#### Modeling of Spring Constant and Pull-down Voltage of Non uniform RF MEMS Cantilever

Authors: Shimul Chandra Saha, Ulrik Hanke, Geir Uri Jensen, Trond Sæther

Dept. of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim, Vestfold University College, and SINTEF ICT, Norway







## Outline

- 1. A brief introduction of RF MEMS
- 2. Motivation
- 3. Proposed model
- 4. Comparison of the model with standard text book
- 5. Variation of spring constant with width and length
- 6. Pull down voltage and comparison of the model with CoventorWare results
- 7. Conclusion







🖸 NTNU

## Introduction to RF MEMS

- Radio Frequency Micro Electromechanical Systems
- Basic mechanical movement and switching
- Very low insertion loss during on state at high frequency
- Very high isolation during off state
- Electrostatic actuation mechanism is most commonly used due to its very low power consumption and easy operation







## Introduction to RF MEMS (applications)

- High frequency switching application
- High Q varactor for filter and oscillator
- □ The switches can be used in:
  - 1) Phase shifters
  - 2) Matching network
  - 3) Antenna Systems etc.







## Introduction to RF MEMS (configuration)

- Resistive contact
- Capacitive contact
- Shunt
- Series

- MicrostripCPW
- Broadside
- Inline

BridgeCantilever







### Switch configuration









## Introduction to RF MEMS (limitation)

- High actuation voltage (in the range of few volts to several tens of volts)
- $\Box$  Low switching speed (usually in the range of  $\mu$ s)
- Need hermetic packaging







### **Motivation**

- To reduce the actuation voltage, different techniques are used
  - Beam narrower at the anchor and wider at the actuation area (non uniform beam)
  - Folded spring type
- The proposed design will have lower spring constant and lower pull down voltage
- Requires proper modeling of the spring constant and pull down voltage before fabrication







### **Motivation**

- The model for uniform beam is available in standard text book
- For non uniform beam, a new model is recently published [1]
- The actuation force is assumed concentrated, thus the accuracy varies a lot
- We have developed a more accurate and elaborate model



#### **Uniform Cantilever**



[1] S. Afrang et al, *Design and Simulation of Simple and Varying Section Cantilever and Fixed-Fixed End Types MEMS Switches*, Proceeding of ICSE 2004. pp. 593-596.

Non-uniform Cantilever







## Proposed model (I)

- A side view with actuation force is shown on the right (top)
- A 3-D view with force moment diagram is shown the right (bottom)
- The force-moment and deflection equations are seperated into two regions



A side view of the cantilever



A 3D view of the cantilever with force moment diagram







### Proposed model (I I)

□ In region 1 ( $0 \le x \le a$ ), the deflection is given by:

$$v = \frac{qx^2}{12EI} \Big[ 2(L-a)x - 3(L^2 - a^2) \Big]$$

□ In region 2 (a≤x≤L), the deflection is given by:

$$v = \frac{q}{24EIy} (4Lx^3 - 6L^2x^2 - x^4) + C_3x + C_4$$

with  $C_3$  and  $C_4$  is given by:

$$C_3 = \frac{qaL(a-L)}{2EI} \left(1 - \frac{1}{y}\right) + \frac{qa^3}{6EIy}$$

$$C_{4} = \frac{qa^{2}L}{12EI} (3L - 4a) \left(1 - \frac{1}{y}\right) + \frac{qa^{4}}{12EI} \left(1 + \frac{1}{2y}\right) - \frac{qa^{4}}{6EIy}$$







D NTNU

## Proposed model (I I I)

- □ The spring constant of the cantilever depends on the actuation force and the deflection at the end.
- □ The deflection of the cantilever at the end is given by:

$$v_{L} = \frac{-q(L-a)^{2}(L+a)^{2}}{8EIy} - \frac{q(L-a)a(a+3L)}{12EI}$$
$$-\frac{qa^{2}L}{2EI}(L-a)^{2}(1-\frac{1}{y})$$

□ The spring constant is given by:

$$k = -\frac{P}{v_L} = -\frac{q(L-a)}{v_L}$$
 After simplification  $k = \frac{24EIy}{3(L-a)(L+a)^2 + 2ya^2(a+3L) + 12aL(L-a)(y-1)}$ 





# **Comparison of Modeling**

When the force is distributed and y=1, the deflection of the beam is given by:

$$v = -\frac{q}{24EI} \left[ x^4 - 4Lx^3 + 6L^2x^2 - 4a^3x + a^4 \right]$$

This matches with the standard text book formulas.

For some well known cases

❑ When 'a=0' the spring constant is given by:

$$k \xrightarrow{a=0} \frac{8EIy}{L^3} = \frac{2Ewy}{3} \left(\frac{t}{L}\right)^3$$







# **Comparison of Modeling**

□ For 'a=L' the spring constant is given by:

$$k \xrightarrow{a=L} \frac{3EI}{L^3} = \frac{Ew}{4} \left(\frac{t}{L}\right)^3$$

□ For 'y=1' the spring constant is given by:

$$k \xrightarrow{y=1} 2Ewt^3 \frac{L-a}{3L^4 - 4La^3 + a^4}$$

They all match with the expressions mentioned in [2]

[2] G.M. Rebeiz, *RF MEMS Theory, Design and Application,* New Jersey, *John* Wiley and Sons 2003.







