
ABSTRACT

A model import tool referred to as the MutliTranslator
(MT), which is used by the Paragon+ modeling
environment is described in this paper. The
MultiTranslator is based on a standard XML format and
also provides an interactive wizard to add and/or edit
any information to the imported model. The approach
described here also further demonstrates how Paragon’s
XML schema can act as a centroid for third party tools
and make the models available in widely used
languages like VHDL-AMS, Verilog-AMS and MAST.
This mechanism is illustrated with importing a
Modelica model into the Virtual Test Bed (VTB)
simulation environment.

Keywords

Modelica, model import, XML, tools, HDLs

1. INTRODUCTION

The need for modeling different electrical and
mechanical devices in the same simulations is gaining
increasing focus as more sensor/actuator systems are
deployed. The SPICE-based simulators lack a
convenient way to develop either mixed-signal or
mixed-technology models. Mixed-signal Hardware
Description Languages (HDLs) [1], [20] are providing
the flexibility of letting the designer write his/her own
models. Knowing the fact that developing and
maintaining behavioral models even in these HDLs is a
time-consuming and error-prone process, making these
models available in multiple simulation environments
has become another major requirement in the
contemporary design world [23]. The language
technology alone is not sufficient to meet the challenges
of the complexity of the design of real systems. This is
due to the fact that complexity of such systems is now
involving people from a variety of scientific
backgrounds. It is very unlikely that each of these
disciplines will have taught the use of the same
languages or the same simulator.

 With the aid of advanced modeling tools, models
can be efficiently shared among designers in their

+ This work is sponsored by the Office of Naval Research

under Subaward No. USC 01-636 and by the Semiconductor
Research Corporation (SRC) under Grant No. 2005-HJ-
1287

convenient environments for verification purposes. The
objective of this paper is to illustrate the usefulness of
tools like Paragon [2-4] and MultiTranslator [5], [6]
where both use the same language-independent format
to represent model information. The MultiTranslator is
a software tool developed at the Taganrog State
University of Radio Engineering (TSURE) intended to
translate models written in Advanced Continuous
Simulation Language (ASCL) [7], Modelica [8] and
other modeling languages. Each translator is equipped
with an individual grammar module, which can translate
the model information into other formats. Among the
existing MultiTranslator modules, the Modelica
importer is described in this paper. The imported
Modelica model is embedded and simulated in the VTB
[9], [10] simulation engine to verify the conversion.
Paragon is a language-independent modeling
environment developed at the University of Arkansas,
which has both the capabilities of automatic model
importation and code generation of the imported models
in various HDLs [23]. Compact semiconductor device
models like BSIMSOI [12] and EKV [13] have been
entered to generate Verilog-A and VHDL-AMS codes
[14]. Paragon’s own model import mechanism was first
created to import MAST [15] models.

 The VTB is a simulation environment developed at
the University of South Carolina for prototyping of
large-scale, multi-technical dynamic systems. It allows
proof-testing of new designs prior to hardware
construction. The application driving development of
the VTB is advanced power systems for navy platforms.
In particular VTB provides a wide range of possibilities
for integrating dynamic models from other simulation
environments.

2. MOTIVATION

The VTB is an efficient mixed-technology simulation
and visualization tool. As in normal simulators, there is
always a growing need for new models to be added to
the existing library. The simulation kernel supports a
C++ based interface for models rather than popular
HDLs. Handling simulator specific information in
models also complicates the procedure of bringing new
models into VTB. To fulfill this need, Paragon was
chosen as a companion tool to bring new models into
the VTB environment. The model importer extracts all
the model information and removes all language
specific constructs to save in Paragon’s internal format.
Once a model is rendered in this internal format, it can

Deploying Modelica Models into Multiple
Simulation Environments

Yuri Chernukhin*, Maxim Polenov*, Chandrasekhar Vemulapally**,
Eugene Solodovnik***, H. Alan Mantooth**, Roger Dougal***

* Department of Computer Engineering, Taganrog State University of Radio Engineering, Taganrog, Russia
** Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

*** Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA

0-7803-9352-X/05/$20.00 © 2005 IEEE. 134

be viewed pictorially and better understood with the
help of graphical editors. The biggest advantages of the
model importing mechanism are to: a) harness the code
generation capability of Paragon to generate code for
the same model in multiple forms, b) as a
teaching/training aid to others needing to understand the
internal workings of a previously coded model, c) the
creation of a more object-oriented model such as that
found in Paragon, and d) automatic generation of model
documentation (analogous to model data sheets).

