
Parasitic-Aware Hierarchical Symbolic Performance Modeli ng
for Layout-Inclusive Synthesis of Large Analog Circuits ∗

ABSTRACT
The primary focus of this work is on the generation of layout-aware
symbolic performance models (SPMs), for parasitic-inclusive large
analog circuits, by using exact hierarchical symbolic analysis. Two
problems arise while generating these SPMs. The first problem is the
symbolic analysis of large networks. We propose a new hierarchi-
cal symbolic analysis technique, that takes the modular approach of
layout-generation and uses it for large circuits. The core of this algo-
rithm is a novel idea where transfer functions are synthesized for a gen-
eral interconnection template of two subcircuits. The second problem
deals with the generation and partitioning of circuit topologies, that in-
clude all parasitics generated in a synthesis run. We propose efficient
techniques for parasitic-inclusive topology generation and partition-
ing. In this paper we also use the SPMs, in layout-inclusive synthesis
of a large analog circuit, to overcome important deficiencies in tradi-
tional analog synthesis. The accuracy and effectiveness of these SPMs
has also been demonstrated.

1. INTRODUCTION
The process of determining numerical values for the unsized ele-

ments of an analog circuit, while satisfying a set of performance con-
straints, is called circuit synthesis. In traditional analog synthesis [3],
a combinatorial optimization algorithm generates several alternative
sets of component sizes. Each set of sizes is used for performancees-
timation by a numerical circuit simulator. The process converges when
all constraints are satisfied. This synthesis approach suffers from two
important shortcomings - a) unawareness to the layout parasitics and
b) computationally expensive numerical analysis for performance es-
timation. Not estimating layout-effects during optimization can lead
to the failure of the synthesized circuit in the post-layout verification
stage. Numerical simulation inside the synthesis loop results in large
per-iteration time, as well as, large synthesis time.

The aforementioned deficiencies in analog synthesis can be allevi-
ated by using layout-inclusive techniques along with symbolic analy-
sis based performance models.Layout-inclusive synthesis is a circuit
sizing method where the set of parameter values proposed by the opti-
mizer are used to either generate or instantiate a complete layout inside
the synthesis loop. This technique is also called alayout-in-loop ap-
proach.Symbolic performance models (SPMs) are symbolic equations
in terms of circuit parameters, which represent the characteristics of an
analog circuit [7, 5]. SPMs are built using symbolic transfer functions
obtained by symbolic circuit analysis.

In [5] a synthesis method combining the concepts of layout-inclusion
and SPMs is presented. Layout generation is included in the synthesis
loop by using a parameterized layout generator. SPMs are generated
using the symbolic analysis method based on element-coefficient di-
agrams (ECDs). ECD’s are graph-based data structures which store
exact (no apparoximations) transfer functions expressions compactly
and were first presented in [7]. For use in synthesis the ECDs are
converted into C++ code and compiled for extremely fast evaluation.
In such a synthesis method parasitic-inclusive topologies have to be

∗This work is supported in part by DARPA/MTO NeoCAD program
under grant number F333615-01-C-1977 monitored by the Air Force
Research Laboratory.

used for ECD generation, in order to capture the layout effects. Even
for medium sized analog circuits, due to inclusion of parasitic ele-
ments, topologies becomes very complex. The synthesis methodology
in works well for small and medium sized analog circuits, but as the
size of circuits increase it is difficult to compile and eventually to gen-
erate the ECD code. For even larger circuits symbolic technique fails
to generate the ECDs.

To overcome the limitation on the size of circuits, a hierarchical
symbolic analysis approach has to be used. Techniques involving ap-
proximation/simplification cannot be used because in synthesis the ac-
curacy of performance models is of paramount importance. Two rele-
vant hierarchical methods are: DDD-based [6] and structural regular-
ity based [2]. The first two approaches are not suitable for this applica-
tion because the size of circuits become very large due to the inclusion
of parasitics. A method, where subcircuits transfer functions (TFs)
are combined to yield the TFs for a higher level circuit, is preferable.
Only then can the modular properties of topologies obtained from lay-
outs be exploited. In [2] a decomposition-based approach is proposed,
but breaks down the circuit to the smallest, most basic, elements. This
approach does not correspond directly to the layout, which uses the
common analog modules. A technique based on decompostion and
circuit function generation is presented [1], but is limited to small cir-
cuits because it does not present a formal method which can be used
for large circuits.

