

The ICSM, an Instruction Set Model for Simulating
Embedded Software in Mixed-Technology Systems

Norman J. Elias
Norman J. Elias, Independent Consultant

32 Sturbridge Lane
Trumbull, CT 06611
norm.elias@ieee.org

Abstract

Mixed-signal, Mixed-technology simulation has evolved
to meet the challenges of increasing hardware
complexity. Embedded software adds a new dimension
to this challenge. Meaningful system simulation must
accurately model software timing, not just algorithmic
behavior. This paper answers that challenge by
developing an instruction set modeling approach to
integrate software execution into the simulation. The
basis of the ICSM is to resolve the model accuracy to the
instruction boundaries, i.e., to accurately model the state
of the CPU, data memory and I/O at the conclusion of
each instruction. In comparison to clock-cycle accuracy,
this instruction-cycle accuracy is simpler to model and
faster to compute. The instruction-cycle simulation
model (ICSM) approach is exemplified by specific
ICSM’s of Freescale’s HCS12 and SGS-Thomson’s ST7
Lite.

The paper presents a structural overview of the micro-
controller model and then focuses on the CPU. Key
elements of the ICSM include a database structure to store
the instruction set, signals to represent the CPU registers,
and algorithms for decoding the binary software, accessing
data via the full set of addressing modes, executing the
instructions, synchronizing software timing to the
simulation, and storing results. Other features include
exception handling for resets and interrupts. The text
explains how the model data structures and algorithms are
derived from product literature – datasheets and reference
manuals. Models are implemented in VHDL-AMS and in a
mix of MAST® and C language. The paper presents a
validation of the models and illustrates their operation in
system simulation applications from the domains of power
electronics and automotive electronics.

1. INTRODUCTION

This paper introduces the concept of an instruction-cycle
simulation model (ICSM) for modeling embedded software
in mixed-technology systems. Precise simulation of the
system must account for micro-controller timing, a critical

factor that cannot be incorporated into a simple algorithmic
model of the software. The ICSM models the software by
executing the CPU instructions in sequentially and with
timing resolved to the instruction boundaries. It computes
the state of the micro-controller at the conclusion of each
instruction and interfaces to the system hardware the
micro-controller I/O ports. The ICSM is an instruction set
simulation model [1] that omits cycle-accurate details
within the instruction boundaries. It is linked to the system
simulation by coding it in the native language of the
simulator. This paper presents examples of an SGS-
Thomson ST7 Lite processor that has been has been
modeled in MAST and C for Synopsys’ Saber [2] and a
Freescale HCS12 that has been modeled in VHDL-AMS
for Mentor’s SystemVision [3].

Section 2 provides a structural overview of the full micro-
controller model. Sections 3 and 4 present the key elements
of the CPU model generically and with device-specific
details for the two examples. The presentation highlights
the modeling considerations specific to full mixed-
technology system simulation. Section 5 discusses model
validation and presents specific simulation applications to
electronic power conversion and automotive throttle
control. The conclusions in Section 6 discuss directions for

Figure 1 ICSM Structural Overview

Figure 2 Portion of Memory Map

future exploration of this modeling approach.

2. OVERVIEW OF THE MICRO-
CONTROLLER MODEL

Figure 1 shows a top level schematic of a micro-controller
including the CPU, memory, a data-port and a few selected
peripherals. The CPU and memory are the core elements.
Each micro-controller family offers a range of
configurations with variations in the peripherals. For any
simulation, it makes sense to include only those peripherals
used by the system under study. Therefore, these
peripherals are modeled as independent modules
interconnected at the schematic level. These modules share
memory access with the CPU.

The modules are all synchronized to the system clock
shown at the output of the clock generation module
(CGM). Memory is modeled as an integer array with
simple utility functions for converting the data to and from
bit vectors. The register map documented in the product
literature is incorporated by declaring mnemonic constants
for the memory addresses as illustrated in Figure 2. The
model does not attempt to accurately reproduce memory
transactions as would be required for a cycle-accurate

model. Instead the ICSM accesses the memory as needed
to compute the MCU state at the instruction boundaries.

The memory is programmed to load the software object
code at the start of each simulation. The model reads the
standardized S19 format so that it can execute software
generated using any commercial compiler or IDE. This
also guarantees that the model will execute the exact code
that would be burned into a physical prototype.

The clock timing, memory configuration, peripheral

functionality, register structure, and instruction set are all
well documented in the product literature for each micro-
controller. Models of the peripherals are relatively straight
forward. The focus of this paper is on the CPU.

3. THE ICSM MODEL OF THE CPU

The essence of the ICSM approach is shown in Figure 3.
This is the flow of operations that defines the CPU. The
figure depicts a classical von Neumann computer
architecture with a step inserted to synchronize timing at
the instruction boundaries. Timing can be computed by
counting explicit clock pulses or by multiplying the clock
period by a pre-stored cycle count. Both approaches have
been used successfully. The explicit clock pulse counter is
computationally less efficient (in terms of simulator speed)
but is more flexible.