# **Spring constant variation**

- The dimensions are as follows
- The beam lengths,  $L_1$ =150 µm and  $L_2$ = 200 µm
- The thickness of the beam, t= 2 μm.
- The width of the beam at the anchor, W= 100 μm.
- The length of the electrode,  $L_e$ =100  $\mu m$
- Width of the electrode is varied from 100 µm to 300 µm (1≤y≤3)



Width of the electrode (um)

Variation of spring constant of cantilevers with electrode width







# **Spring constant variation**

- The dimensions of the cantilever are as follows
- For uniform beam, the electrode width Wy= 100  $\mu$ m and length L<sub>e</sub>=100  $\mu$ m.
- For non uniform beam, the beam width w=100  $\mu$ m, the electrode length L<sub>e</sub>=100  $\mu$ m and Wy= 200  $\mu$ m.
- The thickness of the beam is 2 μm.





The variation of spring constant with beam length







## Pull down voltage

The pull down voltage of a beam is given by:

$$V_p = \sqrt{\frac{8kg_0^3}{27\varepsilon_0 L_e wy}}$$

This calculation is done using the assumption that the beam collapses when it moves one third of its initial gap.









## Comparison of pull down voltage **BMAS 2006** with CoventorWare

| Electrode<br>width, wy<br>(μm) | Spring<br>constant<br>(N/m) | Pull<br>down<br>voltage<br>(V) | Pull down<br>voltage in<br>Coventor-<br>Ware (V) | Error<br>(%) | 0.0<br>0.0<br>(18.3, -786, 54n)<br>(15.4, -833, 41n)<br>Def_wy_100u<br>Def_wy_150u<br><br>Def_wy_200u<br>Def_wy_200u |
|--------------------------------|-----------------------------|--------------------------------|--------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|
| 100                            | 8.50                        | 15.20                          | 18.4                                             | 17           | (11.178, -821.64%) Def_wy_300u                                                                                       |
| 150                            | 9.10                        | 12.90                          | 15.5                                             | 17           |                                                                                                                      |
| 200                            | 9.50                        | 11.40                          | 13.6                                             | 16           | 0.0 5.0 10.0 15.0 20.0                                                                                               |
| 300                            | 9.90                        | 9.50                           | 11.3                                             | 16           | Actuation Voltage (V)                                                                                                |

The pull down voltage simulation in CoventorWare

 $\Box$  NTNU

Here L=150  $\mu$ m, L<sub>e</sub>= 100  $\mu$ m, g<sub>0</sub>= 2  $\mu$ m and t= 2  $\mu$ m. The beam material is aluminum with young's modulus E=77 GPa.





## Comparison of pull down voltage **BMAS 2006** with CoventorWare

| Electrode<br>width, wy<br>(μm) | Spring<br>constant<br>(N/m) | Pull<br>down<br>voltage<br>(V) | Pull down<br>voltage in<br>Coventor-<br>Ware (V) | Error<br>(%) | 0.0 Def_wy_100u   (10.4 - 735.26n) Def_wy_150u   5 (8.6018), -784.92n) |
|--------------------------------|-----------------------------|--------------------------------|--------------------------------------------------|--------------|------------------------------------------------------------------------|
| 100                            | 3.01                        | 9.05                           | 10.5                                             | 14           | (6.1, -718.13h)                                                        |
| 150                            | 3.08                        | 7.48                           | 8.7                                              | 14           | -1u                                                                    |
| 200                            | 3.12                        | 6.52                           | 7.5                                              | 13           | 0.0 5.0 10.0<br>Actuation Voltage (V)                                  |
| 300                            | 3.16                        | 5.40                           | 6.2                                              | 13           | The pull down voltage simulation in CoventorWar                        |

Here L=200  $\mu$ m, L<sub>e</sub>= 100  $\mu$ m, g<sub>0</sub>= 2  $\mu$ m and t= 2  $\mu$ m. The beam material is aluminum with young's modulus E=77 GPa.

 $\Box$  NTNU





 $\Box$  NTNU

## **Recent publication of non uniform beam [1]**

| For uniform beam, L=120 $\mu$ m, w=30 $\mu$ m, |       |       |       |   | For non-uniform beam, L=120 $\mu$ m, w <sub>1</sub> =15 $\mu$ m |       |        |       |  |
|------------------------------------------------|-------|-------|-------|---|-----------------------------------------------------------------|-------|--------|-------|--|
| $t = 1.5 \mu m$ and $y_0 = 1.5 \mu m$          |       |       |       |   | $W_2$ =30 $\mu$ m t=1.5 $\mu$ m and g <sub>0</sub> =1.5 $\mu$ m |       |        |       |  |
| Electrostatic area (µm) <sup>2</sup>           | 20*30 | 30*30 | 30*45 |   | Electrostatic<br>area (µm) <sup>2</sup>                         | 30*20 | 30*30  | 30*45 |  |
| V <sub>th</sub><br>Calculation (a)             | 14.5  | 11.85 | 9.67  |   | V <sub>th</sub><br>Calculation                                  | 10.26 | 8 47   | 7     |  |
| V <sub>th</sub><br>Simulation (a)              | 17.1  | 14.8  | 13.35 |   | results                                                         |       |        |       |  |
| V <sub>th</sub><br>Simulation (b)              | 22.4  | 20    | 18.2  |   | Simulation                                                      | 12.4  | 10.6   | 9.5   |  |
| Error (a)                                      | 18%   | 25%   | 38%   | • | Tesuits                                                         | 200/  | D.C.N. | 2.50  |  |
| Error (b)                                      | 55%   | 68%   | 88%   |   | Error                                                           | 20%   | 25%    | 35%   |  |

The accuracy varies a lot for both uniform and non uniform beam





### Conclusions

#### □ The proposed model is very simple

- Gives faster calculation of the pull-down voltage compared to the standard method using 3-D model
- The model can be implemented with simple mathematical tools
- The model accuracy is very close to state of the art commercial tools
- It is much more accurate than the earlier published model [1]
- It can also be applied directly to a uniform beam i.e. y=1







### Acknowledgement



#### Authors are grateful to The Research Council of Norway for supporting the work financially















