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ABSTRACT
This paper presents a novel behavioral-level analog and mixed-
signal (AMS) system performance modeling methodology
using support vector machines (SVM). The method relies on
linearly graded sub-spaces to model complex multi-dimensional
performance spaces. A detailed evaluation of the method
has been carried out for the purpose of potential use for AMS
synthesis. The method has been applied to a complex non-
ideal 2nd order Sigma-Delta modulator (SDM) and results
show good accuracy of performance modeling and numerical
efficiency.

1. INTRODUCTION
One of the key elements of hardware synthesis is to employ a
modeling method that evaluates the system’s performance.
At system design level, performance modeling outcomes are
extremely important because the earlier in the design pro-
cess a hardware decision is committed to fabrication, the
more costly it is to change it later. Current AMS IC syn-
thesis methodologies lag behind their digital counterparts.
One of the main problems is that different system-level so-
lutions cannot be distinguished effectively because of the
absence of efficient performance estimation methods. More-
over, the productivity of existing AMS synthesis tools is
limited by the nature of analog designs, which feature multi-
dimensional design space and various blocks with different
sets of benchmarks. Furthermore, performance parameters
of analog systems usually have a cross-domain trait and fre-
quency domain parameters may need to be extracted using
complex mathematical methods. Because of the emergence
and popularity of modern system-on-chip (SoC), the need
to develop new AMS CAD tools is even more important
as analog parts, which usually represent only a small por-
tion of a typical SoC, involve disproportionally large design
time and require specialized skills [6]. To overcome these
challenges, many landmark engineering methods have been
applied to create systems at either system-level or circuit-
level or both. In recent years, fuzzy logic [10] and neu-
ral network methods [12] have been applied to supersede
manual knowledge extraction and thus increase the design
process efficiency. These systems construct learning rules
or artificial intelligent networks to represent and reproduce
the behavior of target systems. Another extensively studied
methodology is symbolic analysis approach and outstanding
systems have been accomplished[3, 4]. Typical applications
are mainly circuit-level analog design cases. For an AMS
system which includes both analog and digital blocks, the
highly non-linear and implicit relationship between design

and performance parameters may restrict the effectiveness
of the method. The third approach is to use optimization
techniques directly on simulation results rather than focus
on system modeling [5, 9]. However, the efficiency of the
performance evaluation process is severely affected by the
simulation cost and the method sacrifices reusability in ex-
change for generality and flexibility.

SVM-based methods have recently been introduced to the
analog performance modeling field [1, 8]. As a newly sug-
gested approach, these powerful learning algorithms need to
be studied further in the context of AMS systems. Cur-
rently SVM-based performance classification is restricted to
the classical “good-bad” problem [1]. In this paper, a novel
linearly graded performance modeling process is presented
that uses SVMs for behavioral-level AMS systems. The new
method can produce a more detailed assessment of the sys-
tem’s performance with an accurate and computationally
efficient modeling technique. Section 3 shows how it has
been successfully applied to a complex AMS case study.

2. BEHAVIORAL-LEVEL LINEARLY GRA-
DED AMS PERFORMANCE MODELS

SVM uses structured risk minimization (SRM) strategy to
train models instead of the empirical risk minimization (ERM)
strategy used by the traditional neural network method. It
is proved that SRM is superior than ERM strategy [7] with
better generalization ability. SVM uses dot products in the
feature space to measure similarity between samples and
translate the input-space classification problem to optimum
hyperplane construction in the feature space. The method
is simplified by using inexplicit kernel mapping, which rep-
resents the feature space hyperplane using linear combina-
tion of weighted kernel functions and biases that centralized
only on a subset of the entire data set called support vectors
(SVs). LibSVM [11] is used as the SVM simulator and there
are four commonly used kernel function included:

1: Linear Kernel: k(x, x
′
) = �x · �x′

2: Polynomial Kernel: k(x, x
′
) = (γ�x · �x′

+ r)d

3: Radial Basis Function Kernel (RBF):

k(x, x
′
) = exp(−γ||�x − �x

′ ||2), γ > 0

4: Sigmoid Kernel: k(x, x
′
) = tanh(γ�x · �x′

+ r)

where k represents the kernel function, γ, r, d are parameters
of the kernel functions that control the characteristics of the
kernels and x, �x are samples in the input and feature space
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separately.

