
A New Verification Approach for Mixed-Signal Systems

G.Bonfini, M. Chiavacci, R. Mariani, R. Saletti*

YOGITECH SpA, via Lenin 132/p, 56017 San Martino Ulmiano (Pisa), Italia

*Dipartimento Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni
University of Pisa, Via Caruso, I-56122 Pisa, Italia

ABSTRACT

Mixed-signal systems are growing in the
semiconductor market and are becoming more and
more complex. On the other hand, bugs and
malfunctions still appear in these systems mainly
because of the lack of interaction between digital and
analogue verification. This paper presents an integrated
approach providing the designers with a methodology
and a set of IPs to interface advanced digital
verification environments with mixed-signal simulators
based on Analogue-HDL. A theoretical approach based
on statistical method is also presented as well as a case
study on a CAN-bus transceiver.

1. INTRODUCTION

Due to the complex interaction between analogue and
digital verification methodologies [2], the overall
verification coverage of a mixed signal system is very
often decreased and system bugs appear very late in the
design process. If verification of digital sub-systems is
based on advanced techniques [1-3] such as constraints
capture, randomised or pseudo-randomised stimulus-
generation, result collection with coverage analysis, on
the other side the verification of analogue sub-systems
is based on classical approaches, focused to transient
and AC effects. In this case, the requirement of precise
behavioural models of the investigated sub-systems is a
must [4-8], in order to decrease simulation complexity
and achieve an acceptable run-time.
The present digital verification key issues are
functional coverage and constraint-driven random test
generation. Functional coverage is the systematic
procedure to assess how and how much each “coverage
item”, or specification requirement, has been covered
by the tests. This procedure should become a must of
the entire mixed-signal verification flow and should act
as a metric for the various verification tasks.
Constraint-driven random test generation (i.e.
generation of random stimuli with the possibility to
constraint such process) is another key feature to avoid
that some expected (in the real application) corner
cases may not be investigated. However, it is important
to highlight that the aim of the approach proposed in
this paper is not to replace the designer simulation
contribution with a simulator tool but, once the

specification document, the application environment
and the verification scenario are defined (the main
system bottlenecks should be already well known), the
proposed approach helps to measure how much input
configurations have been used and correlate them with
output results.
This paper presents, starting from the basis of a
previous work [15] [16] [18], an integrated
environment in which both analogue stimuli and output
metrics can be generated in an advanced digital
verification environment, allowing a top level control
of the verification process together with a
comprehensive methodology to verify the effect of
behavioural models into the whole system. Since
automotive is one of the application fields where
mixed-signal verification is very important, the proof-
of-concept of the proposed approach is applied to the
verification of a CAN-bus transceiver.
The next section shortly describes a theoretical method
for complex mixed-signal verification, the third one
gives an overview of the mixed verification
environment, the fourth one describes some basic
elements for data transfer from digital to analogue
domain and vice-versa, the fifth one shows a real
application based on CAN Controller/Transceiver
scenario and the sixth one highlights some conclusions.

2. FAULT COVERAGE FOR MIXED
SIGNAL VERIFICATION

A complete theoretical description of the proposed
methodology is beyond the scope of this paper.
However, the main concepts of it are presented in this
section, together with a flow chart explaining the
verification procedure.
The basic items for the verification of a mixed signal
design (Design Under Test) are the following:

 Stimulate “as much as possible” the DUT and
collect the useful information to verify its
behaviour towards a defined set of specifications
(bugs discovering), named phase 1 in the
following;

 Evaluate which input parameters have the higher
probability (statistical approach) to determine a
wrong behaviour (fault) in order to provide useful
information for bug treatment, named phase 2 in
the following.

