
ABSTRACT

Symbolic analysis [1] offers good opportunities for auto-

mated bottom-up generation of analytic models for nonlinear

analog circuits. Unfortunately, the simulation performance

for this kind of models is often a crucial issue. This paper fo-

cuses on detailed performance analyses of the behavioral

simulation efficiency. Furthermore, promising approaches to

improve the simulation performance by “simulator-friendly”

formulation of the behavioral models and improvements of

the simulation algorithms will be presented.

1. INTRODUCTION

Simulation performance is an important criterion for effi-

cient verification of nonlinear analog circuits. A promising

approach to reduce simulation effort is the application of bot-

tom-up generated behavioral models. As manual modeling is

time-consuming and error-prone an automated approach is

highly desirable. Symbolic analysis turned out to be a flexible

and efficient technique to derive accurate behavioral models

from a circuit design. The resulting analytic models are of

high accuracy, can be easily parameterized, and accurately

represent the circuit’s behavior also including higher order ef-

fects.

In this research, a model generation technique based on the

symbolic analysis tool Analog Insydes [2] is applied. It sup-

ports a highly efficient model reduction technique. The de-

rived models are based on Differential Algebraic Equations

(DAEs) of exceptional high complexity - impossible to be set

up manually. Unfortunately, the simulation performance of

those models is not yet satisfactory. In many cases it is even

lower than the performance of the original netlist-based simu-

lation. The presented approach is based on the assumption

that the performance suffers from missing consideration of

the applied simulation algorithms as well as from the ability

of simulators to deal with such complex behavioral models as

efficiently as with netlist-based simulations.

In Section 2, detailed performance analyses for behavioral

models will be presented to analyze possible shortcomings.

Sections 3 and 4 propose approaches to enhance the simula-

tion efficiency by changes to the behavioral simulator and by

improved model formulation. Finally, Section 5 summarizes

the presented research.

2. PERFORMANCE ANALYSES

Before presenting the analyses results the applied modeling

technique and the conditions of the measurements will be dis-

cussed. To equitably analyze simulation performance a

clearly defined reference and simulation environment is nec-

essary. As the simulation performance of bottom-up gener-

ated models has to be analyzed, the most appropriate

reference is the netlist-based simulation of the original circuit

the model was derived from.

To make this comparison as accurate as possible a symbolic

modeling technique was used to generate behavioral models

containing DAEs similar to those of the netlist-based (tran-

sient) analysis (see Section 2.1 for details). Both netlist-based

and behavioral simulation were evaluated under equal condi-

tions to exactly measure the computational overhead of the

behavioral simulation. All analyses have been performed

with nonlinear dynamic models and transient simulations.

The evaluation of the results relies on characteristic parame-

ters of the simulations:

• Dimension of the linear equation system Matrix size

• Sparsity of the Jacobian matrix Number of nonzero ele-

ments to process

• CPU time for transient analysis Over-all performance

• Profiling data Detailed information on distribution of

computational effort

• Number of time steps Potential differences in time step

control

• Total number of Newton iterations (of the transient analy-

sis) Convergence

These criteria provide a basis to benchmark behavioral vs.

netlist-based simulations. Furthermore, profiling is very ap-

propriate to identify possible bottlenecks and shortcomings in

terms of simulation performance.

2.1. Modeling Flow

The motivation for the presented research is the astonishing

An Approach to Analyze and Improve
the Simulation Efficiency of Complex Behavioral Models

Daniel Platte Ralf Sommer Erich Barke
Infineon Technologies AG Infineon Technologies AG University of Hannover/Germany

daniel.platte@infineon.com ralf.sommer@infineon.com barke@ims.uni-hannover.de

0-7803-9742-8/06/$20.00 © 2006 IEEE. 79

low performance of behavioral models generated by a prom-

ising modeling flow that will be briefly discussed in this sub-

section. The model generation process is based on the

symbolic analysis tool Analog Insydes [2]. This powerful

tool offers the functionality to automatically set up circuit

equations for a circuit netlist and to use them as basis for a

behavioral model. Symbolic device models (corresponding to

the simulator’s built-in device models) are used to make the

strategy as accurate as the circuit simulation itself. The circuit

equations are usually set up in an extended modified nodal

analysis (MNA) for nonlinear equations. The resulting dy-

namic nonlinear equations contain the network equations in

MNA (as used in most circuit simulators) as well as the non-

linear element relations resulting from symbolic device mod-

els.

