

Mixed-signal Modeling Using Simulink based-C

Shoufeng Mu, Michael Laisne

9/27/2005

- **Objectives of Mixed-signal (MS) modeling**
- □ Advantages of Simulink based MS modeling
- □ Simulink based MS modeling flow
 - 1) Build a simulink model
 - 2) Convert the Simulink model to C code
 - 3) Integrate C model with HDL
 - 4) HDL wrappers
- **Automation scripts**
- Integration and Simulation
- □ Summary

Provide a behavioral model for the analog/mixed-signal block before the design is ready

• More often the mixed-signal/analog block is the bottleneck.

Provide a solution for a unified chip/system level mixed-signal verification (SOC or SIP)

- Verify the digital and mixed-signal design in the same environment
- Verify the mixed-signal interface between digital and analog dies
- Initiate verification and debug processes earlier to find out design/testability issues before tape-out

Enable efficient post silicon mixed-signal test pattern development and verification

- Can provide a robust environment for the mixed-signal pattern development
- Test pattern verification before 1st Silicon arrival
- ATE timing verification

QUALCOMM CDMA Technologies Simulink Based MS Model Development

- Traditional mixed-signal verification
 - Separate simulation environments
 - Partition the ASIC by Analog-Digital boundary
 - Leave holes in the signal interact between analog and digital blocks
- Mixed-signal behavioral model
 - C model
 - VHDL-AMS/Verilog-AMS
 - Verilog-A

- Simulink is a tool for system level modeling and simulation.
- Continuous, discrete and hybrid simulation
- Simulations are interactive, so you can change the parameters on the fly and immediately see the results.
- Integration with Matlab, Extension, Blocksets and Toolboxes.
- C code is automatically generated by using RTW
- Can be easily integrated with Verilog/VHDL digital simulation environment
- No special requirements on the simulator

Simulink Based MS Modeling Flow

Build the Simulink model

Convert Simulink model to c code using RTW

Add FLI in C to interface with VHDL or PLI to interface with Verilog and generate exe

Create VHDL /Verilog wrappers

Build the Simulink Model (1) Example of Simulink Model

• Build a simple one bit A2D converter using Simulink

Build the Simulink Model (2)

A2d1bit Top Level

9/27/2005

Build the Simulink Model (3)

A2d1bit submodel

Build the Simulink Model (4)

A2d1bit Sample hold model

Build the Simulink Model (5)

Behavioral model of Mash22 SD Modulator

Build the Simulink Model (6)

Behavioral model of Programmable RC Filter

Procedures to generate C code using Real Time Workshop

- Stop time under the "solver" tab in the Simulation Parameter window should be "inf" for infinite
- The type of the solver options in the simulation Parameter window should be fixed-step
- Make sure the mode is set to single-tasking
- Under the Workspace IO tab, make sure everything is unchecked
- Under the Real-Time Workshop tab, select Target Configuration to be Generic Real-Time Target (grt.tlc)
- Verify that the "Generate Code is only" button is not selected, then save your model
- In the simulation Parameter window, under the "Real-Time Workshop" tab, press the "build button"

Using FLI To Link C With VHDL(1)

```
library ieee;
use ieee.std_logic_1164.all;
entity a2d1bit_0_sub is
    port (
        signal Vin : in real;
        signal Vref : in real;
        signal L_clk : in real;
        signal Out_en : in real;
        signal sample : in real;
        signal Dout : out real
    );
end a2d1bit_0_sub;
```

```
architecture one of a2d1bit_0_sub is
```

```
attribute foreign : string;
attribute foreign of one : architecture is "a2d1bit_0init _./a2d1bit_0.modelsim.so";
begin
assert false report "Error: Foreign subprogram a2d1bit not called." severity error;
```

end architecture one;

The following Figure illustrates partitioning of the C main function and VHDL entity and architecture

VHDL Wrappers (1)

- There are two wrappers for the C model
- The "inner" wrapper has real inputs and outputs only, and its architecture calls the C library with a foreign attribute
- The "outer" wrapper takes care of the conversion of the data format, as well as separating the bits in a digital bus. The name and data type of input/output ports of the "outer" wrapper should exactly match the pin name of the analog schematic. The "inner" layer can have different number of output pins for debugging purpose.

• C code generation, customization and writing VHDL wrappers can be automated by Perl/shell scripts

≻Matlab automation script for C code generation

>Perl scripts to generate the compile scripts which support different platform

>Perl scripts to customize code

>Perl script to generate the VHDL wrappers

- Can be easily integrated with digital design (VHDL or Verilog)
- •Can be simulated with digital or mixed-signal simulator
- we successfully integrated the Broad-receiver, Wide Band CODEC, House-keeping ADC, PLLs, TXDAC, etc into our digital simulation environment, and got reasonable simulation results.

- The Simulink based C models can be certified with transistor level designs
- With automation scripts, the development cycle of Simulink based C approach is short
- The Simulink based C models can be easily integrated with VHDL or Verilog design
- The Simulink based C models can be simulated with digital or mixed-signal simulator
- With Simulink based C models, we can achieve true chip level or system level mixed-signal verification.