In this paper we present a new hierarchical symbolic analysis method
based on the use of ageneral interconnection template (GIT). The GIT
represents all possible ways to connect two subcircuits. A complete
analysis of the GIT is done using the priciples of transfer function syn-
thesis. The transfer functions which completely characterize the GIT
are thus obtained from the transfer functions of the two general subcir-
cuits. The complete analysis of the GIT is not presented in the paper
but the representative equations detailing the process have been shown.
This hierarchical analysis method takes as input a partitioned circuit.
The parasitic-inclusive circuit is first generated using techniques de-
cribed in the following section. Then the circuit is partitioned accord-
ing to a module-based approach. A manual approach or an algorithmic
approach can also be used for partitioning.

The rest of the paper is organized as follows. In Section 2, we
describes the techniques to generate parasitic-inclusive netlists, that
contain superset of all parasitics generated in any synthesis run. The
partitioning techniques for parasitic-inclusive topologies are decribed
in Section 3. Section 4 presents the GIT and the hierarchical sym-
bolic analysis technique using based on the transfer function synthesis.
The implementation framework has also been presented. The symbolic
performance modeling method is described briefly in Section 5. The
synthesis framework is described Section 6. Experimental results are
discussed in Section 7. A summary of conclusions and future work is
described in Section 6.

2. PARASITIC-INCLUSIVE TOPOLOGY GEN-
ERATION

The first task is the generation of circuit topologies, which incluse
all the parasitics that can possibly be generated during a synthesis run.
As component sizes vary during synthesis, the layout geometry varies
between iterations. This variation may generate varying sets of par-

1

asitic elements (resistances and capacitances) in each iteration. Let
C(R) be the set of all parasitic capacitances (resistances) ever appear-
ing in an extracted circuit. Some elements ofC(R) might be missing
(set to zero) in some instances of the extracted circuits. However, an
SPM including all potential parasitic capacitances (C) and resistances
(R), must be pre-generated. Techniques to do so are described next.

2.1 Analysis of the Layout Template
This technique relies on using the template used for layout genera-

tion in the synthesis loop to generate the parasitic-inclusive toplogy.

ST

W
G2

G1 D1
D2

S

G D

W S

D

SW

G

(Vdd)

(Vb)

(Gnd)

(in_1)

(in_2)

(out)

DF
S

D

G1G2

D2 D1

D

1

2

3
4

5

S

G W

W

G

S

W

CM

Figure 1: Diff. Pair with Current Mirror & Current Source

The first step is to select the modules essential for building the cir-
cuit. In the circuit shown in Figure 1, the three module required are:
differential pair (DP), current mirror (CM) and a single transistor (ST).
Each module is characterized by a list of nodes. The differential pair
has the following input/output nodes:G1,G2,D1,D2,S,W .

The nodes of the selected modules are assigned physical node names
from the circuit schematic. For symbolic analysis, each DC voltage
source in the circuit is shorted and DC current sources are open cir-
cuited. The nodesS andW are powered by a DC voltage sourceVdd ,
but in the circuit schematic (Figure 1) they are shown to be connected
to ground directly. The final assignment of nodes for the three mod-
ules are thus: DP (G1 = 1, G2 = 2, D1 = 3, D2 = 4, S = 5, W = 0), CM
(G = 3, D = 4, S = 0, W = 0) and ST (G = 0, D = 5, S = 0, W = 0)

The assignment of nodes from the circuit topology to modules, en-
ables the generation of the set of actual possible parasitics. Let the
original set of parasitics associated with any moduleX be referred to
asCAM X . After the circuit-node assignment this set of parasitics is
reduced and yields the setCRM X . SetCAM CM is the list of parasitics
generated by an extraction of the current mirror module.