Model reduction methods can be applied to reduce the com-

plexity of the equations by term reduction techniques [3]. The

benefit of this symbolic approximation technique is to ensure

a user-specified accuracy. Hence, this is one of very few

methods that allows satisfying a predefined accuracy of the

resulting model. As the equations’ complexity decreases

while the resulting error increases with the degree of model

reduction, it is up to the user to find a suitable trade-off bet-

ween size and accuracy of the model. Experiments show that

for reasonable error margins (5-10%) the complexity can be

reduced very efficiently yielding a performance improvement

of about factor 10 to 100.

Finally, the behavioral model can be generated from the

DAEs by using Analog Insydes’ model export function. It is

able to generate several AHDLs (VHDL-AMS, Verilog-A,

etc.) and hence supports the creation of models for almost ev-

ery behavioral simulator.

To achieve behavioral models that are one-to-one comparable

to netlist-based models no model reduction was applied in

this research. All models are 100% accurate, fully pin com-

patible, and have been automatically derived from a circuit

netlist. For lack of space in this paper, neither schematics and

waveforms nor equation sets and Jacobian matrices of the

presented experiments can be presented.

2.2. Simulation Environment

By assuring these preconditions, the problems of calculating

a transient response for the netlist-based as well as the behav-

ioral simulation are (nearly) equivalent. “By nature”, the

SPICE-like topological way of solving the problem is highly

efficient and is therefore also the (theoretical) optimum for

the behavioral simulation performance under the described

circumstances. As in the behavioral simulation the nonlinear

element relations have to be solved in almost the same way as

the network equations, a “smart preprocessing” as usually

done by device models to simplify the solving process is im-

possible.

The algorithmic differences between both simulation types

are mainly related to the assembly of the Jacobian matrix and

the right-hand side (RHS) - the so-called loading process.

During loading, the linearized equation system that is needed

for the Newton iteration is derived. Furthermore, variable tol-

erances and differences in the time-step control have to be

taken into account.

Ensuring equal simulation environments for the experiments

will allow a direct comparison of the results for the netlist-

based and behavioral simulations:

• Same simulator, testbench, transient inputs and analysis

• Default simulator options (if not mentioned)

• CPU time of each experiment measured on the same pro-

cessor (arithmetic mean value of 10 simulations to elimi-

nate load variation)

• All characteristics extracted from simulator protocol files

The analyses have been repeated with various common simu-

lators. In this publication, the focus will be on Infineon’s in-

house-simulator TITAN [4,5]. This SPICE-like analog circuit

simulator supports behavioral simulation using a subset of

VHDL-AMS. It provides excellent information within its log

files containing all characteristics mentioned above. Hence,

TITAN is very well suited for such detailed analyses.

For some experiments, results of Cadence’s AMS Designer

and Spectre will also be presented. Unfortunately, they do not

provide much details for our analyses except dimension, CPU

time and number of performed time steps. The number of

Newton iterations as well as a brief profiling (loading, solv-

ing) would be very valuable for interpreting the simulation

performance.

It is not in the scope of this paper to draw a comparison

among the used simulators. Results simulated with different

simulators must not be absolutely compared as it is not possi-

ble to assure equal conditions among different simulators.

The presented “variety” of simulators should solely indicate

that the results are not TITAN specific.

2.3. Example Circuits

For the presentation of analysis results different examples

will be used. Table 1 gives a brief overview of the complexity

of the example circuits and their corresponding behavioral

models derived by Analog Insydes. The number of equations

is the total number of model equations when using an ex-

tended MNA to set up the circuit equations. All behavioral

models were derived by using symbolic equivalents of the

device models used in circuit simulation. A fully symbolic

Table 1. Overview of the Example Circuits

EXAMPLES Transistors Device Model Eqs. Pars.

opamp741 26 Gummel-Poon 368 564

cfcamp 19 MOS Level 1 220 518

dflipflop 14 BSIM3v3 974 1285

80

BSIM3 model was used to model the dflipflop example.

