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ABSTRACT 
 
Mixed-signal systems are growing in the 
semiconductor market and are becoming more and 
more complex. On the other hand, bugs and 
malfunctions still appear in these systems mainly 
because of the lack of interaction between digital and 
analogue verification. This paper presents an integrated 
approach providing the designers with a methodology 
and a set of IPs to interface advanced digital 
verification environments with mixed-signal simulators 
based on Analogue-HDL. A theoretical approach based 
on statistical method is also presented as well as a case 
study on a CAN-bus transceiver. 
 

1. INTRODUCTION 
 
Due to the complex interaction between analogue and 
digital verification methodologies [2], the overall 
verification coverage of a mixed signal system is very 
often decreased and system bugs appear very late in the 
design process. If verification of digital sub-systems is 
based on advanced techniques [1-3] such as constraints 
capture, randomised or pseudo-randomised stimulus-
generation, result collection with coverage analysis, on 
the other side the verification of analogue sub-systems 
is based on classical approaches, focused to transient 
and AC effects. In this case, the requirement of precise 
behavioural models of the investigated sub-systems is a 
must [4-8], in order to decrease simulation complexity 
and achieve an acceptable run-time.  
The present digital verification key issues are 
functional coverage and constraint-driven random test 
generation. Functional coverage is the systematic 
procedure to assess how and how much each “coverage 
item”, or specification requirement, has been covered 
by the tests. This procedure should become a must of 
the entire mixed-signal verification flow and should act 
as a metric for the various verification tasks. 
Constraint-driven random test generation (i.e. 
generation of random stimuli with the possibility to 
constraint such process) is another key feature to avoid 
that some expected (in the real application) corner 
cases may not be investigated. However, it is important 
to highlight that the aim of the approach proposed in 
this paper is not to replace the designer simulation 
contribution with a simulator tool but, once the 

specification document, the application environment 
and the verification scenario are defined (the main 
system bottlenecks should be already well known), the 
proposed approach helps to measure how much input 
configurations have been used and correlate them with 
output results.   
This paper presents, starting from the basis of a 
previous work [15] [16] [18], an integrated 
environment in which both analogue stimuli and output 
metrics can be generated in an advanced digital 
verification environment, allowing a top level control 
of the verification process together with a 
comprehensive methodology to verify the effect of 
behavioural models into the whole system. Since 
automotive is one of the application fields where 
mixed-signal verification is very important, the proof-
of-concept of the proposed approach is applied to the 
verification of a CAN-bus transceiver.  
The next section shortly describes a theoretical method 
for complex mixed-signal verification, the third one 
gives an overview of the mixed verification 
environment, the fourth one describes some basic 
elements for data transfer from digital to analogue 
domain and vice-versa, the fifth one shows a real 
application based on CAN Controller/Transceiver 
scenario and the sixth one highlights some conclusions.  

2. FAULT COVERAGE FOR MIXED 
SIGNAL VERIFICATION 

 
A complete theoretical description of the proposed 
methodology is beyond the scope of this paper. 
However, the main concepts of it are presented in this 
section, together with a flow chart explaining the 
verification procedure.  
The basic items for the verification of a mixed signal 
design (Design Under Test) are the following:  
 

 Stimulate “as much as possible” the DUT and 
collect the useful information to verify its 
behaviour towards a defined set of specifications 
(bugs discovering), named phase 1 in the 
following; 

 Evaluate which input parameters have the higher 
probability (statistical approach) to determine a 
wrong behaviour (fault) in order to provide useful 
information for bug treatment, named phase 2 in 
the following. 