Let us define X=(x1, x2,.…, xn) as the DUT allowed
input space, where xk(i,t) represents the ith time-varying
element of the stimulus array xk Є Rmx1 where m is the
number of the parameters used in the verification
process as inputs of the DUT. For example, if three are
the possible parameters variations (max, typical and
min), the dimension “n” of the allowed input space X
could be defined as:

n ≤ 3m (1)

where the equality holds if there is no correlation
among the input configurations.
If we assume that the stimulus array components can
be both the classical input signals (used in the real
application) and the effects on circuit parameters of
process variations, then it is also possible to define the
generic ith component of the generic stimulus array xk
as follows:

xk(i,t)=pi (2)

Where i =1..m represents the position of the parameter
or of the classical input signals inside stimulus array. It
is worth noting that pi could assume minimum, typical
and maximum values. For example, in the case of an
operational amplifier, the stimulus array could be
composed, besides the differential input (for instance
[A*sin(ωt)-Vref]), also by the following circuit
parameters: phase margin (PM), input offset (Off), DC
gain (Gdc), slew-rate (SL) etc. These parameters show
variations related to process spread and temperature
that are part of the high-level model used during
verification. In this case two of the arrays in the input
space X could be the following:

xk=([Amax*sin(ωmint)-Vreftyp],PMmin,Offtyp,Gdctyp,
SLmax, …);
xh=([Atyp*sin(ωmaxt)-Vrefmin],PMmax,Offmin,Gdcmax,
SLtyp,..); (3)

As normally done in circuit characterization (corner
analysis), only the corner values of each parameter are
taken into account and this is sufficient in most of the
applications. Once the acceptable stimulus space X is
identified and assuming not to have information about
the space of the parameters that does not cause faults,
the pseudo-random generation of x Є X (for example
the one provided by Specman) may be regarded as a
good solution in order to allow the definition of a
uniform distribution for the probability of X as follows:

P(xk) = 1/n i = 1…n (4)

Where P(xk) is the probability that xk is used as DUT
stimulus, and n is the X dimension.
The expected outputs are defined as both the outputs of
the circuit in its application (e.g. the operational
amplifier differential output) and internal probes used
to increase the observability of the system (e.g. the
current in the output branch of an opamp). From a
theoretical point of view, it is possible to define the

ideal output space Y as follows: ∀ x Є X ∃ y Є Y : y =
F (x) where F is the ideal transfer function of the DUT
and y(t) Є Rmx1. Instead, Y’ is the set of the measured
outputs of DUT (evaluated during the verification
process). Generally a sub-set only of the output arrays
components are used for faults detection, thus it is
possible to define:

 yrek(h….q) = yrek’ h<q and q ≤ m (5)

Where yrek Є Y’ is the real output obtained from
stimulus xk, and q-h+1 is the number of sub-set
parameters taken into account for faults detection.
Similarly, for the ideal output yidk Є Y:

yidk(h…..q) = yidk’ (6)

So, it is possible to define when a “fault” can be joined
with a generic stimulus array:

“A generic stimulus xk is joined with a fault, if yrek’

≠ yidk’ “

Therefore it is possible to define a function Ф(w) that
counts the fault events obtained at step w (in other
words w is the stimuli number introduced in the DUT
at a generic time), and a set Xf with defined dimension
j, that contains Ф(w) stimuli that at step w are joined
with a fault, and j- Ф(w) zeros arrays. It is worth noting
that j value is an input of the verification procedure and
it has to be defined in order to be able to apply the
statistical theory to Xf (i.e. “j has to be big enough”).
Based on the described concepts, a set of coverage
items is listed below:

1. the value of the Ф function;
2. the coverage of the whole input space X;
3. the coverage of the real/ideal output spaces Y’

and Y .

Thus, item 1 is satisfied if Xf is composed by j arrays
not equal to zero, item 2 if all arrays of the allowed
input space have been inserted in the DUT and item 3
if the real output space is equal to the ideal one. In the
following Table1 some examples are given:

Cases item 1 item 2 item 3
a ok not ok not ok
b not ok ok not ok
c not ok ok ok

Table1: some coverage cases

Case a: a set of j faults is available for further statistical
investigation able to define a set of guidelines for the
re-design phase;
Case b: the next step depends on Ф value, then

 if Ф > 0 (but less than j), Xf represents the only
DUT stimuli set producing faults. In this case,
further statistical elaborations (see phase 2 in the
following) do not give additional information and
so Xf can directly be used by the designer;

 if Ф = 0, it means that there are not stimuli in input
space X producing faults, but at the same time the
output space is not completely covered; this means
that the observability of the DUT based on the
used definition for the discovered faults has to be
improved: yrek’ and yidk’, previously defined in
(3) and (4), have to contain more than q-h+1
components so that an extension of the observable
output space for faults detection is achieved.