A short summary of the circuit designs and their testbenches:

• opamp741 - the well-known A741 operational amplifier in

degenerative feedback (unity gain buffer), pulse wave input

voltage (220 kHz frequency, 200 mV amplitude, 2 MV/s

slew rate)

• cfcamp - a complementary folded-cascode operational

amplifier in degenerative feedback (unity gain buffer), sinus

input voltage (10 MHz frequency, 1V amplitude)

• dflipflop - a D flip-flop (NAND) with clock signal (100

MHz frequency, 1.5 V amplitude, 15 GV/s slew rate), input

stimuli trigger all states

2.4. Netlist-Based vs. Behavioral Simulation

To motivate the research, a comparison of the netlist-based

(circuit) and the behavioral simulation (model) of the

opamp741 and cfcamp circuits (simulated with TITAN) will

be presented in this subsection. The statistic data of the ac-

cording simulations is given in Table 2 for the opamp741 and

Table 3 for the cfcamp example. Both tables contain the di-

mension of the linear system, the sparsity of the Jacobian ma-

trix as well as the number of performed time steps and

Newton iterations (during transient analysis). Furthermore,

the CPU time of the transient analysis and its distribution for

loading (setup of Jacobian / RHS) and solving (LU-factoriza-

tion and forward-/backward-substitution) are given.

As can be seen from Table 2, the dimension of the behavioral

simulation is much higher than for the circuit as the device

model internal equations are contained in the behavioral

model too. However, the Jacobian matrix is extremely sparse

(98.8%). The time step control of the netlist-based simulation

performs 17% more time steps and needs 2.25 iterations per

time step at average. The convergence of the behavioral sim-

ulation is slightly worse (3.5 iterations per time step), but

does not indicate serious convergence problems. The perfor-

mance of the behavioral simulation compared to the netlist-

based simulation is significantly lower by a factor of 210.

Moreover, the profiling indicates a remarkable different dis-

tribution of the computational effort spent for loading and

solving.

For the cfcamp (cf. Table 3), there is no difference within the

time step control. The behavioral simulation takes 16% more

iterations (also not indicating serious convergence problems).

The ratio between both performances is 116 with a similar

difference of the loading/solving distribution as already no-

ticed in the opamp741 example. Both analyses are typical for

examples of similar complexity. The following analyses are

intended to identify potential bottle-necks.

2.5. Analysis of Linear Solving

The TITAN simulator provides different linear solvers that

can optionally be applied. For behavioral simulation, three

solvers shall be mentioned and compared:

• A dense solver - no sparse handling, very robust (default)

• A sparse solver - very efficient, but not as robust as the

dense solver (as no specialized pivoting strategy is used)

• The MUMPS solver [6] - a multifrontal parallel sparse

solver with dynamic pivoting

By default, the dense solver was used for behavioral models

as they were usually of low dimension but numerically criti-

cal to handle. Hence, this robust but for high dimensions dis-

advantageous solver was used. To compare the solvers in

terms of robustness and performance, Table 4 lists the charac-

teristics of the behavioral simulation for the opamp741 with

different solvers.

All simulations took the same number of time steps. The

number of iterations needed indicates that the sparse solver is

disadvantageous in terms of convergence/robustness. De-

spite the high number of iterations, it speeds-up the solving

by a factor of 63. The loading time increases proportionally

to the number of iterations. For the overall performance, the

MUMPS solver turned out to be even more efficient. It pre-

vents convergence problems by dynamic pivoting strategies

and thereby reduces the total CPU time by 33%. This reduces

the number of needed iterations, but increases the effort for

solving (as pivoting is also accounted). The statistic shows

that a sparse solver is essential for behavioral simulations of

higher dimension models.

Table 2. Performance Measurements opamp741 (TITAN)

OPAMP741
Dim.,

Spar.

Time

Steps

Itera-

tions

CPU Time

Load Solve Total

Circuit
58,

1670 3753
0.25 s 0.06 s

0.4 s
90% 81% 19%

Model
381,

1391 4856
51.0 s 32.0 s

83.8 s
98.8% 61% 38%

Table 3. Performance Measurements cfcamp (TITAN)

CFCAMP
Dim.,

Spar.

Time

Steps

Itera-

tions

CPU Time

Load Solve Total

Circuit
23,

508 1515
0.07 s 0.01 s

0.09 s
71% 87.5% 12.5%

Model
233,

509 1815
7.25 s 3.13 s

10.5 s
98.4% 69% 30%

Table 4. Analysis of Different Linear Solvers (TITAN)

RESULTS Solver
Itera-

tions

CPU Time

Load Solve Total

opamp741

Dense 4856 67.9 s 50.4 s 118.3 s

Sparse 6267 88.0 s 0.8 s 88.8 s

MUMPS 4856 72.1 s 7.6 s 79.7 s

81

2.6. Analysis of Loading Process

Two experiments have been used to analyze the loading per-

formance in behavioral simulation. To eliminate any side-ef-

fects and to only measure the performance in terms of

loading and linear solving two types of linear networks were

set up as netlists and according behavioral model:

• Chain network of resistors with each node additionally con-

nected to ground tridiagonal Jacobian matrix, high spar-

sity

• Complete networks with each node connected to each other

by a resistor fully populated Jacobian matrix, no sparsity

As the networks are static linear, no dynamic effects or lin-

earization issues are influencing the simulation. The Jacobian

matrices of netlist and behavioral simulation are identical.