3. PARAGON’S XML AS A CENTROID

Paragon utilizes a generic XML schema, which enables
the capture of information specific to model data. The
use of XML, which is open source and a standardized
format, allows easy data interchange and formatting.
Many standard language translation tools like
Extensible Style Sheet Language Transformations
(XSLT) [24] can be used to manipulate the data and
convert into necessary target format. In addition to the
HDL code generation functionality, Paragon can also be
used in combination with third party tools like ADMS
[25], [26] and MCAST [27] to generate low level C
code for target simulators. ADMS and MCAST are
model compilers, which are based on Abstract Syntax
Trees (AST) that read compact models described in
high level languages like VHDL-AMS/Verilog-AMS
and automatically generate C code that can be linked
with existing circuit simulators like Spectre and
SPICE3. One can imagine the amount of time, effort
and complexity involved in writing and debugging huge
models such as those in the BSIM family in these
languages before actually deploying in simulations. The
usefulness and capacity of high level advanced
modeling tools like Paragon was illustrated by
generating BSIM3-SOI model (version 2.2) and
validating against the built-in Spectre model in [14].
Another example of Paragon’s capacity is illustrated by
the VBIC implementation as described in [28]. In each
case, the Verilog-A code generated by Paragon was fed
into ADMS to compile it into C for the compiled model
interface of Spectre.
 In order to address model debugging issues and to
reduce simulation time, Paragon has a rich set of
analysis and utility methods such as AST and Model
Checking. The AST is created for each model to
identify and represent the inter-relationships between
different time-varying variables and constants of the
model. The AST is analyzed to determine functional
and time dependencies in the model, which enables the
generation of efficient and readable code. The model
import mechanism also utilizes a combination of the
above mentioned utilities and distinguishes between
sequential and simultaneous blocks of the model. It also
identifies discontinuities and undefined variables before
actually saving the model to the database, while the
code generators are designed to generate proper code
(e.g. generation of break statements in VHDL-AMS).
All of these features differentiate the model importer

from basic language translators. So far, continuous time
models have been the focus for model importing while
the research effort is ongoing to include event-driven
behavior. The newly developed Modelica Importer is
discussed in this paper. Modelica is an object oriented
modeling language, which is designed to allow
convenient component-oriented modeling of complex
physical systems (e.g., systems containing mechanical,
electrical, electronic, hydraulic, thermal, control,
electric power or process-oriented subcomponents). As
there is a requirement for bringing Modelica mixed-
technology and power device models into the VTB
simulation environment, Paragon acts as a hub from
where multiple languages can be generated.

4. TOOLS FOR IMPORTING MODELICA

Paragon was designed to create a user-friendly
modeling environment, which would alleviate the need
of mastering various HDLs [16]. The present design
utilizes XML and MathML [17], [18] as the internal
format. The extensible nature of XML easily facilitates
addition of new features and phenomena, for example,
multi-physical systems (thermal, optical, mechanical,
etc). Paragon’s XML template can be best described in
a diagram shown in Fig. 1 below.

 The entire model information is encapsulated in the
Model parent tag. The Model tag in turn is sub-divided
into two tags Interface and Body, where the former
represents the model parameters and connection points
information and the latter incorporates the model
implementation details. Parameter processing and
ranges of validity information is saved in the parameter
tag whereas the name, type and nature of connection
points are saved in the port tags. The model can be
viewed pictorially by a set of branches where each
branch is associated with through and across variables.
The Topology tag gives the branch connections and
wiring information of the model.