CAM CM = {CS W , CD G, CG S, CG W , CD W , CD S,

CD GND, CG GND, CS GND, CW GND}

The nodeGND is eventually replaced by the ground (0) node. After
replacing the module nodes by circuit nodes:

CAM CM = {C0 0, C4 3, C3 0, C3 0, C4 0, C4 0, C4 0, C3 0, C0 0, C0 0}

By removing invalid and redundant capacitances a reduced set of ca-
pacitance is obtained:

CRM CM = {C4 3,C4 0,C3 0}

The same transformations are applied to the original capacitance set
of each module and similarlyCRM DP andCRM ST are obtained. The
reduced set of module parasitics for the whole circuit is obtained thus:

CRM = CRM CM

⋃

CRM DP

⋃

CRM ST

= {C4 3,C4 0,C3 0,C1 5,C5 3,C2 4,C4 5,C1 0,C2 0,C5 0,C1 3,C2 5}

ST

W S

D G

D1 D2S

G1 G2 W

G D

W

Vb

DP

(out)

(in_2)
(in_1)

Gnd

Vdd

CM

1
2

3
54

Figure 2: An Example Layout Template

Once the reduced set of module parasitics for the circuit have been
determine, the focus shifts to interconnect parasitics. Figure 2 shows
the template used for layout generation for the circuit in Figure 1.
The layout template shows the presence of three channels for intercon-
nects. First, we consider the case where only parasitic capacitances are
extracted. The method described in [5] to obtain the parasitic capaci-
tances of interconnects generates the following sets of parasitics. The
set of interconnect parasitics for channels 0, 1 and 2, after assigning
the nodesVdd , Vb andGnd to 0, are:

CIC0 = {C1 2, C1 0, C2 0}; CIC1 = {C3 4, C3 5, C4 5}; CIC2 = φ

Therefore the complete set of interconnect parasitics is:

CIC = CIC0

⋃

CIC1

⋃

CIC2 = {C1 2,C1 0,C2 0,C3 4,C3 5,C4 5}

Most of the interconnect parasitic capacitances also appear in the set
of parasitic capacitances for modules (CRM). This implies that when
generating the parasitic-inclusive topology, these capacitances can be
ignored because they are already present in the modified module-topologies.
The interconnect parasitic capacitances that do not appear in the set of
module parasitic-capacitances have to be added to the topology being
generated as new modules themselves. The set of such capacitances
(CIC Add) can be found thus:

CIC Add = CIC − (CRM

⋂

CIC) = {C1 2}

Each capacitance in this set becomes a new module in the parasitic-
inclusive topology.

The various parts of the parasitic-inclusive topology have been gen-
erated. The individual parts (modified module-topologies and capaci-
tance modules) are stitched together according to the connection tem-
plate of the original circuit topology to produce the parasitic inclusive
topology. Figure 3(A) presents the topology generated after inclu-
sion of the parasitic capacitances, which will be used for hierarchi-
cal symbolic analysis. The capacitanceC1 2 is the only capacitance
module (Cap) added to the original circuit topology. The topology of
modules, which had been selected based on the original circuit topol-
ogy, have been modified to eliminate some capacitances. The capac-
itances retained for each module are listed: CM (C4 3, C4 0, C3 0); DP
(C1 5, C5 3, C2 4, C4 5, C1 0, C2 0, C5 0, C1 3, C2 5); ST (None).

If the parasitic resistances of interconnects are also extracted then
the technique to include them in the new topology differs from that
described above. For each net in the layout, a resistance-model (based
on the number of terminals in the net) as described in [5], is included
in the parasitic-inclusive topology, along with the modified module-
topologies. For the circuit under consideration, the parasitic-inclusive
topology is shown in Figure 3(B).