For the complete networks, all benefits from sparse handling

strategies are disabled as the matrices are fully populated. By

varying the number of nodes (20 to 100) of both network

types, the scaling of the simulation performance over dimen-

sion and sparsity can be observed. In spite of the linear nature

of the problems, transient simulations with limited step size

have been performed to achieve a high number of iterations

(for accurate CPU measurements).

Fig. 1 shows the CPU time needed for the transient analysis

over the dimension of the linear systems. As expected, for the

complete networks (left figure), both circuit (black) and be-

havioral (gray) simulation show a quadratic complexity. Al-

though both problems are equivalent, the behavioral

simulation is 2-3 times slower than its netlist-based counter-

part (for dimensions 20 to 100, rising trend). The profiling

data reveals, that the overhead is caused by the loading pro-

cess (5-10 times slower) whereas the linear solver has the

same performance.

The right chart of Fig. 1 contains the measurements for the

chain networks. While the sparse mechanisms effectively re-

duce the complexity for the circuit simulation (linear com-

plexity), the CPU time of the behavioral simulation still

shows a quadratic increase over dimension. As typical behav-

ioral models are of relatively low dimension, no sparse load-

ing was realized for TITAN’s behavioral simulation.

Section 3.1 provides a solution for this shortcoming.

Using Spectre for the same experiments showed that a sparse

loading strategy is applied. Nevertheless, the performance of

the behavioral simulation is 3-5 times (for chain networks)

and 5-7 times (for complete networks) slower than the corre-

sponding netlist-based simulation.

There is no doubt, that some computational overhead will re-

main in behavioral simulations as the strategy has to be gen-

eral whereas loading routines in device models are very

specialized and therefore highly efficient. Nevertheless, it is

most likely that the behavioral simulation could be improved

by a more efficient processing during loading.

3. SIMULATOR-RELATED ISSUES

Within this section, some recent improvements of the loading

process of the TITAN simulator as well as an approach for a

sequential solving strategy will be presented.

3.1. Sparse Loading

For complex behavioral models resulting in Jacobian matri-

ces of high dimension but low ratio of nonzero entries, sparse

loading becomes a serious issue (see Section 2.6). Especially

the handling of the Jacobian matrix (storage, evaluation,

copying) turned out to be worth an increased effort to exploit

sparsity. TITAN generates a fully symbolic Jacobian matrix

by automatic derivation of the model’s equations. This results

in a high number of very complex expressions to determine

the Jacobian’s nonzeros. The CPU time is not dominated by

evaluation of those highly complex nonlinear expressions. In

fact, cache misses dramatically slowed down the perfor-

mance during expression evaluation. These cache effects are

caused by low data locality. The latter can be improved by

sparse data structures.

The realization of a so-called coordinate data structure (a

very basic sparse matrix format) and corresponding changes

in the processing of the Jacobian matrix effectively increased

the loading performance. Fig. 2 (left chart) shows the re-

peated experiment with chain networks applying the new

sparse loading technique. The behavioral simulation (gray) is

of linear complexity now and has the same overhead of 2-3

times as already analyzed in the complete networks experi-

ment before (cf. Fig. 1, left chart). Fig. 2 (right chart) shows

the behavioral simulations for the complete networks with

(gray) and without (black) sparse loading. As sparse loading

has no effect for the complete networks (no sparsity), the dif-

ference between both graphs represents the additional over-

head by initializing and processing the sparse data structure -

which is negligible low. Hence, the improved loading algo-

rithm should be of advantage even for Jacobians with very

low sparsity and may therefore be used as default loading

Figure 1 - CPU Time for Complete Networks (left) and Chain
Networks (right) in TITAN Simulation

82

mechanism.

3.2. Sequential Handling

In common circuit simulators, a major portion of the equa-

tions contained in a device model are solved internally in the

device model code to compose a compact stamp that is in-

serted (via MNA) into the simulator’s Jacobian matrix. The

model-internal equations are presolved in a procedural man-

ner without application of iterative methods. The main inten-

tion of this smart handling is to keep the linear equation

system as small as possible as the complexity for solving it is

dominated by its dimension (and sparsity). To preprocess be-

havioral models in a similar way and thereby reduce the di-

mension of the linear system, sequential equations are used.

