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ABSTRACT

 In this paper, we are going to present a model of spring 

constant and pull down voltage for non uniform RF 

MEMS cantilever. In order to reduce the pull down 

voltage, it is usual to use a beam, which is narrower close 

to anchor and wider at the end or electrode area for a 

cantilever. Compare to uniform beam, this beam will have 

lower spring constant which will reduce the pull down 

voltage. A comprehensive model for spring constant and 

pull down voltage of the non uniform cantilever is 

developed through basic force deflection mechanism of 

the suspended beam.  

1. INTRODUCTION 

Nowadays RF MEMS components are becoming popular, 

due to their very good performance at RF and microwave 

frequencies. RF MEMS switches have very low insertion 

loss at on state and very high isolation at off state. The 

operating principle of an electrostatic actuated RF MEMS 

switch is very simple. A beam (bridge or cantilever) is 

suspended from the anchor with an actuation electrode 

placed underneath. When a DC voltage is applied 

between the beam and actuation electrode the beam 

moves down due to an electrostatic force. The DC 

actuation voltage, at which the beam fully moves down, is 

called the pull down voltage.   

Usually the actuation voltage for RF MEMS switches is 

higher than their solid-state counterparts. In order to 

reduce the pull down voltage for RF MEMS switches, 

techniques like folded spring, narrower beam close to the 

anchor than actuation electrode are used [1]. To calculate 

the required pull down voltage for a beam, it is necessary 

to have an accurate mechanical model for the spring 

constant of the beam. The spring constant will determine 

the pull down voltage. The pull down voltage (spring 

constant) also depends on the position and orientation of 

the actuation electrode. The model of the spring constant 

and the pull down voltage for a uniform beam is presented 

in the literature [1]. For non uniform beam, some work 

has been published recently [2, 3]. In the work presented 

in [2], the model assumes that the force is concentrated on 

the tip of the cantilever. Therefore the accuracy strongly 

depends on the size and position of the actuation 

electrode. In [3], a comparison of pull down voltage 

between uniform and non uniform beam is presented 

using numerical simulations. It shows that a non uniform 

beam may have a lower pull down voltage than a uniform 

beam. In this paper we develop an analytical model for 

the spring constant and pull down voltage for a non 

uniform cantilever taking into account that the force may 

be distributed along the beam. The model will be very 

useful for analysis of spring constant and pull down 

voltage of non uniform beam, using simple mathematical 

program. It will be much faster and simpler compared to 

the commercial tools using 3-D modeling. The model of 

the spring constant and its verification is described in 

section 2.The modeled pull down voltage is compared 

with CoventorWare simulation in section 3. The paper is 

concluded in section 4 followed by an appendix.     

2. MODELING OF CANTILEVER 

There are two basic types of RF MEMS switches, fixed-

fixed bridge and cantilever. Usually the spring constant of 

fixed-fixed bridge is higher than cantilever, because the 

bridges are rigidly anchored at both sides. In circuit point 

of view, bridges are more useful in shunt configuration 

and cantilevers are more useful in series configuration. 

The cantilever can be used both as a DC and capacitive 

contact switch. For DC contact switch, a separate 

actuation electrode is required. For capacitive contact 

switch the same electrode may be used both for actuation 

and capacitive contact. In this section we are going to 

develop the model for the spring constant of a non 
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uniform cantilever with a wider section at the end of the 

beam. 

The top view of a non uniform cantilever is shown in 

figure 1. The width of the beam close to the anchor is ‘w’ 

and the width of the beam above the actuation electrode is 

‘wy’, where ‘y’ is a constant and it can be 1 y 1. For RF 

MEMS application y 1 is desired, as it will reduce pull 

down voltage. 

 A side view of the non uniform cantilever is shown in 

figure 2. The width of the beam above the actuation area 

is higher than the rest of the beam. This will give higher 

actuation force, with lower spring constant compared to a 

uniform beam. The pull down voltage will be reduced. 

Figure 1: Top view of a non uniform cantilever 

Figure 2: Side view of a non uniform cantilever 

In order to develop the model, we need to use the beam 

diagram with actuation force, moment and reaction force 

acting on the beam at different positions. Figure A1 in the 

appendix shows such a model.  