Support vector classification (SVC) problem is to construct
the hyperplane that provides maximum separating margin
between different classes, which is equal to the following
quadratic optimization problem:

Φ(w, ξ) =
1

2
||ω||2 + C

m�

i= 1

ξi (1)

subject to yi[< ω, xi > +b] ≥ 1 − ξi i = 1, · · · , m(2)

where ω is the normal vector of the hyperplane, x are the
samples in the input space and y is the corresponding label
vector, b is the bias vector of the hyperplane, ξ is the slack
vector corresponding to the errors happens on misclassified
samples and C is the penalty parameter that determines the
maximum margin and the minimum error cost or equally
saying the trade-off control parameter between the complex
of the hyperplane and the accuracy of the classification. The
SRM principle is used for support vector regression (SVR)
to solve regression problems. A loss function [7] is added to
enable the distance measurement between the hyperplane
and the sample data. The function can be directly used in
the optimization problem to replace the targeted labels in
SVC. There are two phases to generate classification and
regression models: training and testing, which correspond
to the creation and verification of the models separately.
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Figure 1: The design structure and information flow
of the method from the design space until the gen-
eration of the models where 1/0 means 1 or 0.

The proposed approach is to build knowledge database mod-
els on the direct relationship, which can avoid adjustment
of any of the internal variables, between the design and per-
formance parameters illustrated by the following equation:

P (p1, · · · , pm) = f(S, d1, · · · , dn) (3)

where P is the performance space and pi is the ith perfor-
mance parameter; dj is the jth design parameter; f is the
direct relationship function and S represents the function
of the AMS system. The models are expected to provide
accurate modeling and good insight of the behavior of the
system.

2.1 Linearly graded performance modeling us-
ing SVC and SVR

The scale of equation (3) is usually massive because of the
nature of the relationship between the design and perfor-
mance spaces. To reduce the complexity of the problem, a
linearly graded SVM-based approach is proposed. The idea
is to divide the performance space into sub-spaces of various
performance levels. This not only makes the solution pro-
cess more efficient but also provides a better performance
estimation than the traditional ’good-bad’ approach. The
boundaries between the sub-spaces are constructed using
SVC models and details inside sub-spaces are represented
by SVR models based on the corresponding design space
data. In this combination, SVC provides a rough frame-
work for target systems and SVR provide detailed modeling
within sub-spaces.

Figure 2: The modeling algorithm including the
BDG and the training algorithm details.

Figure 1 shows the data organization and the design flow
graph (DFG) of the training process. The first phase is
to run simulations to generate performance data. Each de-
sign set and its corresponding performance set are combined
to form one data set. The second phase is grading, which
operates on the performance figures. As each performance
parameter corresponds to one dimension in the performance
space, when the grading is carried out on each performance
parameter, the resulting grading planes separate the en-
tire space into sub-spaces contained by hypersurfaces. Each
grading plane is constructed using SVC with samples labeled
as ‘0’ or ‘1’1 indicating whether or not the sample belongs
to the given sub-space. The third phase is to take the design
sets and their labels to train the SVM performance models.

1
For multi-class classification, the label value can be other integra-

tors. For regression process, the labels are replaced by real-valued
numbers.
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An implementation of the modeling process is shown as the
DFG in figure 2 including a balanced data grading (BDG)
algorithm on the left and a practical parameter determi-
nation algorithm the right in dashed boxes. The grading
vectors of the performance parameters are originally spec-
ified by designers without considering the distribution of
samples in the performance space. The BDG algorithm is
a heuristic process that takes the designer provided grad-
ing vectors as the starting point and recalculates elements
in the grading vectors to obtain approximate uniform grad-
ing of the samples for every performance parameter. The
idea is to avoid sparse representation of some of the sub-
spaces, which can later cause problems such as over-fitting.
The algorithm treats all the sub-spaces equally and applies
a similar amount of material to the representation of every
sub-space. Also, the algorithm contributes the decomposi-
tion of the problem because it avoids a congregation of the
samples. A disadvantage of the algorithm is that it is not
optimal in the sense of finding the most suitable boundary.
It may grade samples with better similarity into different
groups with compelling separation. However, results show
that the generalization ability of the SVM compensates for
this disadvantage.