Sequential equations are basically a set of DAEs that can be

explicitly solved for their sequential variables. Additionally,

each equation may only depend on simultaneous variables

(the remaining iteratively treated unknowns) and previously

determined sequential variables. This condition results in a

lower diagonal block within the Jacobian matrix that might

be exploited for improved solving.

So far, TITAN did not support a modeling strategy to con-

sider sequential equations (neither simultaneous procedural

statements nor VHDL-AMS functions). In Spectre and AMS

Designer, Verilog-A procedural assignments are well-suited

to represent sequential equations. Current research is address-

ing the topic of developing a sequential handling strategy for

TITAN. Therefore, a Schur-like reduction method is applied

to reduce the dimension of the stamp. The matrix reduction is

setup within a prototypical model compiler. This strategy

benefits from the high sparsity of the matrix and a cache-effi-

cient processing during the reduction. Applying the Schur-

complement to the sequential block results in a correction

that is added to the simultaneous block of the Jacobian ma-

trix. Basically, this correction represents the effect of the

chain rule, that would have been applied to sequential equa-

tions during a (potential) direct setup of the Jacobian for the

simultaneous equations. The derived reduced matrix is subse-

quently loaded and solved by a standard Newton Raphson

method. It has the dimension of the number of simultaneous

equations and is typically still relatively sparse. By applying

such simulation methods, a high number of sequential equa-

tions has only a secondary effect on the simulation perfor-

mance that is primary dominated by the dimension of the

linear system and its sparsity.

The speed-up by applying a sequential handling is supposed

to be (roughly) proportional to the reduction of the dimension

(plus an additional effort for the Schur-complement). First

experiments indicate, that the performance can be signifi-

cantly increased.

4. ADVANCED MODELING STRATEGIES

This section presents some strategies for automatic reformu-

lation of DAEs with respect to simulation performance. The

presented algorithms have been integrated into the Analog In-

sydes modeling flow. Optimizations of similar type have al-

ready been successfully applied in automatic device model

compilation (e.g. [7]). In this (much more specialized) appli-

cation, simulator-specific device model code is generated

from an AHDL-based model implementation. All presented

simulation results were derived with Spectre or AMS De-

signer as the concepts rely on a sequential handling during

simulation (which is currently not supported within TITAN).

4.1. Recognition of Sequential Equations

As stated in Section 3.2, it is most worthwhile in terms of

performance and robustness to process as many of the mod-

els’ equations sequentially as possible. Therefore, sequential

equations should be identified during the modeling process

and be adequately modeled.

In Analog Insydes, the information about equations to be

handled sequentially is already coded in the symbolic device

models. Thereby, a major portion of the nonlinear element re-

lations are set up as sequential equations. E.g. for an instance

of the symbolic BSIM3v3 model, the setup of the circuit

equations results in 54 sequential and only 6 simultaneous

equations. To enable the usage of sequential equations also

for general DAEs (e.g. not set up from netlists) an algorithm

to identify sequential equations from general DAEs was

developed [8]. The algorithm partitions a set of DAEs and its

corresponding variables into sequential and simultaneous

DAEs. It works on the basis of dependency matrices (indicat-

ing the dependent variables of each equation) and their reor-

dering to be compliant with the sequential structure.

Optionally, the identification algorithm is able to keep exist-

Figure 2 - CPU Time for Chain Networks (left) and Complete
Networks (right) in TITAN with Sparse Loading

Table 5. Recognition Results for Sequential Identification

RESULTS Model Seq. Eqs. Sim. Eqs. Reduction

opamp741
Orig. 182 186

-14%
Opt. 208 160

dflipflop
Orig. 864 110

-44%
Opt. 912 62

83

ing sequential equations (from device models) and identify

further sequential equations.

Table 5 and Table 6 summarize the identification results and

their effect on the simulation performance (improvement of

15% to 45%). A simulation without sequential equations - as

performed with the TITAN simulator - was not possible due

to severe convergence problems.

4.2. Common Subexpression Elimination

Another promising strategy is Common Subexpression Elim-

ination (CSE) - an optimization technique known from com-

piler design. It is used to prevent (unnecessary) multiple

evaluation of identical subexpressions by prior evaluation

and substitution with a temporary variable. This technique

can also be successfully applied to DAEs (cf. [8] for details).