Let us define X=(x1, x2,.…, xn) as the DUT allowed 
input space, where xk(i,t) represents the ith time-varying 
element of the stimulus array xk Є Rmx1 where m is the 
number of the parameters used in the verification 
process as inputs of the DUT. For example, if three are 
the possible parameters variations (max, typical and 
min), the dimension “n” of the allowed input space X 
could be defined as:  
 

n ≤  3m                                                                                                       (1) 
 

where the equality holds if there is no correlation 
among the input configurations. 
If we assume that the stimulus array components can 
be both the classical input signals (used in the real 
application) and the effects on circuit parameters of 
process variations, then it is also possible to define the 
generic ith component of the generic stimulus array xk 
as follows: 
 
xk(i,t)=pi                         (2) 
 
Where i =1..m represents the position of the parameter 
or of the classical input signals inside stimulus array. It 
is worth noting that pi could assume minimum, typical 
and maximum values. For example, in the case of an 
operational amplifier, the stimulus array could be 
composed, besides the differential input (for instance 
[A*sin(ωt)-Vref]), also by the following circuit 
parameters: phase margin (PM), input offset (Off), DC 
gain (Gdc), slew-rate (SL) etc. These parameters show 
variations related to process spread and temperature 
that are part of the high-level model used during 
verification. In this case two of the arrays in the input 
space X could be the following: 
 
xk=([Amax*sin(ωmint)-Vreftyp],PMmin,Offtyp,Gdctyp, 
SLmax, …);                                                                 
xh=([Atyp*sin(ωmaxt)-Vrefmin],PMmax,Offmin,Gdcmax, 
SLtyp,..);                                                                       (3) 
 
As normally done in circuit characterization (corner 
analysis), only the corner values of each parameter are 
taken into account and this is sufficient in most of the 
applications. Once the acceptable stimulus space X is 
identified and assuming not to have information about 
the space of the parameters that does not cause faults, 
the pseudo-random generation of x Є X (for example 
the one provided by Specman) may be regarded as a 
good solution in order to allow the definition of a 
uniform distribution for the probability of X as follows: 
 
P(xk) = 1/n  i = 1…n                                                  (4) 
 
Where P(xk) is the probability that xk is used as DUT 
stimulus, and  n is the X dimension.  
The expected outputs are defined as both the outputs of 
the circuit in its application (e.g. the operational 
amplifier differential output) and internal probes used 
to increase the observability of the system (e.g. the 
current in the output branch of an opamp). From a 
theoretical point of view, it is possible to define the 

ideal output space Y as follows: ∀ x Є X   ∃ y Є Y : y = 
F (x) where F is the ideal transfer function of the DUT 
and y(t) Є Rmx1. Instead, Y’ is the set of the measured 
outputs of DUT (evaluated during the verification 
process). Generally a sub-set only of the output arrays 
components are used for faults detection, thus it is 
possible to define: 
 
 yrek(h….q) = yrek’   h<q  and  q ≤ m              (5) 
 
Where yrek  Є Y’ is the real output obtained from 
stimulus xk, and q-h+1 is the number of sub-set 
parameters taken into account for faults detection.  
Similarly, for the ideal output yidk Є Y: 
 
yidk(h…..q) = yidk’                                           (6) 
 
So, it is possible to define when a “fault” can be joined 
with a generic stimulus array:  
 
“A generic stimulus xk is joined with a fault, if yrek’ 

≠ yidk’ “ 
 
Therefore it is possible to define a function Ф(w) that 
counts the fault events obtained at step w (in other 
words w is the stimuli number introduced in the DUT 
at a generic time), and a set Xf  with defined dimension 
j, that contains Ф(w) stimuli that at step w are joined 
with a fault, and j- Ф(w) zeros arrays. It is worth noting 
that j value is an input of the verification procedure and 
it has to be defined in order to be able to apply the 
statistical theory to Xf (i.e. “j has to be big enough”). 
Based on the described concepts, a set of coverage 
items is listed below: 
 

1. the value of the Ф function; 
2. the coverage of the whole input space X; 
3. the coverage of the real/ideal output spaces Y’ 

and Y . 
 