Fig. 1. Paragon’s internal XML template.

XML
Model

Interface
 Parameters
 Ports
 Body
 Internals
 Branches
 Topology
 Connections
 Topo_branches
 Wires

135

 The general template of a Modelica model is shown
in Fig. 2. The structure of a Modelica-model can be
divided into three sections, each having its own
significance. When compared against the Paragon’s
XML format, section 1 contains the information of
model parameters, ports and internal variables. Both the
parameters and ports information are saved in the
Interface tag, whereas the internal variables are saved in
the Body -> Internals section. In a similar way section 2
carries all the model topology information, which is
saved in the Topology and Branch tags. Section 3
represents the characteristic equations governing the
model behavior and this information is saved in the
equation tags of the Paragon format. All the model
expressions and equations are expressed in MathML,
which is an XML application by itself for describing
mathematical notations.

Paragon

DataBase of
Models on

XML

XML-code of model
translated by MT

UDD-code
of model

External
Models

HDLs HDL Importers HDL-code Generators

Model Editors

UDD-code Generator

MultiTranslator UDD

COM-interface

C++-code
of model

4.1. Implementation

The MultiTranslator utilizes a grammar module for
translating modelica models into the target XML
description. The block diagram in Fig. 3 shows the

overall process of the model import mechanism. The
MultiTranslator acts as a plug-in tool for importing
Modelica models into Paragon, whereas the native VTB
C++ code is generated by an automatic code generation
module called UDD (User Defined Device) [19].
Further the generated C++ code is compiled to a
Dynamic Linked Library (dll) and then loaded into the
VTB model library. The integration of Paragon and the
MultiTranslator is implemented using the client-server
Component Object Model (COM) interface. The
MultiTranslator acts as a server and responds to the
function calls made by Paragon to import the Modelica
model.
 The MultiTranslator’s grammar module contains the
description of the Modelica language grammar
constructs and a set of rules. These rules define the
actions to take place based on the input to generate the
correct XML output. A section of the Modelica
grammar module defining two rules is shown in Fig. 4.
Every rule is followed by a keyword rule and actions to
be performed are defined within the body of the rule
section. Multiple actions can be performed based on the
input in the variant section. The example given below
demonstrates how mathematical operators are converted
to equivalent XML format. The <mo> tag is the
presentation tag used in MathML to represent
mathematical operators. After parsing the Modelica
model, the grammar module converts the model to
Paragon’s format on a query-driven basis.

4.2. Model Wizard

The Model Wizard is a part of the MultiTranslator tool,
which allows the user to interact with the tool while
importing a Modelica model. This wizard allows the user
to make changes when the model is being imported into
Paragon, such as augmenting the model with additional
information, while still keeping the Modelica model

Fig. 2. General Modelica template structure.

Fig. 3. Block diagram of the model importer in Paragon.

Modelica
 Model
 Parameters

 Annotation
 Documentation
 Icon
 Diagram

 Equations

1

2

3

Fig. 4. Example of rules defined in the Modelica
grammar module

136

unaltered. The screenshot of the model wizard is shown in
Fig. 5 illustrating with a DC motor model example given
below. In the example shown, the model consists a set of
variables and two equations describing the model
behavior. Though this is legal in Modelica, in HDLs
connection points are needed to instantiate the model in a
netlist. In this case, this wizard will give the user the
flexibility of entering connection points, their natures and
branches between connection points. The wizard also helps
the user to visualize the model graphically and correlate
the equations to respective branches in the model.

model DCMotor "DC Motor"
 Real Tq=10.0 "Torque applied at the shaft";
 Real V=20.0 "Voltage across terminals A and B";
 Real i "Current through terminal A";
 Real w "Angular rotor speed";
 Real J=0.5 "The rotor equivalent moment of inertia";
 Real R=0.4 "Resistance";
 Real L = 0.0025 “Self-inductance”;
 Real w0=125.664 "Rated angular speed";
 Real V0=115.0 "Rated voltage";
 Real b=0.196 "Constant of tough friction";
equation
V=L*der(i)+R*i+ V0/w0*w;
Tq=-J*der(w)+ V0/w0*i-b*w;
end DC Motor;

 Once the model is imported into the Paragon
modeling environment, native VTB C++ models can be
generated through the UDD code generation module.
This UDD code generation module expects the model
information to be in a specific format before generating
native VTB models. For example, UDD always expects
equations having through variables as a function of
across variables. The Paragon’s internal code
generation and analysis tools are capable of converting
the model information into UDD compatible format.
The UDD file for the DC motor model is shown in Fig.
6.