The SVM control parameter determination algorithm in fig-
ure 2 is general and effective for all types of kernels. Two
techniques are involved to accomplish the parameter deter-
mination task: the first one is the grid search (GS) method
to scan the control parameters; the second one is the cross-
validation technique, which is common in traditional arti-
ficial intelligence technology like neural network. Both the
GS and cross-validation aim to obtain the optimal values for
the control parameters that are used to construct optimal
models. Because the SVM cost parameter C and some of the
kernel parameters change exponentially, it is not practical to
do a GS with high grid resolution on the entire scan range.
The problem is overcome by scanning the control parame-
ter space in two successive sub-phases. In the coarse grid
search (CGS) sub-phase, the parameters are scanned with
exponentially increased grid resolution; while in the refined
grid search (RGS) sub-phase, the parameters are scanned
in much better resolution only within the optimum region
found in the CGS sub-phase. This enhances the efficiency
of the modeling process. The cross-validation technique is
employed to improve the accuracy performance of the SVM.

3. CASE STUDY
3.1 Design and performance spaces
A 2nd order SDM, which has been developed in SystemC, is
used as a case study to demonstrate the effectiveness of the
performance modeling approach outlined above. With its
inherent and integrated technology dependent non-ideal ef-
fects, this example is a typical representative of moderately
complex AMS systems found in practice for which there is
an urgent need to develop automated synthesis methods.
Non-ideal effects include: the clock jitter, switch thermal
noise, OpAmp thermal noise, OpAmp slew rate and finite
bandwidth, OpAmp finite and non-linear DC gain as well as
quantizer hysteresis and offset. These non-idealities make
the SDM drift away from the ideal design with a degra-
dation of up to 10 dB in the SNR figure. Therefore, the
design’s ideal model can not provide practical predictions
of the behavior. Such predictions are heavily dependent

on specialized expert knowledge. Behavioral-level analyti-
cal models developed with the proposed approach attempt
to find the relationship between the design and performance
parameters including all the imperfections in the non-ideal
models.

Figure 3: The design example: a 2nd order SDM
with integrated non-ideal effects.

As shown in figure 3, there are five amplifiers controlling the
feed forward and feedback coefficients: a1, b1, a2, b2 and b3.
The first four are selected to construct the design space mak-
ing the design space to be four dimensional. The effect of b3
is absorbed by the quantizer immediately and is not propa-
gated further so it is not selected. The two most important
performance parameters of SDM systems are the signal-to-
noise ratio (SNR) and dynamic range (DR). Both are calcu-
lated using Fast-Fourier Transform on the simulation results.
To make it meaningful, the peak SNR is selected as a per-
formance parameter instead of a complete SNR curve. DR
is defined as a ratio of the output power at the frequency
of the input sinusoid with a full-scale input over the output
power of a small input for which the SNR is 0dB. The third
is the stability, which is a binary classification parameter,
i.e. the SDM is either stable or unstable. The SDM is said
to be unstable when internal signals are detected that exceed
a predefined threshold. The fourth performance parameter
is the dynamic signal range. This requirement represents a
severe problem in circuit technologies such as CMOS VLSI,
where the dynamic range of the technology itself is limited
[2]. In the SDM, this parameter is controlled by the outputs
of the two integrators (represented as INT1 and INT2 sym-
bolically). In total, there are five performance parameters.
To sum up, the performance model of the SDM system is a
direct relationship between the 4 dimensional design space
and the 5 dimensional performance space.

3.2 SVM performance analysis
The two criteria used in the SVM performance analysis are
the accuracy (effectiveness) and the computational cost (ef-
ficiency). Totally, 4725 design sets have been scanned in the
design space. Hence, correspondingly, there are 4725 per-
formance sets distributed in the performance space used for
the training.

3.2.1 Kernel comparison
Using the initial grading vectors, the performance of SVM
with different kernels is compared and surveyed in table 1
on major performance parameters. From the accuracy point
of view, classification accuracy (A) is the measurement of
the SVC performance and the mean squared error (MSE)
is calculated for SVR. The MSE is defined as the standard
deviation between the predicted and simulated values of the
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Table 1: Performance of the SVC and SVR with
linear, RBF and sigmoid kernels.

SVM Compared
Linear RBF Sigmoid

method parameter

SVC

Astability 82.98% 99.58% 99.05%
Tstability 16:48:09 00:34:17 08:22:00
ASNR 82.01% 98.77% 98.22%
TSNR 22:30:40 00:53:54 09:16:12

SVR
MSESNR 786.39 57.6721 686.048
TSNR 02:48:31 31:49:49 17:13:37

performance parameters. The SVC section in table 1 shows
that the accuracies of the SVM with the RBF kernel and the
sigmoid kernel are comparable while that of the linear kernel
is worse. The CPU time consumption for the classification
problems shows that the RBF kernel is much more efficient
than the other two.