Thus, item 1 is satisfied if Xf is composed by j arrays 
not equal to zero, item 2 if all arrays of the allowed 
input space have been inserted in the DUT and item 3 
if the real output space is equal to the ideal one. In the 
following Table1 some examples are given: 
 

Cases item 1 item 2 item 3 
a ok not ok not ok 
b not ok ok not ok 
c not ok ok ok 

Table1: some coverage cases 
 

Case a: a set of j faults is available for further statistical 
investigation able to define a set of guidelines for the 
re-design phase; 
Case b:  the next step depends on Ф value, then 

 if Ф > 0 (but less than j), Xf represents the only 
DUT stimuli set producing faults. In this case, 
further statistical elaborations (see phase 2 in the 
following) do not give additional information and 
so Xf can directly be used by the designer; 



 if Ф = 0, it means that there are not stimuli in input 
space X producing faults, but at the same time the 
output space is not completely covered; this means 
that the observability of the DUT based on the 
used definition for the discovered faults has to be 
improved: yrek’ and yidk’, previously defined in 
(3) and (4), have to contain more than q-h+1 
components so that an extension of the observable 
output space for faults detection is achieved.  

Case c:  if Ф(τ) = 0 (τ ≥ n, with n=dim(X)), both input 
and output spaces are covered and no faults are 
produced reaching the target of the verification.  

 
The above steps represent phase 1 and its conclusion 
can be: 

 the end of the verification activity itself (c in 
Table1); 

 direct link with design phase (b in Table1 with Ф 
> 0)  

 direct link with a statistical elaboration (phase 2) 
based on a significant set of discovered faults (a in 
Table1).  

 
Referring to case a in Table 1 as the result of phase 1, 
a simplified description of phase 2 is shown in the 
following.  
Thus, assuming that Xf does not contain arrays equal to 
zero, a set C = (p11, …pik, …phm) can be generated, 
which is constituted by all the parameters present in the 
j arrays composing the set Xf . Starting from set C, it is 
possible to define a set Xµ composed by arrays arranged 
in the same way of the stimuli present in Xf and built 
through all the combinations of the parameters 
included in set C (obviously each array can contain 
only one parameter variation). 
For instance, if j = 3 and Xf = (xf1, xf2, xf3): 
 
 
Xf =                   (7) 
 
 
 
Observing (7), it is simple to infer that parameter p2 in 
its worst variation is responsible of the three faults, but, 
as previously discussed, the scenario is much more 
complicated in complex systems. However, using the 
method above exposed, the following sets can be 
obtained: 
 
C={p1typ,p1worst,p2worst,p3worst,p3best,p3typ}   (8)                                                                                
 
 
 
       
      
Xµ=                                 (9) 

 
 

 
Once set Xµ has been defined, it is possible to generate 
b sets, each one composed by ε different arrays of Xµ . 
It is worth noting that in the following discussion the 

same notations as in phase1 are used, but they are 
referred to the sets and elements obtained by Xµ.  
Thus, Фk can be defined as the function that counts the 
faults generated by the generic set Xk  (k = 1…b), and 
Sk(pil) as the function  that provides the number of 
faults generated by the arrays containing parameter pi 
with variation l (l = best, typical, worst). 
Referring again to set Xk , if Фk ≠ 0, it is possible to 
define the probability that a parameter pil has to 
produce a fault: 
 
 
 
Pk(pil) =        
                (10) 
 
 
where m represents the number of the components of 
each stimulus arrays.  
The formula exposed in (10) can be obtained for all b 
sets, so that it is possible to calculate the average 
probability for each parameter variations as follows: 
 
Pav(pil)=(ΣkPk(pil))/b with k=1…b                            (11) 
 
The values obtained by (11) represent the output of 
phase 2 that gives information to the designer in order 
to understand the root cause of the faults and 
consequently fix the design bugs. Once the designer 
has improved the design, the verification can be re-
started from phase 1. If phase 1 gives no faults with 
input/output spaces completely covered (c in Table1) 
as a result, the iteration is stopped and the verification 
process is closed. In Fig.1 a simplified flow chart of the 
proposed verification approach is shown. 