2.2 Layout Sampling
In layout sampling technique, we generate a number of sample lay-

outs of the entire circuit, examine which area and coupling capaci-

2

DP

CM 4

5

3

Cap

G2

G1
D1

D2

S D ST

G

D

2

1

(Gnd)

(Vdd)

(Vb)

(in_1)

(in_2)

(out) Net_4

Net_1

Net_2

(Vdd)

(Gnd)

(Vb)

4

2

1

S

D2

D1
G1

DP

Net_5

(out)

(in_2)

(in_1)

W

D

ST

CM

S

S
G

G

D

W

W
G2

Net_Gnd

Net_Vdd

Net_4

Net_Vb

Figure 3: Block Diagrams of Parasitic-Inclusive Circuits (A) Capacitance Included (B) Resistance Included

tances are extracted from these layouts and symbolically include only
those capacitances in the SPM generation process. The advantage of
using this method is that only relevant parasitics, i.e., those which have
appeared due to extraction of layouts, are taken into account.

3. CIRCUIT PARTITIONING
The parasitic-inclusive circuit can be partitioned using the techniques:

Module-based partitioning; and algorithm-based/manual partitioning.
The aforementioned techniques are described below.

2

1

DP

CM

ST

4

5

3

Cap

2

1

DP

CM

ST

4

5

3

Cap
A

B

C

D

B

A

Module−based Partitioning

Algorithm−based/ Manual Partitioning

Figure 4: Partitioning of Parasitic Capacitance-Inclusive Circuit

3.1 Module-Based Partitioning
In this approach, the parasitic-inclusive topology is partitioned in

accordance with the modules used for its generation. Figure 4 demon-
strates such a partitioning, where the topology has been partitioned into
four modules:DP, CM, CS andCap. The advantage of this approach
is that, a library of pre-generated transfer functions, in compiled ECD
form, can be used to build up the desired transfer function.

3.2 Algorithm-Based/ Manual Approach
The alternative to module-based partitioning is a partitioning algo-

rithm or a manual technique. Instead of partitioning the circuit into
several small sub-circuits, breaking the circuit into fewer sub-blocks,
which are reasonably large, often lessens the complications involved

in generating the formula for obtaining the desired transfer function.
The main disadvantage of this technique is that the transfer functions
(i.e., the ECD’s) have to be generated for benchmark circuit, and this
increases the setup time. In Figure 4 it can be observed that, the num-
ber of sub-blocks in algorithm-based/manual partitioning is fewer than
the module-based approach. Even though the sub-blocks are larger
than modules, they can easily be symbolically analyzed using the ECD
Tool.

4. HIERARCHICAL SYMBOLIC ANALYSIS
The method to synthesize the transfer function of a circuit in term

of it’s subcircuits transfer functions is described here. The key concept
introduced in this section is that of a general interconnection template
of two subcircuits and the derivation of circuit function matrices.

4.1 General Interconnection Template (GIT)
When two subcircuits are merged the primary goal is to find the cir-

cuit function matrix of the new subcircuit/circuit in terms of circuit
functions of the constituting blocks. Two subcircuits can be can be
connected to each other in various connection templates whether it be
series, parallel, feedback or any combination of these. We start with a
connection template which encompasses any kind of connections pos-
sible between two subcircuits and carry out our analysis on it. The
results obtained from the analysis of the general interconnection tem-
plate (Figure 5(A)) can be used for analyzing any type of connection
by simply eliminating the variables which do not exist in the connec-
tion being analyzed. Each subcircuit can be characterized in terms of
circuit functions [1] as shown below:

M x = Hx ×Nx (1)

The matrixM x is the set of primary variables characterizing a port
andNx is the set of secondary variables. Subscriptx represents the
subcircuitx which is being characterized.Hx is thecircuit function
matrix, members of which are obtained by symbolic analysis of the
the two subcircuits being merged.

From Figure 5(A) the characteristic equations for subcircuitA and
B by using equation 1. All the circuit functions in the matrixHa are
obtained either by repeated symbolic analysis according to the defini-
tion of the circuit functions or have been generated by merging two
subcircuits. Similarly, the characteristic equations for subcircuitB are
obtained.

