25 UI (for an optimal jitter tolerance performance [13]) and

the total number of phases (N) is eight. The data rate is 2.5

Gb/s and a 211-1 PRBS length is chosen. 

Figure 6 shows a typical 2.0 s functional simulation for the

MRCP-DR architecture (5000 bits are not shown). The sig-

nals POSL, POSC, and POSE represent the phase number of

the selected (Late/Center/Early) clock phases respectively.

The ERROR signal records no transient bit errors except at

start-up as the system tracks a 3.0 UI-pp (Unit Interval, peak-

to-peak) jitter causing sinusoid (JSIN) with a frequency of

1.0 MHz. The three clock phases rotate three times in each

direction for every cycle of the JSIN signal as the data is

recovered. The start-up transient for the DLL is also visible.

An initial condition was applied at the Vcont node in order to

reduce the simulation time (see Figure 4). 

The equivalence of the original scheme and the MRCP-DR

architecture for jitter tolerance has been verified previously

[14]. The interested reader can compare the jitter tolerance

results presented later with the ones presented in [7] for a

non-rigorous proof of the validity of our models.

3.2. Estimated Area and Power Consumption

An advantage of having structural blocks is that the area and

power can be estimated relatively easily. With the foregoing

assumptions [16], the total power dissipation would be of the

fin
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Figure 5.  Jitter tolerance test bench [15]

order of 15 mW @ 2.5 Gbps for a 0.18- m design and

around 10 mW for a 90-nm design. A conservative estimate

puts the area at 120 m*120 m for the DR core. Out of this

area, approximately 50% is used for the PR circuit and the

DLL biasing circuitry. The DLL and its biasing circuitry

could be shared between many data lanes on chip, although

this remains to be verified. A SKILL language procedure

could expedite calculations if the circuit were made up

entirely of structural blocks.

3.3. Jitter Tolerance vs. PRBS Length

The jitter tolerance simulation results vs. PRBS length as

parameter were presented in [15] and will not be repeated

here. The same paper briefly comments about the simulation

time requirements and the accuracy of BER measurements

using transient simulations only. We are using Sun Microsys-

tems Blade-1500 workstations running Solaris 9 with 2 GB

of RAM. The simulation time is approximately 5.5/3 minutes

with/without a DLL for every microsecond of DR operation.

3.4. Jitter Tolerance at Different Data Rates

Here we simulate the case where the same DR circuit is used

at data rates of 1.25 Gb/s and 2.5 Gb/s. The top-level param-

eters for flip-flops and gates remain the same; only the data

Figure 6.  Functional simulation of the MRCP-DR Circuit 

(with a DLL-based phase generator)
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rate and DLL parameters are changed. Figure 7 shows the

relevant simulation results. The CML library cells can be

systematically optimized for propagation delay, rise-time and

fall-time to work at multiple frequencies. In addition, library

cell specifications for upcoming technologies can also be

derived rapidly using a flexible top-level test bench.

3.5. Effect of Unequal DLL Phase Spacing

To simulate the effect of a biasing problem, we add a static

delay offset to one of the variable delay cells in the DLL. The

eight ideal phases are separated by 50 ps @ 2.5 GHz. Figure

8 shows that the architecture is tolerant of 20 ps static phase

offset in a DLL delay cell. This is because the data detection

window is rotating randomly and the effect of one incorrectly

biased delay cell is dithered out. Rapid degradations occur in

jitter tolerance with offsets beyond 25 ps.

3.6. Deviation of Local Clock Frequency

A static frequency offset may result from the design of the

local clock synthesizer or a slow variation in temperature.

Figure 9 shows the result of the local clock frequency devia-

tion on the jitter tolerance of the MRCP-DR circuit. The

POSE, POSC and the POSL staircases (seen in Figure 6)

move in one direction only to compensate for the static fre-

Figure 7.  Jitter tolerance at different data rates

Figure 8.  Effect of unequal DLL phase spacing

quency offset but are not shown due to lack of space. 

In a related scenario, the local clock can acquire a correlated

high-frequency jitter from the incoming data. To simulate

this effect, we apply a jitter of 0.1 UI-pp @ 100 MHz on the

local clock while the DR circuit tracks a 3.0 UI-pp wander as

shown earlier in Figure 6. Figure 10(a) shows a simulation

with an ideal 2.5 GHz local clock. One can observe the

bimodal distribution on the histogram of the DOUT signal as

Figure 9.  Effect of local clock frequency deviation

Figure 10.  Effect of high-frequency jitter on the local clock 

(a) No added jitter (b) 0.1UI-pp sinusoidal jitter@ 100MHz

(b)

(a)
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the eight ideal clock phases recover it as required. The bimo-

dal distribution  is due to the sinusoidal JSIN signal. Figure

10(b) shows the same scenario with the jitter applied. The

eye diagram shows almost total closure and the jitter histo-

gram [18] on DOUT is also dithered, but there are no tran-

sient bit errors as a result. This simulation can determine the

robustness of the DR circuit in a noisy digital environment.

In general, if the accumulation of phase is greater than the

phase spacing (0.125 UI=50 ps) during every update period

(M=16 bits=6.4 ns) or 50 ps/6.4 ns, the BER would degrade

rapidly. For this 1st-order Bang-Bang CDR architecture, the

jitter contribution from all sources is bounded by this upper

limit for a good design.

4.   CONCLUSIONS

• A Multiple-Rotating-Clock-Phase Data Recovery Cir-

cuit was implemented using Verilog-A. The architecture

is a variant of [7] and has an all-digital core. The data

edge detection interval is established by using rotating

clock phases tapped from a DLL-based phase generator

and is robust against PVT variations. The local clock

generator is blind to the incoming data frequency.

• Functional simulations and Verilog-A code excerpts

were presented for the relevant blocks. Initial estimates

were made for area and power of the DR circuit.

• Jitter Tolerance simulation results were presented for

various data rates and other relevant scenarios. The flex-

ibility of a Verilog-A test bench allows the designer to

do what-if analyses at the early architectural stages.

• The MRCP architecture is tolerant of unequal phase

spacings in the DLL-based phase generator or from any

other clock source since the data detection window is

rotating randomly with the incoming jitter.
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APPENDIX A

Verilog-A vs. Matlab
This architecture was initially conceived and explored using

Matlab/Simulink ([13], [14]). Matlab is a proven tool for the

architectural exploration of DSP/Communications/Control

systems. However, a Simulink model using built-in blocks

for logic gates and flip-flops works to an un-realistically high

frequency unless delay blocks are manually inserted. The

simulations can thus become more accurate, but the rise- and

the fall-times are still not modeled easily.

Consider an output stage with a load capacitance (due to

geometry, fan-out or parasitics) that causes an RC-style delay

through the stage. The current available to charge/discharge

this load capacitance determines the rise-time/fall-time of

this stage. A circuit-aware language, like Verilog-A, is

required for simulating these circuit-level effects. It has

built-in definitions for flow/potential quantities (current/volt-

age, for the discipline ‘electrical’). With its transition and

slew waveform filters, Verilog-A/(AMS) can simulate such

post-layout effects during the early design stages. It, there-

fore, provides a realistic transition between concept-stage

modeling and the final chip. Multi-domain simulations and

compatibility with major vendor supported IC-design flows

make it a natural choice for mixed-signal, Systems-on-Chip

(SoC) development as well.
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