 
Fig.1: Simplified flow chart of the proposed 
verification approach 
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3. THE INTEGRATED MIXED-SIGNAL 
VERIFICATION ENVIRONMENT 

 
The main verification engine, on which the integrated 
mixed-signal verification environment is based, is the 
Verisity’s Specman Elite® (by Cadence Design 
System, www.cadence.com/verisity), a very powerful 
tool for automating the process of functional 
verification. Specman offers a comprehensive 
environment for all aspects of the verification flow: 
automatic generation of functional tests, data and 
temporal checking, functional coverage analysis, and 
HDL (High-Description Language) simulation control. 
Specman includes a powerful verification language, 
called “e” (under standardization with the IEEE 
initiative P1647 [9]), that allows the verification 
engineer to capture the rules from specifications as 
well as generate tests automatically. 
A schematic representation of the integrated mixed-
signal verification environment is shown in Fig.2.  

Fig.2:  The integrated mixed-signal verification 
environment 
The environment consists of a set of AHDL modules 
which, driven by Specman via proper e procedures, 
produce a sequence of pseudo-random inputs for the 
DUT reaching all its sub-systems, and provide to 
extract, elaborate and digitalize analogue outputs so as 
to make Specman checking and coverage analisys 
possible.  

The vSources blocks represent “verification Sources” 
which are the models of a signal source to transfer 
digital signal from the digital verification environment 
to the mixed-domain simulator or to control mixed 
signal generators. Examples of vSources are: signal 
generators, noise injectors, parameters spread 
emulator, etc. vProbes, “verification Probes”, are 
models of a signal probe to transfer analogue signals 
from the mixed-domain simulator to the digital 
Verification environment. Examples of vProbes are: 
voltage/current/time detectors, min/max functions, FFT 
and THD functions, etc. vSources and vProbes, as 
shown in the next paragraph, are implemented partially 
in “e” and partially in AHDL Analogue HDL, such the 
VerilogAMS [10]. Moreover, an integrated mixed-
signal verification environment interface written in “e” 
helps the verification engineer to handle the vProbes 

and vSources in order to implement the desired 
verification scenario.  

Drivers are procedures written in “e” that generate 
the proper set of stimuli, either directly driving the 
digital part or driving the analogue part through the 
vSources. Monitors receive the outputs directly or 
through the vProbes. In addition, the detection of the 
failures occurring in the analogue or the digital DUT is 
done through the use of a scoreboard that contains all 
the data needed to compare the expected responses 
with the real ones. The Checker controls the data 
coming from the monitors, to check for rules 
compliance for instance. A sequence generator is 
provided to handle and schedule the whole verification 
environment. Therefore, using all the information 
coming from monitors and scoreboard related to the 
covered input space, it is possible to elaborate a 
coverage function representing the compliance of the 
mixed system with its specifications.  

4. VSOURCE & VPROBE CONCEPTS 
 
The schematic diagram of a generic vSource is shown 
in Fig.3. 

Fig.3: Schematic diagram of vSource 
As shown in Fig.3, a vSource block is composed by an 
“e” description part and an AHDL one. The “e” part 
transfers three kinds of information into the AHDL 
domain: 

• Signal parameters: in the integrated mixed-signal 
verification environment, the stimuli coming from 
“e” domain are transformed in the parameters of a 
function generator. For example, in order to 
produce a sine-wave, the following parameters are 
needed: frequency, amplitude, phase, delay etc. It 
is worth noting that the vSource output signals 
represent also technology parameters spread for a 
corner-cases analysis of an analogue DUT sub-
system (as discussed in the previous section). 

• Configuration signals: a configurable DACs layer 
converts the digital stimuli in analogue ones in a 
specific range and with a certain resolution (see 
Configurable DAC blocks in Fig.3); 

• Time Manager signals:  it is necessary to optimise 
verification/simulation time, e.g. by decoupling 
the digital simulator events with mixed-signal 
ones, or providing special time function 
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impossible to reproduce in the digital verification 
environment.  