Also the MSE performance for regression problems in the
SVR section in table 1 shows that the RBF kernel is the best
option, even though the regression time in this case is the
longest. However, the time consumption can be reduced by
improved data grading2. The polynomial kernel is not listed
in table 1 because the computational cost reaches a level of
almost 5 days for parameter selection for SNR’s regression
modeling. Considering the results above, the RBF kernel
was selected for further experiments.

Figure 4: The distribution of the performance sets
on every performance parameter dimension in dual-
y axis plots. The left y axes are the numbers of
samples and the right y axes are performance pa-
rameter values.

3.2.2 Generation of grading vectors using the BDG
algorithm

Figure 4 shows the distribution of the performance sets with
different grading vectors for each performance parameter.

2
The regression data includes all the samples even the unstable cases,

however the unstable samples are dismissed for all the performance

parameters in later experiments except for the stability.

The left bars in the subplots are the performance sets dis-
tribution with the original grading vectors. They reveal
the disadvantage of the original grading vectors because
sparse distribution can generate over-fitted models and over-
congregated training data increase the difficulty of regres-
sion. The right bars in the subplots are the ones calculated
with the BDG algorithm. A new set of grading vectors is
generated and non-equilibria are avoided. Each segment in
the BDG bars in figure 4 corresponds to one class of the
performance parameter and is labeled by the inclined text.
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Figure 5: The classification accuracy contour of the
stability. a) accuracy contour in the CGS phase; b)
accuracy contour in the RGS phase.

3.2.3 SVM training performance
Figure 5 a) shows the CGS accuracy contour of the stability
with the scanning ranges of C ∈ [2−3, 215] and γ ∈ [2−10, 25].
The expected optimal region is boxed by a thick frame and
centered at C = 214, γ = 2−3. This feature is observed in
all the CGS phase of SVC experiments of all the perfor-
mance parameters. After finding the coarse optimal region,
the next phase is to apply the RGS phase within the region.
The accuracy contours shown in figure 5 b) show the result
of RGS scanning for stability. As in the figure, the classi-
fication accuracy contour of the stability is in the region of
C ∈ [213, 215] and γ ∈ [2−5, 2−3], where a set of C and γ is
found that can give improved classification accuracy perfor-
mance. The summary of the CGS and RGS SVC results are
compared in figure 6.

Figure 8 a) and b) shows the CGS and RGS MSE contour
of INT1 0.35, which is a sub range of INT1. As the clas-
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Figure 6: The classification accuracies of all the per-
formance parameters with the corresponding run
time of the CGS and RGS phases.

sification accuracy contours for SVC model generation, the
diagram shows the same feature that there is an optimal
region confined in the coarse scanning, where it is the RGS
phase that searches the region in detail. Results of the CGS
and RGS phase in the process of SVR models’ generation
are summarized and compared in figure 7. The MSE (dB)
performance of the SVR models in this experiment is at a
level of 0.1% compared with the performance parameters
being modeled.
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Figure 7: The MSE performance for all the graded
ranges of all the performance parameters with the
corresponding run time for the CGS and RGS phase.

SVM parameters found in the RGS phase improve the per-
formance of the models both for the classification and the
regression problems. These parameters have been used to
train the models. The training process of these SVM models
of this linearly graded approach is compared with the full-
space analysis approach. The top plots in figure 9 show the
MSE performance comparison. The full-space bars show
that in most cases, the MSE performance of the linearly
graded approach is better than that of the full-space anal-
ysis approach. The bottom table presents the summary of
the computational cost. It shows that grading models lead
to more than 50% saving in the computational cost. In fact,
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Figure 9: A comparison of the regression model
MSE performance between the linearly graded ap-
proach and the full-space analysis approach. The
corresponding grading values are shown at the bot-
tom of each bar.
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the full-space analysis approach is not practical for applica-
tions of this kind because of the huge time consumption.

3.2.4 Testing of the models
The sampling resolution in the design space used for test-
ing is 5 times denser than that for the training data. This
assures that firstly all the testing data are unknown to the
models; secondly, the testing data are rigorous and the trained
models must have good generality to preserve their accuracy.
Using the high sampling resolution, two testing data sets are
generated. Testing data set 1 (Testing1), with 1323 samples,
spreads over large regions in the design space covering both
the stable and unstable designs cases to test the overall qual-
ity of the models. Testing data set 2 (Testing2), with 4725
samples, is centralized on a small stable region with mainly
preferable design cases but different trade-off between the
performance parameters. It is used to verify the models
with very congregated data. The testing procedure is to use
the classification models to predict the classification of the
testing data first then according to the predictions, corre-
sponding regression models are used to calculate numerical
results. The performance of the models in the testing phase
is summarized in table 2. The overall prediction perfor-
mance confirms the training performance. Blank cells in
the table mean that the corresponding operations were not
carried out either because the performance space covered by
the testing data set does not include that region or because
of misclassifications. Misclassifications happen during the
classification testing. However misclassified samples are al-
ways very close to the boundaries. The MSE performance
of the regression testing shows that very accurate numer-
ical predictions are calculated, so misclassifications do not
degrade the performance of the method significantly. All in
all, the testing results show great robustness and reliability
of the approach.