The key to the synthesis of circuit functions of the new subcir-
cuit/circuit C (which is obtained by mergingA andB) is to devise an
efficient mathematical procedure of deriving the circuit function ma-
trix Hc . The characteristic equations of subcircuitC are represented
as:

M c = Hc ×Nc

3

a

i
i 3

e

j
i 2

a

j
e 2

c
j

e 4

c

i

2
c

i
i 2

a

j
a

e

j
a

i1

i
e

a

i
1

i

e

b

j
i

b

B

A

i

i

b

1
i

i

b

2

i
i

b

3

i
i

b

4

j
e

b

eV

i e 4
c

V

1

3
c

Ve 4
c

i e

c

e
c

1eV
2

c
ei

c i e 3

Circuits

Library

& ECD

Level
Top−

TFs

List of

TF Matrix

Top−Level

Symbolic

Tree
Hierarchy

Characterized

Compilation

Files
MATLAB

List of

Description
Hierarchy General

Circuit
Function

Matrices

Compiled
Top_Level

TF

Files
Calculation

Matrix

(C++)

TF ECDs

circuits
Sub−Generate

Tree
Hierarchy

Create

Sub−

TF (C++)

Leaf−Level

Leaf−Level

Symbolic
Analysis

Leaf−Level

Post−
Simulation
MATLAB

Processing

Figure 5: (A) General Interconnection Template (B) Implementation Framework

4.2 Transfer-Function Synthesis of the GIT
In the general interconnection template it is assumed that the sub-

circuit C is characterized only by external variables. Therefore the
compact representation is:

From Figure 5(A) based on KCL and KVL we derive the following
relations:va

i1
= vc

e1
; va

i2
= vc

e3
; va

i2
= V c

e4
; va

e = vc
e2

; ja
i1

= jc
e2

+ ib
i4

; ja
i2

=

ib
i3

; ja
e = jc

e1
. Also vb

i1
= vc

e3
; vb

i2
= vc

e1
; vb

i3
= V a

i2
; vb

i4
= V c

e2
; vb

e =

vc
e4

; jb
i = jc

e4
+ ia

i3
; jb

e = jc
e3

In order to obtainHc, the primary internal variables of both subcir-
cuitsA andB have to eliminated. The first step in that direction is the
separation of the circuit functions associated with internal variables
into a separate matrixAab. The equation resulting is shown below.

Aab ×Pab = Bab ×M c +Cab ×Nc

⇒ Pab = A-1
ab × (Bab ×M c +Cab ×Nc) (2)

The characteristic equations of the new subcircuitC can be formed
by substituting the primary external variables ofC by internal and ex-
ternal variables of the constituting subcircuits based obviously on KCL
and KVL. The equation resulting from this

⇒ M c = Dab ×M c +Eab ×Nc +Fab ×Pab (3)

As can be seen equation 3 still has the internal variable matrixPab. In
order to eliminate this and get equations is terms of external variables
(and hence current and voltage variables of subcircuitC), we plug in
equation 2 in the equation 3. This results in the following equation:

M c = Dab ×M c +Eab ×Nc +Fab ×A-1
ab × (Bab ×M c +Cab ×Nc)

⇒
(

I −Dab −Fab ×A-1
ab ×Bab

)

×M c =
(

Eab +Fab ×A-1
ab ×Cab

)

×Nc

⇒ M c = [
(

I −Dab −Fab ×A-1
ab ×Bab

)-1
×

(

Eab +Fab ×A-1
ab ×Cab

)

]×Nc

∴ Hc =
(

I −Dab −Fab ×A-1
ab ×Bab

)-1
×

(

Eab +Fab ×A-1
ab ×Cab

)

Thus we have a formal method of obtaining the circuit function ma-
trix of the new subcircuit/circuit based in symbolic matrix calculations.
This formal method is easy to implement and forms the basis of a hi-
erarchical symbolic analysis method a bottom-up approach is used to
combine subcircuits till the highest level of hierarchy is reached. The

following subsection show an example of applying this method to two
circuits: one a very loosely coupled circuit (RC Ladder) and the other
a maze circuit which is extremely tightly coupled where each node is
connected to the other.