Case c: if Ф(τ) = 0 (τ ≥ n, with n=dim(X)), both input
and output spaces are covered and no faults are
produced reaching the target of the verification.

The above steps represent phase 1 and its conclusion
can be:

 the end of the verification activity itself (c in
Table1);

 direct link with design phase (b in Table1 with Ф
> 0)

 direct link with a statistical elaboration (phase 2)
based on a significant set of discovered faults (a in
Table1).

Referring to case a in Table 1 as the result of phase 1,
a simplified description of phase 2 is shown in the
following.
Thus, assuming that Xf does not contain arrays equal to
zero, a set C = (p11, …pik, …phm) can be generated,
which is constituted by all the parameters present in the
j arrays composing the set Xf . Starting from set C, it is
possible to define a set Xµ composed by arrays arranged
in the same way of the stimuli present in Xf and built
through all the combinations of the parameters
included in set C (obviously each array can contain
only one parameter variation).
For instance, if j = 3 and Xf = (xf1, xf2, xf3):

Xf = (7)

Observing (7), it is simple to infer that parameter p2 in
its worst variation is responsible of the three faults, but,
as previously discussed, the scenario is much more
complicated in complex systems. However, using the
method above exposed, the following sets can be
obtained:

C={p1typ,p1worst,p2worst,p3worst,p3best,p3typ} (8)

Xµ= (9)

Once set Xµ has been defined, it is possible to generate
b sets, each one composed by ε different arrays of Xµ .
It is worth noting that in the following discussion the

same notations as in phase1 are used, but they are
referred to the sets and elements obtained by Xµ.
Thus, Фk can be defined as the function that counts the
faults generated by the generic set Xk (k = 1…b), and
Sk(pil) as the function that provides the number of
faults generated by the arrays containing parameter pi
with variation l (l = best, typical, worst).
Referring again to set Xk , if Фk ≠ 0, it is possible to
define the probability that a parameter pil has to
produce a fault:

Pk(pil) =
 (10)

where m represents the number of the components of
each stimulus arrays.
The formula exposed in (10) can be obtained for all b
sets, so that it is possible to calculate the average
probability for each parameter variations as follows:

Pav(pil)=(ΣkPk(pil))/b with k=1…b (11)

The values obtained by (11) represent the output of
phase 2 that gives information to the designer in order
to understand the root cause of the faults and
consequently fix the design bugs. Once the designer
has improved the design, the verification can be re-
started from phase 1. If phase 1 gives no faults with
input/output spaces completely covered (c in Table1)
as a result, the iteration is stopped and the verification
process is closed. In Fig.1 a simplified flow chart of the
proposed verification approach is shown.

Fig.1: Simplified flow chart of the proposed
verification approach

xf1 = (p1typ, p2worst, p3worst)
xf2 = (p1worst, p2worst, p3typ)
xf3 = (p1worst, p2worst, p3best)

 Sk(pil)/(m* Фk) if Фk ≠ 0

0 otherwise

xµ1 = (p1typ, p2worst, p3typ)
xµ2 = (p1typ, p2worst, p3worst)
xµ3 = (p1typ, p2worst, p3best)
xµ4 = (p1worst, p2worst, p3typ)
xµ5 = (p1worst, p2worst, p3worst)
xµ6 = (p1worst, p2worst, p3worst)

Input Stimulus
xkЄX

Definition
X: allowedInput Space
Y: IdealOutput Space
j:dim(Xf)

Item1

Item3

Ф= 0

Item2

Ф= 0

Start VerificationProcess

Design Phase

Modified DUT

Xf
Statistical Sample

Statistical Elaboration

yn

n y

n y

nn End VerificationProcess
y

“q” dimension
has to be re-defined

y

3. THE INTEGRATED MIXED-SIGNAL
VERIFICATION ENVIRONMENT

The main verification engine, on which the integrated
mixed-signal verification environment is based, is the
Verisity’s Specman Elite® (by Cadence Design
System, www.cadence.com/verisity), a very powerful
tool for automating the process of functional
verification. Specman offers a comprehensive
environment for all aspects of the verification flow:
automatic generation of functional tests, data and
temporal checking, functional coverage analysis, and
HDL (High-Description Language) simulation control.
Specman includes a powerful verification language,
called “e” (under standardization with the IEEE
initiative P1647 [9]), that allows the verification
engineer to capture the rules from specifications as
well as generate tests automatically.
A schematic representation of the integrated mixed-
signal verification environment is shown in Fig.2.