Table 2: Testing results for the classification and
regression models.

Parameter Testing1 Testing2

Classification

SNR 66.72% 78.73%
DR 74.5% 62.7%
INT1 87.7% 97.1%

Accuracy INT2 78% 99.6%
stability 98.4% 100%

Regression

SNR 58.3 -5 -26
SNR 45 - -
DR 55.2 -11 -6
DR 45 - -5
INT1 0.29 - -29
INT1 0.35 -43 -47
INT1 0.41 -37 -50

MSE(dB) INT1 0.5 -38 -
INT2 0.56 -28 -20
INT2 0.71 -28 -29
INT2 0.84 -26 -
INT2 1.5 -14 -

4. CONCLUSIONS
This paper presents a new concept of linearly graded knowl-
edge database model for performance modeling of AMS sys-

tems. A corresponding modeling process using SVMs has
been developed. The efficiency of the method was demon-
strated using a complex mixed-signal case study of a non-
ideal 2nd order SDM. As the proposed approach provides ac-
curate performance evaluation over the entire performance
space, the method can potentially lead to improved AMS
synthesis techniques. Testing results show the robustness
of the method in the presence of challenging relationships
between the design and performance spaces. The accuracy
and computational cost of SVMs with different kernels have
been compared. It was found that the RBF kernel is supe-
rior in terms of the trade-off between the accuracy and the
computational cost over other kernels.

5. REFERENCES
[1] F. D. Bernardinis, M. I. Jordan, and A. sangiovanni

Vincentelli. Support vector machines for analog circuit
performance representation, pages 964 – 969. Design
Automation Conference, Jun 2-7 2003.

[2] B. Boser and B. Wooley. The design of sigma-delta
modulation analog-to-digital converters, volume 23, issue 6,
pages 1298 – 1308. Solid-State Circuits, IEEE Journal of,
Dec 1988.

[3] G. Casinovi and J.-M. Yang. Load-independent behavioural
model for cmos operational amplifiers. Circuits, Devices
and Systems, IEE Proceedings [see also IEE Proceedings
G- Circuits, Devices and Systems], 142, Issue 6:399 – 405,
Dec 1995.

[4] W. Daems, G. Gielen, and W. Sansen. Simulation-based
generation of posynomial performance models for the sizing
of analog integrated circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on,
22, Issue 5:517 – 534, May 2003.

[5] A. Doboli and R. Vemuri. Behavioral modeling for
high-level synthesis of analog and mixed-signal systems
from vhdl-ams. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 22, Issue
11:1504 – 1520, Nov 2003.

[6] G. G. E. Gielen and R. A. Rutenbar. Computer-aided
design of analog and mixed-signal integrated circuits.
Proceedings of the IEEE, 88(12):1825–54, 12/ 2000. M1:
Copyright 2001, IEE.

[7] S. Gunn. Support vector machines for classification and
regression. Technical report, University of Southampton,
May 1998.

[8] T. Kiely and G. Gielen. Performance modeling of analog
integrated circuits using least-squares support vector
machines, volume 1, pages 448 – 453 Vol.1. Design,
Automation and Test in Europe Conference and
Exhibition, Proceedings, Feb 16-20 2004.

[9] E. Ochotta, R. Rutenbar, and L. Carley. Synthesis of
high-performance analog circuits in astrx/oblx.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 15, Issue 3:273 – 294, Mar
1996.

[10] A. Torralba, J. Chavez, and L. Franquelo. Fasy: a
fuzzy-logic based tool for analog synthesis. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 15 Issue 7:705 – 715, July 1996.

[11] C. wei. Hsu, C. chung. Chang, and C. jen Lin. A practical
guide to support vector classification. National Taiwan
University, http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.

[12] G. Wolfe and R. Vemuri. Extraction and use of neural
network models in automated synthesis of operational
amplifiers. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 22, Issue 2:198 – 212,
Feb 2003.

33