4.3 Implementation Framework
We have used the method described in Section 4.2 to develop a

framework for hierarchical analysis of large analog networks and prac-
tical circuits. The concept is to merge two sub-circuits at a time, till all
the subcircuits have been merged to obtain the circuit (transfer) func-
tion matrix of the target netlist, in terms of the transfer functions of
the leaf-level subcircuits. Figure 5(B) presents the implementation
framework of the proposed approach.

The process of hierarchical symbolic analysis takes in as input a
hierarchy-description file along with the circuit function matrices of
the general interconnection template. A hierarchy description file is
the breakdown of the target circuit, in terms of it’s modular compo-
nents. These components, in case of analog circuits, can be standard
modules like current mirror, differential pair etc, or they can be sim-
ply the target circuit partitioned according to an algorithm or manually.
This file also has the information about the sequence in which two sub-
circuits are combined at a time, as well as the information about nodes
and variables, in a format corresponding to the general interconnection
template.

The first step is the generation of a hierarchy tree from the hierarchy-
description file. Each node in this tree represents a subcircuit, and
using the hierarchy description files information about its type and ex-
ternal nodes are also saved. From the general circuit-function matrices,
the subcircuit-function matrices are obtained by eliminating the absent
variables. The next step is to read the hierarchy tree and generate the
Matlab code for the matrix mathematics involved in the process. For
the purpose of symbolic matrix multiplication and inversion we have
used the Symbolic Math Toolbox in Matlab.

Matlab is invoked is invoked to perform the symbolic matrix manip-
ulations. The outputs is a text file with theHc of the target circuit or
a part of it, depending on the desired transfer function. This output,
which is a list of symbolic expressions in terms of leaf-level transfer
functions, is then processed to convert it to C++ code. This code be-
comes the top level function which combines the transfer functions of
leaf level circuits (also stored as C++ code), to give the top-level trans-
fer function. The output files from Matlab are also parsed to obtain the
list of leaf-level transfer functions required by the top-level transfer
function(s).

The list of transfer functions and subcircuits are fed to a symbolic
analyzer. The symbolic analyzer used in our work is an ECD-based
symbolic analysis tool [7]. The ECDs are generated as C++ code

4

I

B

A

IB

(Vss)

(Vdd)

V

U

ON

P

S

T

F

E

DC

O

G HVout+Vout−

(Vss)

(Vss)

(Vdd)

Vin−Vin+

QR

L

F

M

C

DD

C

KJ

NN

O

Figure 6: Differential Operational Amplifier

Table 1: Results of Flat Symbolic Analysis of Large Practical Analog Circuits
ECD Generation ECD Statistics Lines of ECD Compilation

Circuit Time Memory Depth # Vertices # Edges C++ Code Time
FDO NO-PAR 3m 36s 210M 27 516,905 3,888,252 517,502 C/F

FDO PAR 7m 5.2s 663M 27 683,839 7,707,532 684,645 C/F

which can be compiled and stored for extremely fast-evaluation. It
may not be necessary to generate all or any of the ECDs, if the cir-
cuit is partitioned into common-analog modules. Most of the common
modules can be analyzed completely and stored as a library of pre-
compiled ECDs. This method can be especially useful in very large
circuits, generally parasitic-inclusive circuits.

5. SYMBOLIC PERFORMANCE MODELING
The framework for the generation of SPMs was first proposed in [5].

The first step is to generate combinations of nodes that appear in a per-
formance characteristic formula. All the active devices in a circuit are
expanded to their small-signal models. The symbolic analysis engine
uses the node information to generate the required transfer functions
as Element Coefficient Diagrams (ECDs). The symbolic model builder
uses the node information to generate the formulae for the desired per-
formance characteristics. The combination of the symbolic formulae
and transfer functions are called SPMs.