5. RESULTS

The last step before exporting the models into the VTB
simulation environment is to compile the generated C++
code to a dll and saving in the model library. The VTB
symbol editor can be used to create a symbol for the
new model for further instantiation in the simulations.
The DC motor model was imported into Paragon and
the equivalent VTB model was generated utilizing the
UDD tool. A drive system consisting of a petrol engine,
flexible shaft, single-phase generator, DC-motor and
ventilator was created in the VTB environment. Two
DC motors were used while one of them served as a
generator. To verify the results, two drive systems were
created, one with the components available in the VTB
model library, whereas the other with models imported
and generated using MutliTranslator, Paragon and UDD
tools. Both the test setups are shown as a screenshot in
Fig. 7. Both the mechanical and electrical characteristics
like voltage values for the generators and angular speed
for DC motors were plotted and compared in the results
shown in Fig. 8. Many other models like gyrator,
propeller, shaft and transformer were imported and
verified against built-in VTB models. The model import
mechanism was also very successfully implemented
with MAST models.

Fig. 5. Screenshot of the MutliTranslator’s Model
Wizard showing DC motor model example

! UDD input Model file of DCMotor generated by Paragon
! This is a machine generated code.
! Generated on Wed, 13 Apr 2005 11:32:03 AM

Name: DCMotor
Nodes: 3
Terminals: 3
USE Model DCMotor0

Model DCMotor0
{
Tq=(((-(J*(diff(w))))+((Vo/wo)*i0))-(b*w))
pari=((INTEG(((v0-v1)-(R*i0))-((Vo/wo)*w)))/L)

pari
-pari
Tq
}

Fig. 6. UDD file generated by Paragon to generate
native VTB models

137

6. CONCLUSIONS

This paper describes an example of how a standard,
open-source interface such as the XML format used in
Paragon can be leveraged to deploy models of one
language into multiple other possibilities.
Consequently, this prevents models from becoming
obsolete when designers switch to different design
environments. Modelica models were imported into
Paragon and then exported into C++ (via the UDD
format) for the Virtual Test Bed mixed-technology
system simulation environment.

7. REFERENCES

[1] R.S. Cooper, The Designer’s Guide to Analog
and Mixed-signal Modeling, Avanti Corporation.

[2] Lynguent, Inc,
http://www.lynguent.com/Company/company.ht
ml

[3] V. Chaudhary, M. Francis, X. Huang, H. A.
Mantooth, “Paragon - A mixed-signal behavioral
modeling environment,” IEEE Int. Conf. on
Communications, Circuits, & Syst. (ICCCAS),
vol. 2, pp. 1315-1321, Chengdu, China, June
2002.

[4] M. Francis, V. Chaudhary, H. A. Mantooth,
“Compact modeling of semiconductor devices
using higher level methods,” IEEE 2004
International Symposium on Circuits and
Systems, vol. 5, pp. v-109 - v-112, May 2004.

[5] MultiTranslator, Taganrog State University of
Radio Engineering, http://eng.tsure.ru/

[6] Y. Chernukhin, V. Guzik, M. Polenov, “Tools of
external models translation and import for virtual
simulation systems,” Proceedings of 5th

International Conference on Computer
Simulation. vol.1, – St. Petersburg, Russia, June
2004.