The ICSM models a set of signals that constitute a software
debugger at the CPU instruction level. The CPU signals
include all of the registers listed in Figure 3 along with a
text-base reconstruction of the instruction in assembly

language format. This is presented in the waveform viewer
as a text string that identifies the sequence of instructions
executed during the simulation (See Figure 5.4).

3.1. Decode Instruction

The instruction decoder interprets the hex representation of
each instruction from program memory. This is always a
stream of bytes that can vary in length from one to, usually
no more than, six. It’s generally convenient to store a

Decode
Instruction

Get Data
Addresses

Get
Data

Execute
Instruction

Store
Results

Instruction
Stream

Instruction

Set
Database

Addressing
Modes

Data
Memory

Memory,
CPU Registers

CPU Registers
Accumulator(s): A, B, D
Index Register(s): X, Y
Stack Pointer: SP
Program Counter: PC
Condition Code: CC

Software
Timing

Figure 3 ICSM Block Diagram

limited sequence of bytes in a local array and to refill that
buffer as needed from memory. The instruction decoder
keeps count of the number of bytes read for each
instruction not only to refill the buffer but to set a pointer
to the next instruction. This pointer is the preliminary
update to the program counter. The instruction decoder
algorithm accounts for the device-specific structure of the
instruction stream which is generically in the form of:

[pre-byte,] opcode, [post-byte, [post-byte,…]]

where the square brackets indicate optional bytes. The
bytes identify the instruction to be executed and the
mechanism to be used for accessing data. The decoder uses
these bytes to index an internal database of instruction
descriptors derived from the product documentation. The
instruction descriptors provide all the information the
model needs to execute the instructions. At startup, the
program entry point is saved in the program counter. The
CPU extracts the instruction stream starting at that address
and decodes the bytes to determine all the information
needed to execute the first instruction. At each succeeding
instruction, the instruction stream is read starting at the
updated program counter value.

3.2. Get Data Addresses, Get Data

Micro-controllers support a menu of mechanisms or modes
for addressing memory. Inherent instructions require no
data from memory but others may access (read or write)
one or two bytes. Immediate addressing includes the data
in the instruction stream. Direct modes provide the
memory addresses in the instruction stream. Indirect modes
provide pointers. The data addresses are themselves stored
as data. Finally, there is typically a menu of indexed
addressing modes which generate the addresses by adding
or subtracting integer offsets to the contents of a specified
CPU register. The offsets are programmed into the
instruction streams. The classes of addressing modes are
generic but the mechanisms for storing addressing
information, especially indexing offsets are specific to each
micro-controller. They must, therefore, be programmed
explicitly for each MCU. Once an address is computed, it
is a simple matter to get data from memory before
execution or store results afterwards.

3.3. Execute Instruction

By separating the execution of the instruction from getting
the data, storing the data or synchronizing timing, the
ICSM focuses the execution on the computation of results.
This computation is complex even by itself since it
includes both primary and secondary effects. The primary
effect is to update a CPU register or a data value as in

computing the sum in an ADD instruction. Secondary
effects include condition codes and program counter
revisions as in the carry bit generated by an ADD or a
jump generated by a branching instruction. Certain
addressing modes call for post-incrementation of index
registers which must also be computed when the
instruction is executed.

The execute instruction module is readily implemented as a
VHDL case construct (or switch in C) keyed to the
instruction type. To keep the code compact, condition bits
can be updated using separate functions called at the
conclusion of the module using the results of the
instruction execution to guide the condition code
generation.

3.4. Store Results

The model can execute the instruction at any time after it is
decoded so long as these results are not stored until the
specified number of clock cycles have elapsed. Therefore,
the ICSM separates the task of storing results from that of
executing the instructions. Storing results is a straight
forward process except for the added complication of
asynchronous resets or high priority interrupts. If such an
event takes place before an instruction is scheduled to
complete, the MCU never completes the instruction. The
ICSM models this behavior by inserting a simple test
before storing the results. If a reset or similar event is
detected (e.g., by a separate VHDL process), the model
skips the store results step and responds to that reset event.

3.5. Program Counter, Stack Operations, And
Interrupts

Program flow is dictated by the sequence of addresses
written to the program counter. Sequential execution of
instructions is guaranteed by keeping track of bytes read by
the instruction decoder. The execute instructions module
updates the program counter to account for branching,
subroutine entry and return instructions. Stack operations
are handled by the get data (POP) and store results (PUSH)
modules.

Interrupts are processed by a separate module, not shown
in Figure 3. This module detects interrupts when they
occur, sets a flag at that time and processes the interrupts
after results are stored. In case of multiple interrupts, the
module is programmed to process the highest priority as
documented in the MCU datasheet. The interrupt module
pushes the CPU state onto the stack and revises the
program counter to force execution from the start of the
ISR. The previous instruction sequence is resumed when

the return from interrupt is executed, at which time the
CPU state is popped from the stack.

4. THE INSTRUCTION SET DATABASE

Figure 4 shows the description of an add instruction as
published in the HCS12 reference manual. The instruction
set database is a tabular representation of this information.
The database stored as a disk file or coded directly into the
model. A directly coded database saves time during the
simulation and is easily implemented as an array of
descriptors indexed to the opcode. The instruction decoder
indexes the database (using pre-byte and opcode values)
and then uses the stored description to guide further
decoding of the post-bytes.