6. SYNTHESIS FRAMEWORK
The proposed circuit synthesis environment was first proposed in

[5]. Layouts are generated by using the Module Specification Lan-
guage(MSL) system [4], which produces parameterized layouts. A

parameterized layout is a fixed template layout, which when provided
with the values of the circuitparameters by the optimization engine,
produces a physical layout. In our case simulated annealing is used
for optimization. A standard circuit extractor is used to extract the
devices and parasitics from the layout. The extracted parasitic val-
ues along with the passive component values are passed to the pre-
compiled SPMs. The SPMs also take in the small-signal parameter
values for all active devices obtained by performing an operating point
analysis using SPICE. The performance estimates obtained from SPMs
are compared to the specified constraints. If necessary, the optimiza-
tion engine proposes a new set of design parameter and this process
continues till convergence.

7. EXPERIMENTAL RESULTS
The results of flat (direct) symbolic analysis of these analog circuits

are presented in Table 1. Table 2 presents the results of symbolic
analysis based on synthesis of transfer functions. The first observation
to make is that that the symbolic matrix calculations in Matlab are
extremely efficient. This is obtained by spitting each level of transfer
function synthesis into different Matlab files and evaluating all of them
in the same session. Matlab can become extremely inefficient if all
the symbolic matrix manipulations are specified in just one file. The
large analog circuit chosen for our experiments is a fully differential

5

Table 2: Results of Hierarchical Symbolic Analysis of Large PracticalAnalog Circuits
Transfer Function Synthesis Time ECDs of Leaf-Level Subcircuits

Circuit Matlab Files Matlab Top Level Compilation Total # of Generation Compilation
Generation Simulation C++ File of C++ file Time ECDs Time Time

FDO NO-PAR 3.9s 18.3s 149s 23m 5s 25m 34s 166 22m 24.6s 15m 47.9s
FDO PAR 3.9s 18.3s 149s 23m 5s 25m 34s 166 22m 42.8s 16m 10.1s

Table 3: Layout-Inclusive Synthesis Results: FDOPAR - Run #2

Parameter Specs Flow1 Flow2 Verif. %Err
gain (dB) ≥ 45 45.2 46.7 46.5 0.4%

f−3dB (kHz) ≥ 500 711.8 609.3 615.1 1%
ug f (MHz) ≥ 5 12.8 13 13.4 3.1%

pm (◦) ≥ 80 86.3 86.3 84.2 2.4%

Table 4: Time Results of Layout-Inclusive Synthesis for FDOPAR

Synthesis Time per Iteration
Run Approach Layout Performance Estimation Total

& Gen. Numer. Model Total Iter.
Speedup & Ext. Analysis Eval. Time
Flow1 1.491s 0.512s 0.372s 0.885s 2.379s

1 Flow2 1.491s 0.277s 0.011s 0.29s 1.797s
Speedup - 1.85x 33.8x 3.05x 1.32x
Flow1 1.491s 0.895s 1.002s 1.9s 3.395s

2 Flow2 1.491s 0.277s 0.011s 0.29s 1.797s
Speedup - 3.23x 91.1x 6.55x 1.89x

opamp (FDO) shown in Figure 6. In the figure we have also shown
the module-based partitioning with rectangular boxes with solid lines.

We observe in Table 1 that for FDONO-PAR (module -based par-
titioning, no parasitics), flat symbolic analysis can generate the ECD
very quickly, but due to the large size of the ECDs the generated
C++ code is huge. This leads to compilation failure (C/F). Thus we
know that flat symbolic analysis is inadequate for fast performance
evaluation in each synthesis iteration. A similar trend is observed
for FDO PAR (module-based partitioning, module parasitic capaci-
tances). In Table 2, we observe that for both cases, the hierarchical
method can generate and compile the ECD and top level C++ files. In
the case of FDONO-PAR the transfer function generation time is sim-
ilar in both the flat and hierarchical cases, if ECD-libraries are used. In
smaller circuits the flat approach generates faster than the hierarchical
approach. As the size of the size of circuits increase hierarchical analy-
sis becomes faster relative to the flat approach. This is seen in the case
of FDO PAR where the time taken by flat symbolic analysis to gener-
ate the transfer functions is almost thrice the time for the hierarchical
method. If ECDs have to be generated then hierarchical approach an
additional setup time.