The derivation of the spring constant of the non uniform 

beam is presented in the appendix using the Euler-

Bernoulli theory [4]. The equation of the deflection at any 

position of beam is given by, 
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For a cantilever, the maximum deflection occurs at the 

end of the beam or at x=L. The deflection at the end is 

given by, 
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After simplification the maximum deflection of the beam 

becomes, 
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The spring constant of the cantilever is given by, 
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If we insert equation (5) into equation (6), the spring 

constant becomes, 
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When the beam is uniform, i.e. y=1, the expression for C3

and C4 becomes,  
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The deflection of the cantilever at any point is given by, 
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This matches with the expression of deflection in [4]. 

To test the more validity of this expression we can take 

some well known limits in equation (7). If we take the 

limits, a=L, a=0 and y=1 we obtain the following spring 

constants,
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The expressions for spring constant (11)-(13) match with 

the expressions given in [1, Ch2]. 

Using equation (7) we have calculated the spring constant 

in MathCAD, for two different beam lengths of the 

cantilever versus width of the electrode.  The two beam 

lengths are 150 m and 200 m respectively and the 

thickness of the beam is 2 m. The width of the beam at 

the anchor is 100 m. The length of the electrode is 

Le=100 m and the width of the electrode is varied from 

100 m to 300 m (1 y 3). The material of the beam is 

chosen Aluminum. The variation of the spring constant 

versus the electrode width is shown in figure 3. From 

figure 3 it can be seen that, the spring constant increases 

to some extent with electrode width, from uniform beam 

i.e. w=100 m, and it is more prominent for shorter beam. 

For a long beam the spring constant is much lower than 

for the short beam and its spring constant varies very little 

with electrode width. But as the actuation area increases, 

it will reduce pull down voltage significantly.  

Figure 3: Variation of spring constant of cantilevers with 

electrode width  

We have also compared the spring constant of beam with 

different lengths and same electrode width. For uniform 

beam, the electrode width and length are 100 m and 100 

m respectively. For non uniform beam, the beam width 

is 100 m. The electrode length is 100 m and width is 

200 m. The thickness of the beam is 2 m. The variation 

of spring constant and comparison between non uniform 

beam (NU) and uniform beam width (U) with beam 

length is shown in figure 4.   

Figure 4: The variation of spring constant with beam length 

3. COMPARISON OF MODEL WITH 

SIMULATION RESULT 

The pull down voltage of a cantilever beam for 

electrostatic actuation is given by [1, 5]. 
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Here ‘k’ is the spring constant, ‘g0’ is the initial gap 

height and ‘wyLe’ is the actuation electrode area of the 

cantilever. We have implemented the analytical 

expressions in MathCAD to calculate the spring constant 

and pull down voltage for a cantilever. We also simulated 

the pull down voltage of the beam using CoventorWare, 

to compare the results. The simulation in CoventorWare 

is done, assuming no stress gradient and residual stress in 

the beam material. The dimensions of the cantilever are as 

follows. The length of the cantilever is 150 µm, length of 

the electrode is 100 µm, initial gap is 2 µm and thickness 

of the cantilever is 2 µm. The beam material is aluminum 

with young’s modulus E=77 GPa. The results are shown 

in table 1. The simulation results of pull down voltage in 

CoventorWare are shown in figure 5. For convenience we 

have stopped the simulation, just before the beam 

collapses, to save simulation time. However we can 

extract the pull down voltage, at which the beam moves 

close to one third of the initial gap. 

Table 1: Pull down voltage comparison of different electrode 

widths for a 150 m long and 100 m wide beam at anchor 

Electrode

width, wy 

( m) 

Spring 

constant

(N/m) 

Pull

down 

voltage 

(V) 

Pull down 

voltage in 

Coventor- 

Ware (V) 

Error

(%)

100 8.50 15.20 18.4 17 

150 9.10 12.90 15.5 17 

200 9.50 11.40 13.6 16 

300 9.90 9.50 11.3 16 
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Figure 5: The pull down voltage simulation in Coventor-

Ware for 150 m long and 100 m wide beam.  

We have also made a comparison for a 200 µm long beam 

with 100 µm long electrode. The initial gap is 2 µm and 

thickness of the cantilever is 2 µm. The comparison is 

shown in table 2. The simulation results for pull down 

voltage in CoventorWare are also shown in figure 6. 