Figure 5 shows a sample entry for the ADDD instruction.
The data is stored internally in order to avoid extra disk
accesses during the simulation. Each entry provides
information taken from the data sheet. The vector of cycle
counts correspond to the distinct indexing modes indicated
in Figure 4.1. Specific cycle counts are determined by
counting the “Access Details” characters used in the HC12
reference manual to classify the individual clock cycles.
The reference manual lists a variety of add instructions
referenced to different CPU registers and distinct in terms
of whether or not a prior carry bit is included. To avoid
redundancy in the execute instruction module, the model

classifies all of these different opnames as “ADD” optypes.

5. MODEL VALIDATION AND
APPLICATIONS

The ICSM is easily validated by comparing simulation
results to either an existing software debugger or to a
hardware evaluation board. A thorough test of each
instruction must account for all addressing modes and all
possible condition bit transitions. A single test can exercise
a number of similar instructions as in the example shown
in Figure 6.

Applications of the ICSM have been published separately
and demonstrate its role in detecting and correcting timing
bottlenecks as well as other hardware/software
interactions.

Figure 4 HCS12 Instruction Description [4]

Figure 5 ICSM Instruction Descriptor

 while (true) {
 if (V_rms > Vref) fsw_ctl = 1
 else fsw_ctl = 0
}

Figure 7 shows a resonant power converter schematic. The
load voltage is regulated by modulating the switching
frequency following a simple algorithm in the form.

Figure 8 shows the application of simulation results to an
MCU evaluation. Clock speeds below 3.5 MHz are shown
to degrade performance by introducing excess ringing in
the load voltage amplitude. Performance can be improved
at the lower clock speeds by software revisions to complete
calculations within a single switching cycle. Satisfactory
operation at a lower clock frequency translate into product
cost reductions that can be critically important to
profitability.

 Figure 9 shows the schematic of an electronic throttle
controlled by an HC12 MCU. The step response of the

; IMM addressing
 ADDB #$1F ; B <- $1F, SXHINZVC = 11010000
 ADCB #$E5 ; B <- $04, SXHINZVC = 11110001
 ADCB #$1F ; B <- $24, SXHINZVC = 11110000

 ; DIR
 ADDB 3 ; B <- $24+mem($03) = $23,
 ; SXHINZVC = 11110001
 ADCB 3 ; B <- $23+C+mem($03) = $23,
 ; SXHINZVC = 11110001

 ; EXT
 ADDB $0800 ; B <- $23+mem($0800) = $93,
 ; SXHINZVC = 11011010
 ADCB $0800 ; B <- $93+C+mem($0800) = $03,
 ; SXHINZVC = 11010001

 ; IDX 5 bit offset (0 <= |offset| < 16=$10)
 ADDB 5, X ; B <- $03+mem(X+5=$0800) = $73,
 ; SXHINZVC = 11010000
 ADCB 5, X ; B <- $73+C+mem(X+5=$0800) = $E3,
 ; SXHINZVC = 11011010

Figure 6 Portion of an ADD Instruction Test

Figure 7 Resonant Power Converter with ST7 MCU

Figure 9 Electronic Throttle Schematic

Normalized
V_rms ringing

Figure 8 MCU Clock Speed Evaluation

throttle for an embedded PID controller is plotted in Figure
10. Figure 11 shows an example in which the simulation is
used to detect rounding errors due to the use of fixed point
arithmetic. Embedded software relies on fixed-point
computation to simultaneously reduce delays and program
size.

6. CONCLUSIONS

This paper has introduced the ICSM approach to accurately
model embedded software. The ICSM is an instruction set
model of a micro-controller that eliminates non-critical of
details required for cycle accurate modeling while
retaining all of the details needed to simulate mixed-
technology system behavior. The ICSM is coded in the
native modeling language of the system simulator and
synchronized to simulation time at the MCU instruction
boundaries. Specific MCU models have been
independently generated in MAST/C and in VHDL-AMS.
Future development of the ICSM approach can take
advantage of commonalities among MCU’s to produce a
generic template that can more readily be customized to
specific processors. .

REFERENCES

[1] Norman J. Elias, "Instruction Set Modeling Of Micro-
Controllers For Power Converter Simulation,” 2003
Applied Power Electronics Conference Proceedings, pp
996-1001, February 2003.

[2] Thomas R. Egel and Norman J. Elias “Using VHDL-AMS as
a Unifying Technology for HW/SW Co-verification of Embedded
Mechatronic Systems,” 2004 SAE World Congress, paper no.
2004-01-0718, March 2004

[3] B. Bailey, R. Klein and S. Leef, “Hardware/Software Co-
Simulation Strategies for the Future,” System Design/Verification
& Test Technical Publication, see
http://www.mentor.com/soc/fulfillment/cosim_strategies_658.pdf

[4]Freescale Semiconductors, HCS12 Microcontrollers,
S12CPUV2Reference Manual, S12CPUV2/D Rev. 0, 7/2003

Figure 10 Throttle Waveforms

Figure 11 Debugging the Software