Fig.2: The integrated mixed-signal verification
environment
The environment consists of a set of AHDL modules
which, driven by Specman via proper e procedures,
produce a sequence of pseudo-random inputs for the
DUT reaching all its sub-systems, and provide to
extract, elaborate and digitalize analogue outputs so as
to make Specman checking and coverage analisys
possible.

The vSources blocks represent “verification Sources”
which are the models of a signal source to transfer
digital signal from the digital verification environment
to the mixed-domain simulator or to control mixed
signal generators. Examples of vSources are: signal
generators, noise injectors, parameters spread
emulator, etc. vProbes, “verification Probes”, are
models of a signal probe to transfer analogue signals
from the mixed-domain simulator to the digital
Verification environment. Examples of vProbes are:
voltage/current/time detectors, min/max functions, FFT
and THD functions, etc. vSources and vProbes, as
shown in the next paragraph, are implemented partially
in “e” and partially in AHDL Analogue HDL, such the
VerilogAMS [10]. Moreover, an integrated mixed-
signal verification environment interface written in “e”
helps the verification engineer to handle the vProbes

and vSources in order to implement the desired
verification scenario.

Drivers are procedures written in “e” that generate
the proper set of stimuli, either directly driving the
digital part or driving the analogue part through the
vSources. Monitors receive the outputs directly or
through the vProbes. In addition, the detection of the
failures occurring in the analogue or the digital DUT is
done through the use of a scoreboard that contains all
the data needed to compare the expected responses
with the real ones. The Checker controls the data
coming from the monitors, to check for rules
compliance for instance. A sequence generator is
provided to handle and schedule the whole verification
environment. Therefore, using all the information
coming from monitors and scoreboard related to the
covered input space, it is possible to elaborate a
coverage function representing the compliance of the
mixed system with its specifications.

4. VSOURCE & VPROBE CONCEPTS

The schematic diagram of a generic vSource is shown
in Fig.3.

Fig.3: Schematic diagram of vSource
As shown in Fig.3, a vSource block is composed by an
“e” description part and an AHDL one. The “e” part
transfers three kinds of information into the AHDL
domain:

• Signal parameters: in the integrated mixed-signal
verification environment, the stimuli coming from
“e” domain are transformed in the parameters of a
function generator. For example, in order to
produce a sine-wave, the following parameters are
needed: frequency, amplitude, phase, delay etc. It
is worth noting that the vSource output signals
represent also technology parameters spread for a
corner-cases analysis of an analogue DUT sub-
system (as discussed in the previous section).

• Configuration signals: a configurable DACs layer
converts the digital stimuli in analogue ones in a
specific range and with a certain resolution (see
Configurable DAC blocks in Fig.3);

• Time Manager signals: it is necessary to optimise
verification/simulation time, e.g. by decoupling
the digital simulator events with mixed-signal
ones, or providing special time function

ConfigurableConfigurable
DACDAC11

ConfigurableConfigurable
DACDACnn

V / I V / I
functionfunction
generatorgenerator

+

-

AnalogueAnalogue
domaindomain

AHDL AHDL descriptiondescription

DACsDACs
ConfigConfig

(bit (bit numbernumber,,
rangerange, , etcetc.).)

SignalSignal
ParametersParameters

ConfigConfig

““e” e” descriptiondescription

Ti
m

e
Ti

m
e

M
an

ag
er

M
an

ag
er

““e” e”
domaindomain

D
riv

er
D

riv
er

DUT

Analogue
part

Digital
part

vSources

vProbes

Sequence
Generator

CheckerScoreboard

CoverageAnalysis

Monitors& Drivers
vProbes

Layer0

Layer1

Layer2

Test
Suite

impossible to reproduce in the digital verification
environment.