The schematic diagram of a generic vProbe is shown in 
Fig.4. A generic vProbe acts in the opposite way than a 
generic vSource: the selected analogue output signals 
coming from analogue DUT are transferred into the 
“e” domain in order to collect them in a proper way 
(see Monitor in Fig.4) and elaborate dynamic coverage 
analysis. In addition, since it is not possible to manage 
complex mathematical function with “e” language, 
some vProbes include a signal processing unit in the 
AHDL domain (see V/I Signal Processing block in 
Fig.4).  

Fig.4: Schematic diagram of a vProbe. 
 

5. CAN CONTROLLER/TRANSCEIVER 
CASE STUDY 

 
A CAN Controller/Transceiver system will be used as 
real application scenario of the integrated mixed-signal 
verification environment. The analogue part of the 
CAN transceiver was modelled in VerilogAMS 
language and connected with the digital transceiver 
part acting as a failure detector. Thanks to the eVC 
(“e” Verification Component) of the CAN Controller 
available in YOGITECH ([12-14]), it is possible to 
generate a real traffic for the CAN Transceiver. This 
scenario is completed by a “Fault Injector” AHDL 
component [18] that introduces fault on the 
CANH/CANL bus line using a set of standard fault 
(ISO 11898-1). The simplified schematic diagram of 
CAN-based mixed-signal verification environment is 
shown in Fig.5.  
The analogue part of the CAN transceiver has been 
modelled in VerilogAMS language and connected with 
the digital transceiver part acting as a failure detector. 
Fault injection is particular important since most of the 
electronics system require al least a noise analysis (i.e. 
the injection of disturb in the control lines ad the 
measurements of the consequent degradation of the 
system mission). A typical example of this is the 
verification of the robustness of CAN protocol units 
against line noise, e.g. the injection of bit errors in the 
packets. In this case CAN devices should be able to 
deal with these kinds of error and re-transmit until they 
are successful. At the same time they should not clog 
the bus with re-transmissions due to faulty or marginal 
designs and these must be identified before silicon 

goes into production. Thus, using a set of the standard 
faults (ISO 11898-1) that occur on the bus line is 
possible to recognize if the whole system is able to 
detect and recognize them in the proper way, and, in 
the case an error occurs, it is possible to recognize its 
nature (digital or analogue) and position.  

 

Fig.5: CAN Controller/Transceiver “integrated mixed 
signal verification environment” scenario 
 

6. CONCLUSION 
 
A standard and consolidated methodology and a 
common environment for the verification of mixed-
signal system are not available yet: analogue/digital 
design and simulation activities are only linked at top-
level and for smaller sub-systems. This is due to the 
fact that analogue simulators are orders of magnitude 
slower than digital simulators [5]. The end effect is that 
even trivial design mistakes are enough to cause 
serious failures of the whole system, because the users 
can forget to verify a particular case by using 
traditional test-benches. Moreover, many hypotheses 
have to be assumed on the analogue/digital interface.  
It is proven [8] that by using AHDL models the 
simulations are very fast and can be very accurate if 
the non ideal effects are modelled in a proper way [7]. 
Based on that, the integrated mixed-signal verification 
environment proposed in this paper is an answer to the 
previous mentioned open issues: for instance, it can 
both randomise the analogue sub-system non ideal 
effects as in a classical fully analogue transistor level 
simulation approach, and also produce a coverage 
analysis based on covered input/output spaces and 
analogue/digital coverage items.  
In summary, this approach links analogue and digital 
worlds in a common environment to help the 
verification engineer to produce more test cases than 
traditional approaches, in a faster way, minimizing 
overlap simulation and in a virtually independent way 
from the designer point of view.  
In the near future, the proposed mixed signal 
verification scenario could include the devices and 
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packages failure models, so that the failure rate and 
qualification time will be both reduced. 
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