
QUALCOMM19/27/2005

Mixed-signal Modeling
Using Simulink based-C

Shoufeng Mu, Michael Laisne

QUALCOMM29/27/2005

Agenda

Objectives of Mixed-signal (MS) modeling

Advantages of Simulink based MS modeling

Simulink based MS modeling flow

1) Build a simulink model

2) Convert the Simulink model to C code

3) Integrate C model with HDL

4) HDL wrappers

Automation scripts

Integration and Simulation

Summary

QUALCOMM39/27/2005

Objectives of Mixed-signal modeling

Provide a solution for a unified chip/system level mixed-signal
verification (SOC or SIP)
• Verify the digital and mixed-signal design in the same environment
• Verify the mixed-signal interface between digital and analog dies
• Initiate verification and debug processes earlier to find out design/testability

issues before tape-out

Provide a behavioral model for the analog/mixed-signal block
before the design is ready
• More often the mixed-signal/analog block is the bottleneck.

Enable efficient post silicon mixed-signal test pattern development
and verification
• Can provide a robust environment for the mixed-signal pattern development
• Test pattern verification before 1st Silicon arrival
• ATE timing verification

QUALCOMM49/27/2005

Simulink Based MS Model Development

Simulink Model
Development

System Spec
&

Analog Design SIMULINK

Simulink Model
Verification

C-Models Generation

HDL and C-Models
Integration (HDL wrapper)

Real Time
Workshop

ModelSim/
ADMS

Analog/MS
transistor level

design

Model Certification

QUALCOMM59/27/2005

Traditional Mixed signal modeling and
verification

• Traditional mixed-signal verification
– Separate simulation environments
– Partition the ASIC by Analog-Digital boundary
– Leave holes in the signal interact between analog and digital

blocks

• Mixed-signal behavioral model
– C model
– VHDL-AMS/Verilog-AMS
– Verilog-A

QUALCOMM69/27/2005

Advantages of Simulink based MS modeling

• Simulink is a tool for system level modeling and simulation.
• Continuous, discrete and hybrid simulation
• Simulations are interactive, so you can change the parameters

on the fly and immediately see the results.
• Integration with Matlab, Extension, Blocksets and Toolboxes.
• C code is automatically generated by using RTW
• Can be easily integrated with Verilog/VHDL digital simulation

environment
• No special requirements on the simulator

QUALCOMM79/27/2005

Build the Simulink model

Convert Simulink model to c code using RTW

Add FLI in C to interface with VHDL
or PLI to interface with Verilog and generate exe

Create VHDL /Verilog wrappers

Simulink Based MS Modeling Flow

QUALCOMM89/27/2005

Build the Simulink Model (1)
Example of Simulink Model

• Build a simple one bit A2D converter using Simulink

Dout
Vref

Rsh

Csh

Vin

L_clk

-

En_out

+

D-latch

Tristate buffer

sample

QUALCOMM99/27/2005

Build the Simulink Model (2)
A2d1bit Top Level

QUALCOMM109/27/2005

Build the Simulink Model (3)
A2d1bit submodel

QUALCOMM119/27/2005

Build the Simulink Model (4)
A2d1bit Sample hold model

QUALCOMM129/27/2005

Build the Simulink Model (5)
Behavioral model of Mash22 SD Modulator

QUALCOMM139/27/2005

Build the Simulink Model (6)
Behavioral model of Programmable RC Filter

QUALCOMM149/27/2005

Convert Simulink Model To C Code using
RTW (Real Time Workshop)

Procedures to generate C code using Real Time
Workshop

• Stop time under the "solver" tab in the Simulation Parameter window
should be "inf" for infinite

• The type of the solver options in the simulation Parameter window
should be fixed-step

• Make sure the mode is set to single-tasking
• Under the Workspace IO tab, make sure everything is unchecked
• Under the Real-Time Workshop tab, select Target Configuration to be

Generic Real-Time Target (grt.tlc)
• Verify that the "Generate Code is only" button is not selected, then save

your model
• In the simulation Parameter window, under the "Real-Time Workshop"

tab, press the "build button"

QUALCOMM159/27/2005

Using FLI To Link C With VHDL(1)

library ieee;
use ieee.std_logic_1164.all;
entity a2d1bit_0_sub is

port (
signal Vin : in real;
signal Vref : in real;
signal L_clk : in real;
signal Out_en : in real;
signal sample : in real;
signal Dout : out real

);
end a2d1bit_0_sub;

architecture one of a2d1bit_0_sub is

attribute foreign : string;
attribute foreign of one : architecture is "a2d1bit_0init ./a2d1bit_0.modelsim.so";
begin
assert false report "Error: Foreign subprogram a2d1bit not called." severity error;

end architecture one;

QUALCOMM169/27/2005

Using FLI to link C with VHDL(2)

The following Figure illustrates partitioning of the C main function and
VHDL entity and architecture

C main file (grt_maim.c)

a2d1bit_0rt_OneStep() {

/*get the value from VHDL input ports
/*execute functionality
/*drives value onto VHDL output ports
/*sensitize or wakeup call

}

a2d1bit_0init() {
/*memory allocation
/*connect to VHDL ports
/*sensitize or wakeup call
}

architecture one of a2d1bit_0_sub is
attribute foreign : string;

attribute foreign of one : architecture is
"a2d1bit_0init ./a2d1bit_0.modelsim.so“

end architecture one;

entity a2d1bit_0_sub is port (
signal Vin : in real;
signal Vref : in real;
signal L_clk : in real;
signal Out_en : in real;

signal Dout : out real);
end a2d1bit_0_sub;

QUALCOMM179/27/2005

VHDL Wrappers (1)

Vin(real)

Vref(real)

L_clk(std_logic)

Out_en(std_logic)

Vin(real)

Out_en(real)

L_clk(real)

Vref(real) Dout (real)
Dout (std_logic)

outer wrapper

Inner wrapper

QUALCOMM189/27/2005

VHDL Wrappers (2)

• There are two wrappers for the C model

• The “inner” wrapper has real inputs and outputs only, and
its architecture calls the C library with a foreign attribute

• The “outer” wrapper takes care of the conversion of the
data format, as well as separating the bits in a digital bus.
The name and data type of input/output ports of the “outer”
wrapper should exactly match the pin name of the analog
schematic. The “inner” layer can have different number of
output pins for debugging purpose.

QUALCOMM199/27/2005

Automation scripts

• C code generation, customization and writing VHDL wrappers
can be automated by Perl/shell scripts

Matlab automation script for C code generation

Perl scripts to generate the compile scripts which support
different platform

Perl scripts to customize code

Perl script to generate the VHDL wrappers

QUALCOMM209/27/2005

Integration and Simulation results

• Can be easily integrated with digital design (VHDL or Verilog)

•Can be simulated with digital or mixed-signal simulator

• we successfully integrated the Broad-receiver, Wide Band
CODEC, House-keeping ADC, PLLs, TXDAC, etc into our digital
simulation environment, and got reasonable simulation results.

QUALCOMM219/27/2005

Summary

• The Simulink based C models can be certified with transistor
level designs

• With automation scripts, the development cycle of Simulink
based C approach is short

• The Simulink based C models can be easily integrated with
VHDL or Verilog design

• The Simulink based C models can be simulated with digital or
mixed-signal simulator

• With Simulink based C models, we can achieve true chip level
or system level mixed-signal verification.