The schematic diagram of a generic vProbe is shown in
Fig.4. A generic vProbe acts in the opposite way than a
generic vSource: the selected analogue output signals
coming from analogue DUT are transferred into the
“e” domain in order to collect them in a proper way
(see Monitor in Fig.4) and elaborate dynamic coverage
analysis. In addition, since it is not possible to manage
complex mathematical function with “e” language,
some vProbes include a signal processing unit in the
AHDL domain (see V/I Signal Processing block in
Fig.4).

Fig.4: Schematic diagram of a vProbe.

5. CAN CONTROLLER/TRANSCEIVER
CASE STUDY

A CAN Controller/Transceiver system will be used as
real application scenario of the integrated mixed-signal
verification environment. The analogue part of the
CAN transceiver was modelled in VerilogAMS
language and connected with the digital transceiver
part acting as a failure detector. Thanks to the eVC
(“e” Verification Component) of the CAN Controller
available in YOGITECH ([12-14]), it is possible to
generate a real traffic for the CAN Transceiver. This
scenario is completed by a “Fault Injector” AHDL
component [18] that introduces fault on the
CANH/CANL bus line using a set of standard fault
(ISO 11898-1). The simplified schematic diagram of
CAN-based mixed-signal verification environment is
shown in Fig.5.
The analogue part of the CAN transceiver has been
modelled in VerilogAMS language and connected with
the digital transceiver part acting as a failure detector.
Fault injection is particular important since most of the
electronics system require al least a noise analysis (i.e.
the injection of disturb in the control lines ad the
measurements of the consequent degradation of the
system mission). A typical example of this is the
verification of the robustness of CAN protocol units
against line noise, e.g. the injection of bit errors in the
packets. In this case CAN devices should be able to
deal with these kinds of error and re-transmit until they
are successful. At the same time they should not clog
the bus with re-transmissions due to faulty or marginal
designs and these must be identified before silicon

goes into production. Thus, using a set of the standard
faults (ISO 11898-1) that occur on the bus line is
possible to recognize if the whole system is able to
detect and recognize them in the proper way, and, in
the case an error occurs, it is possible to recognize its
nature (digital or analogue) and position.

Fig.5: CAN Controller/Transceiver “integrated mixed
signal verification environment” scenario

6. CONCLUSION

A standard and consolidated methodology and a
common environment for the verification of mixed-
signal system are not available yet: analogue/digital
design and simulation activities are only linked at top-
level and for smaller sub-systems. This is due to the
fact that analogue simulators are orders of magnitude
slower than digital simulators [5]. The end effect is that
even trivial design mistakes are enough to cause
serious failures of the whole system, because the users
can forget to verify a particular case by using
traditional test-benches. Moreover, many hypotheses
have to be assumed on the analogue/digital interface.
It is proven [8] that by using AHDL models the
simulations are very fast and can be very accurate if
the non ideal effects are modelled in a proper way [7].
Based on that, the integrated mixed-signal verification
environment proposed in this paper is an answer to the
previous mentioned open issues: for instance, it can
both randomise the analogue sub-system non ideal
effects as in a classical fully analogue transistor level
simulation approach, and also produce a coverage
analysis based on covered input/output spaces and
analogue/digital coverage items.
In summary, this approach links analogue and digital
worlds in a common environment to help the
verification engineer to produce more test cases than
traditional approaches, in a faster way, minimizing
overlap simulation and in a virtually independent way
from the designer point of view.
In the near future, the proposed mixed signal
verification scenario could include the devices and

CAN NODE (D.U.T.)

CANCAN
protocolprotocol
EngineEngine

CANCAN
TransceiverTransceiver

channelchannel
modelmodel

eMixedeMixed faultfault
injectorinjector

sequencesequence
driverdriverScoreboardScoreboard

Bus Bus MonitorsMonitors and and DriversDrivers

ProtocolProtocol CheckerChecker

CoverageCoverage AnalysisAnalysis

RandomRandom
TestsTests

TX/RX TX/RX eMixedeMixed
componentscomponents

OthersOthers CAN CAN nodesnodes

CANHCANH

CANLCANL

vSourcevSource (TX) and (TX) and vProbevProbe (RX) (RX)

vSourcevSource

vProbevProbe

+

-

AnalogueAnalogue
domaindomain

V / I V / I
SignalSignal

ProcessingProcessing

ConfigurableConfigurable
ADCADC11

ConfigurableConfigurable
ADCADCnn

ADCsADCs
ConfigConfig

(bit (bit numbernumber,,
rangerange, , etcetc.).)