Table 3 presents the results for two approaches of circuit synthe-
sis.The first approach (Flow1) uses the MSL environment and NG-
Spice for layout-inclusive synthesis. The second approach (Flow2)
uses MSL with hierarchical SPMs. The inclusion technique used is
layout-template analysis, but only the module parasitic capacitances
are included. The layout editor used in both approaches is Magic 7.1
and the numerical simulator is Spice. The obtained performance esti-
mates for Flow2 are verified using NG-Spice. The verification is done
not against a complete extracted netlist for the final design point, but
with a extracted netlist with only the module capacitances. The small
error can be attributed in part to the bisection method of solving for
roots of the transfer function, to obtain the values of unity gain and

-3dB frequencies. Table 4 presents the time results for both method-
ologies. The performance convergence in both cases is fast due to the
use of a language-based layout generator. The speedup depends on the
number of ac analysis points used in numerical simulation with Spice.
Run1 uses 10 points/decade and Run2 uses 25points/decade. Flow2 is
1.3x & 1.9x faster than Flow1, per iteration for Run1 and Run2 respec-
tively. The numeric analysis time of Flow2 (for operating point analy-
sis) is 1.9x & 3.2x faster than Flow1. Model evaluation time of Flow2
(SPM evaluation time) is 33x & 91x faster than model evaluation (the
process of obtaining desired performance attributes from the analysis
results) time for Flow1. Overall, SPM-based performance estimation
time is 3x & 6.6x faster than NG-Spice-based method. All experi-
ments have been conducted on SunBlade 1000 with Solaris(SunOS),
2048MB RAM and 2-750MHz Processors.

8. CONCLUSIONS
In this paper we have presented a method for parasitic-aware hierar-

chical symbolic performance modeling. The underlying technique is
the transfer-function based hierarchical symbolic analysis technique.
The efficiency of the hierarchical symbolic analysis has been demon-
strated. We have also developed techniques to generate the parasitic-
inclusive topology directly from the layout template. A layout sam-
pling technique can also be used for generation of the topology. The
transfer-function synthesis based hierarchical symbolic analysis paves
the way for library-based symbolic analysis techniques, where pre-
generated ECDs of common analog modules (like current mirrors, dif-
ferential pairs etc.) are used to obtain the circuit function of large
analog circuits.

9. REFERENCES
[1] S. Djordjevic and P. Petkovic. A hierarchical approach to large

circuit symbolic simulation.Microelectronics Reliability,Elsevier
Science Ltd, 41:2041–2049, 2001.

[2] A. Doboli and R. Vemuri. A regularity-based hierarchical
symbolic analysis method for large-scale analog networks.IEEE
Transactions on on Circuits and Systems II:Analog and Digital
Signal Processing, 48(11):1054–1068, Nov. 2001.

[3] G. Gielen and R. Rutenbar. Computer-aided design of analog and
mixed-signal integrated circuits.Proc. IEEE, 88(12):1825–1854,
Dec. 2000.

[4] H. Sampath and R. Vemuri. MSL: A high-level language for
parameterized analog and mixed signal layout generators. In12th
Intl. IFIP VLSI Conf., 2003.

[5] M.Ranjan et al. ”Fast, Layout-Inclusive Analog Circuit Synthesis
using pre-compiled parasitic-aware symbolic performance
models”. InProc. of DATE, pages 604–609, Feb 2004.

[6] X.-D. Tan and C.-J. R. Shi. Hierarchical symbolic analysis of
analog integrated circuits via determinant decision diagrams.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(4):402–412, Apr. 2000.

[7] W. Verhaegen and G. Gielen. ”Efficient DDD-based Symbolic
Analysis of Large Linear Analog Circuits”. InProc. of DAC,
pages 139–144, 2001.

6