After the recognition of common subexpressions within the

DAEs, the according expressions are assigned to additional

sequential variables. All occurrences of the subexpression

within the DAEs are consequently substituted by the new se-

quential variable. As the additional sequential equations do

not have any negative effect on the dimension of the resulting

linear system and multiple evaluation is prevented, the evalu-

ation of the behavioral model can be significantly acceler-

ated.

The CSE algorithm extracts a significant number of common

subexpressions (see Table 7) yielding a performance increase

of 9% to 100% (see Table 8).

5. CONCLUSIONS

In this publication, a detailed comparison of the performance

of netlist-based and behavioral simulations has been pre-

sented. The analyses indicate an insufficient simulation per-

formance of complex behavioral models generated by the

applied symbolic analysis technique. Detailed performance

analyses show that the simulation efficiency suffers from

suboptimal model formulation as well as from shortcomings

in the behavioral simulators due to the extraordinary high

complexity of the generated models.

Approaches for (lossless) improvements of the behavioral

simulation performance by “simulator-friendly” modeling

and enhancements of the simulation algorithms have been

presented. Amongst others, automatic reformulation meth-

ods have been developed. The strategy reduces the dimension

of the linear system by using sequential equations and pre-

venting multiple evaluation of common subexpressions. On

the simulator side, an efficient sparse loading was imple-

mented and a prototypical approach for sequential handling

in TITAN has been briefly discussed. The efficiency of the

recent developments have been presented by exemplary cir-

cuits. By combining the discussed and future approaches to-

gether with an efficient model reduction strategy (as already

available in Analog Insydes), a significant speed-up of the

behavioral simulation in comparison to the circuit simulation

is most likely. Hence, the used modeling flow may obtain in-

creasing acceptance for automatic bottom-up modeling.

Future aspects of this research will primarily address the de-

velopment of a new simulation strategy for TITAN to take

advantage of sequential equations in behavioral models.

REFERENCES

[1] R. Sommer, E. Hennig, T. Halfmann, T. Wichmann, “Symbolic
Modeling and Analysis of Analog Integrated Circuits“, Proc. of
the European Conference on Circuit Theory and Design, 1999

[2] Analog Insydes: www.analog-insydes.de

[3] T. Wichmann, M. Thole, “Computer Aided Generation of An-
alytic Models for Nonlinear Function Blocks”, 10th Intern.
Workshop PATMOS, Sep 2000

[4] U. Feldmann, R. Schultz, U. A. Wever, H. Wriedt, Q. Zheng,
“Algorithms for Modern Circuit Simulation”, Arch. Elektron.
& Uebertragungstech., Vol. 46, pp. 274-285, No. 4, 1992

[5] T. Schneider, J. Mades, M. Glesner, A. Windisch, W. Ecker,
“An Open VHDL-AMS Simulation Framework”, Proc. of the
IEEE/ACM International Workshop on Behavioral Modeling
and Simulation, pp. 89-94, Oct 2000

[6] MUMPS: A Multifrontal Massively Parallel Sparse Direct
Solver: http://graal.ens-lyon.fr/MUMPS

[7] B. Wan, B. P. Hu, L. Zhou, C.-J. R. Shi, “MCAST: An abstract-
syntax-tree based model compiler for circuit simulation”, Proc.
of the IEEE Custom Integrated Circuits Conference, Sep 2003

[8] D. Platte, S. Jing, R. Sommer, E. Barke, “Using Sequential
Equations to Improve Efficiency and Robustness of Analog
Behavioral Models“, Forum on Specification and Design Lan-
guages, Sep 2006

Table 6. Performance Results for Examples with Sequential

Identification (Spectre / AMS Designer)

RESULTS CPU (Orig.) CPU (Opt.) Speed-Up

opamp741 9.2 s 8.0 s 1.15

dflipflop 10.5 s 7.2 s 1.45

Table 7. Recognition Results for CSE

RESULTS Model Seq. Eqs. Sim. Eqs.
Recogni-

tion

opamp741
Orig. 206 160

+104
Opt. 312 160

dflipflop
Orig. 912 62

+604
Opt. 1516 62

Table 8. Performance Results for Examples with CSE (Spectre /

AMS Designer)

RESULTS CPU (Orig.) CPU (Opt.) Speed-Up

opamp741 8.0 s 7.3 s 1.09

dflipflop 7.2 s 3.5 s 2

84