M
on

ito
r

M
on

ito
r

Time ManagerTime Manager Time ManagerTime Manager

““e” e” descriptiondescriptionAHDL AHDL descriptiondescription

““e” e”
domaindomain

packages failure models, so that the failure rate and
qualification time will be both reduced.

REFERENCES

[1] M.Edwards, W.Rosenstiel, M.Witerholer, T.Oppold,
C.Schilz-Key, Y.Kashai, T.Kuhn, “Object Oriented
Hardware Synthesis and Verification”, Proc. of the 14th
International Symposium on System Synthesis, 2001,
Montreal, Canada, pp. 189-194

[2] Bill Luo, Jim Lear, “A Unified Functional Verification
Approach for Mixed Analog-Digital ASIC Designs”,
Legerty INC, DesignCon 2003

[3] Koji Ara, Kei Suzuki, Hitachi, Ltd, “A Proposal for
Transaction-Level Verification with Component Wrapper
Language”, Proc. of Design Automation and Test in
Europe (DATE), March 03-07 2003, Munich, Germany

[4] “IEEE Std VHDL 1076.1-99: The Analog and Mixed
Signal Extension for VHDL”, 1999

[5] C.Brown, “Mastering of Mixed-Signal Verification”
EETIMES, 17 March, 2004

[6] B.Li, L.Jia, H.Tenhunen, “Optimization of analog
modelling and Simulation”, Proc. of the 5th International
Conference on Solid-State and Integrated Circuit
Technology, 1999, Beijing, China, pp.385-388

[7]A.J. Ginés, E. Peralías, A. Rueda, N. Martínez Madrid and
R. Seepold, “A Mixed-Signal Design Reuse Methodology
Based on Parametric Behavioural Models with Non-Ideal
Effects”, Proc. of Design Automation and Test in Europe
(DATE), March 2002, Paris, France

[8] E. Peralías, A. J. Acosta, A. Rueda, J. L. Huertas, "A
VHDL- based Methodology for the Design and
Verification of Pipeline A/D Converters", Proc. of Design
Automation and Test in Europe (DATE), March 2000,
Paris, France, pp. 534-538

[9] IEEE 1647 web site:
http://www.ieee1647.org/index.html

[10] Verilog-AMS Language Reference Manual: “Analog &
Mixed-Signal Exstension to Verilog HDL”, version 2.1,
January 20, 2003

[11] “CAN Specification, version 2.0”, Robert Bosch, 1991
[12] A.Di Blasi, F.Colucci, R.Mariani, “Y-CAN Platform: A

Re-usable Platform for Design, Verification and Validation
of CAN-Based Systems On a Chip”, ETS-2003
Symposium, May2003

[13] C.Turner, C.Mueller, “Re-usable CAN IP block”, CAN
newsletter 3/2002 CIA

[14] eVC CAN datasheet, YOGITECH SpA, 2002
[15] R.Mariani, M.Chiavacci, G.Bonfini “Foundamentals of a

novel approach for mixed analogue-digital verification”,
9th IEEE European Test Symposium, Informal Session,
Ajaccio (Corsica), 23-26 May 2004

[16]G.Bonfini, M.Chiavacci, F.Colucci, F.Gronchi, R.Mariani.
E.Pescari, A.Sterpin, “An Integrated Mixed-Signal
Verification Environment”, International Test Conference
(ITC) 2005, submitted

[17] Zoubir, A.M. and Boashash, B. (1998), “The bootstrap
and its application in signal processing”, IEEE Signal
Processing Magazine, Vol.15, pp.56-76

[18] G.Bonfini, M.Chiavacci, F.Colucci, F.Gronchi,
R.Mariani, E.Pescari, A.Sterpin, “Fault Coverage in A
New Mixed-Signal Verification Approach”, International
Mixed-Signals Testing Workshop 2005 (IMSTW’05), 27-
29 June, Cannes, France.