Table 2: Pull down voltage comparison of different electrode 

widths for a 200 m long and 100 m wide beam 

Electrode

width, wy 

( m) 

Spring 

constant

(N/m) 

Pull

down 

voltage 

(V) 

Pull down 

voltage in 

Coventor-

Ware (V) 

Error

(%)

100 3.01 9.05 10.5 14 

150 3.08 7.48 8.7 14 

200 3.12 6.52 7.5 13 

300 3.16 5.40 6.2 13 

Figure 6: The pull down voltage simulation in Coventor-

Ware  for 200 m long and 100 m wide beam at anchor.

In the table 1 and table 2, we have seen that, the model 

has much lower error compare to the presented model in 

[2]. The error is almost constant for different electrode 

widths compare to a large variation of error for different 

electrode size and location presented in [2]. The model 

also matches for uniform beam formula presented in 

standard text book [1]. However, the pull down voltage is 

underestimated. In our analytical model, it is assumed 

that, the beam will collapse when the cantilever end 

moves 1/3rd of its initial gap. In CoventorWare the beam 

end needs to go beyond the 1/3rd of the initial gaps before 

it collapses, which may require higher pull down voltage. 

Another reason may be the non-linearity, which may 

further increase the pull down voltage in CoventorWare.   

4. CONCLUSION 

We have made a comprehensive analytical model for non 

uniform cantilever. The model matches quite closely with 

the CoventorWare simulation result. The ratio between 

the model and CoventorWare result is almost constant for 

different electrode widths. When the cantilever is longer 

(200 m) the spring constant is very low and the electrode 

width has very low effect on spring constant. This will 

reduce the pull down voltage as the actuation force is 

higher. This model will be very useful for predicting pull 

down voltage of non uniform cantilever. This model can 

be implemented by any simple mathematical tools and 

calculation can be done within very short time.
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APPENDIX 

A force moment diagram of cantilever is shown in figure 

A1.

Figure A1: A force moment diagram of non uniform 

cantilever 

In  figure A1, ‘L’ is the length of the cantilever, ‘t’ is the 

thickness of the cantilever, ‘w’ is the width of the 

cantilever close to the anchor and ‘wy’ is the width of the 

cantilever above the actuation electrode region. The 

distributed force acting on the cantilever electrode is ‘q’ 

per unit length. The distance from anchor to start of the 

actuation electrode is ‘a’. The anchor is rigid so a moment 
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of inertia will be applied to keep the cantilever fixed at 

that position (no vertical movement and rotation). M0 is 

the moment working at the anchor positions. R0 is the 

reaction forces acting opposite to the actuation force to 

balance the vertical force [4]. 

The moment M0 working at the anchor of the cantilever is 

given by [4], 
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The vertical force working on the anchor is given by,

0 ( )R q L a                                                           (A2) 

The equation of moment working on the beam shown in 

figure A1, at the region 0 x a, is given by 
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Here ‘I’ is the moment of inertia of the beam in this 

region and given by, I=wt3/12. 

By integrating equation (A3) in terms of x, and 

simplifying we get, 
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As the anchor is rigid no rotation can take place at the 

anchor. So at x=0, v’=0, which gives C1=0 from equation 

(A4). So equation (A4) becomes, 
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By integrating equation (A5) in terms of ‘x’ again, we get 
3 2

2 2

2

2
2 2

2

( ) ( )
2 3 2

2( ) 3( )
12

q x x
v L a L a C

EI

qx
L a x L a C

EI

         (A6) 

As the anchor is rigid no vertical movement can occur at 

that region. At x=0, v=0, which gives C2=0, so the 

equation of deflection in this region becomes, 
2

2 22( ) 3( )
12

qx
v L a x L a

EI
                     (A7) 

For the region a x L, the equation of moment can be 

written as, 
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Here ‘Iy’ is the moment of inertia of the beam above the 

electrode region, with the width ‘wy’ and thickness ‘t’. 

By integrating equation (A8) we get, 
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Using the continuity of the slope of deflection at x=a,  the 

constant C3 is given by.  
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By integrating the equation (A9) in term of x again we 

can get the equation for deflection, 
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By using continuity of deflection at x=a we find 
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The maximum deflection of the cantilever occurs at x=L 

or at the end of beam. The deflection at x=L from the 

equation (A11) is given by (without replacing the value of 

C3 and C4 for simplification), 

4

3 4
8

L

qL
v C L C

EIy
                                        (A13) 

The spring constant of the cantilever is given by, 
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