[7] http://www.aegistg.com/ACSLCUT/products/
SIM/sim.htm

[8] http://www.modelica.org/
[9] Virtual Test Bed, University of South Carolina,

http://vtb.engr.sc.edu/
[10] R. A. Dougal, T. Lovett, A. Monti, E. Santi, “A

multilanguage environment for interactive
simulation and development controls for power
electronics,” IEEE Power Electronics Specialists
Conference, vol. 3, pp. 1725–1729, June 2001.

[11] E. Solodovnik, W. Gao, R. Dougal, “Automatic
Model Generation in VTB: Phase domain
Modeling of an Induction Machine,” 34th Annual
North American Power Symposium, Tempe,
Arizona, Oct. 2002.

[12] BSIM3SOI Source code and Documentation,
http://www-device.eecs.berkeley.edu/~bsimsoi/

[13] M. Bucher, C. Lallement, C. Enz, F. Théodoloz,
F. Krummenacher, The EPFL-EKV MOSFET
Model Equations for Simulation, Technical
Report, Model Version 2.6, June 1997. Revision
I, September, 1997, Revision II, July, 1998.

[14] V. Chaudhary, M. Francis, W. Zheng, H. A.
Mantooth, L. Lemaitre, “Automatic Generation
of Compact Semiconductor Device models using
Paragon and ADMS,” International Workshop on
Behavioral Modeling and Simulation (BMAS),
pp. 107-112, Oct. 2004.

[15] MAST/Saber User Manual, Synopsys, Inc.
[16] P. Mallick, M. Francis, C. Vemulapally, A.

Austin, H. A. Mantooth, “Achieving language
independence with Paragon,” International
Workshop on Behavioral Modeling and
Simulation (BMAS), pp. 149-153, Oct. 2003.

Fig. 7. Screenshot of the drive systems setup in the
VTB simulation environment

Fig. 8. Simulation results showing the voltage and
angular speed values for the Generator and DC motor
for drive systems

138

[17] Extensible Markup Language (XML),
http://www.w3.org/XML

[18] Mathematical Markup Language (MathML),
http://www.w3.org/Math

[19] E. Santi. R. A. Dougal, A. Monti, “The VTB
Environment for Virtual Prototyping of Dynamic
Ship Systems,” American Society of Naval
Engineers Annual Meeting, Arlington, VA, Mar.
2003.

[20] H. A. Mantooth, M. Fiegenbaum, Modeling with
an Analog Hardware Description Language,
Kluwer Academic Publishers, Norwell, MA,
1995.

[21] P. Ashenden, G. D. Peterson, D. A. Teegarden,
The Systems Designer’s Guide to VHDL-AMS,
Morgan-Kaufmann, San Francisco, CA, 2003

[22] 1076.1-1999 IEEE Standard VHDL Analog and
Mixed-Signal Extensions Language Reference
Manual, IEEE Press, ISBN 0-7381-1640-8.

[23] A. S. Kashyap, C. Vemulapally, H. A. Mantooth,
“VHDL-AMS Modeling of Silicon Carbide
Power Semiconductor Devices,” IEEE Workshop
on Computers in Power Electronics (COMPEL),
pp. 50-54, Aug 2004.

[24] Extensible Stylesheet Language,
http://www.w3.org/TR/xslt

[25] ADMS Model Compiler,
http://sourceforge.net/projects/mot-adms

[26] L. Lemaitre, C. McAndrew, S. Hamm, “ADMS –
Automatic Device Model Sythesizer,” Proc.
IEEE Custom Int. Circ. Conf., pp. 27-30, 2002.

[27] B. Wan, B. P. Hu, L. Zhou, C.-J. Shi, “MCAST –
An abstract-syntax-tree based model compiler for
circuit simulation,” IEEE Custom Integrated
 Circuits Conf. (CICC), pp. 249-252, Sept. 2003.

[28] A. M. Francis, B. O. Woods, H. A. Mantooth, M.
Vlach, L. Lemaitre, “A Methodology for Rapid
Development and Simulator Integration of
Compact Models,” Proc. of SRC TECHCON
2005, 6 pgs., Oct. 2005.

139

