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ABSTRACT

This paper presents a novel modeling approach for analog to
digital converters (ADCs). The non linearity of the converter
is modeled using a linear combination of Chebyshev polyno-
mials. The model relies on a Fast Fourier Transform (FFT)
test applied to the output of the ADC. The harmonics
extracted from the FFT test are the coefficients of the Cheby-
shev polynomials. The model appears to be much faster, com-
pared to real circuits and models developed with other
techniques, without losing much accuracy. The proposed
model is convenient for all architectures of ADCs with high
resolution bits.

1. INTRODUCTION

Analog and mixed-signal systems are now becoming increas-
ingly complex and require longer simulation times. Using
behavioral models, whether in top-down design or bottom-up
verification, is becoming more popular because it reduces the
simulation time of such systems while maintaining a reason-
able level of accuracy.

Analog to Digital Converters (ADCs) are considered as an
important component of mixed-signal systems since they
interface the analog part of the design to the digital portion.
Understanding the functionality of ADCs with the associated
integral nonlinearity (INL) is of major interest to designers.
The INL is defined as the deviation of the transfer function of
the ADC from the ideal straight line [4]. In other words, the
INL describes the nonlinear characteristics of the converter.

The aim of this paper is to present a new efficient modeling
approach for analog to digital converters taking into account
the INL. The INL is modeled using Chebyshev polynomials.
The resulting behavioral model is independent of the ADC
architecture, and is suitable for all ADC types. The model is
useful for bottom-up verification of ADC circuits and can be
used in larger system simulations.

We first present in Section 2 some of the different approaches
used for ADC modeling. In Section 3 we present the proposed
modeling approach based on the theory of the "Chebyshev
test" that will be used to evaluate the average dynamic char-
acteristics of the ADC. Section 4 presents some simulation
results including comparisons between real circuits and dif-
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Figure. 1. Transfer function of ADCs showing the INL

ferent modeling approaches for ADCs with the new proposed
modeling solution. A conclusion follows in Section 5.

2. ADC MODELING

The behavior of any device refers to the input-output charac-
teristics and the response of the device in different domains
(time domain, frequency domain, ....etc). A behavioral model
of a component can be specific for certain domains, or it can
suit all types of simulations. The main issue for ADC model-
ing is determining the nonlinear input-output transfer func-
tion. An accurate model should imitate the real circuit
showing the deviation of the real device from an ideal
response.

For a converter with "N" resolution bits, the input is divided
into (2N-1) transitional thresholds. These thresholds show the
different input ranges that give different digital codes. The
smallest analog increment the converter can resolve is evalu-
ated as (1nputfullscale/2N) and expressed in terms of "LSB"
(Least Significant Bit). In other words, it is the minimum
change in the input that causes a change in the output [3]. The
full scale input of an ADC is the maximum voltage that can
be applied at the input.

Figure 1 shows the transfer function of an ADC illustrating
the INL. The horizontal axis represents the analog input volt-
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age with the different thresholds the converter can resolve.
The vertical axis shows the corresponding output digital code.
In the same figure, the solid staircased line shows the ideal
transfer function of the converter and the solid straight line is
a representation of the transfer function. The dashed stair-
cased line is an example of a transfer function of a non ideal
ADC. At every transitional threshold the horizontal differ-
ence between the dashed staircased line and the representa-
tion of the ideal transfer characteristics is the INL.

The difference between the thresholds is the value of the
quantization. Due to the finite length of the digital output,
there is always a quantization error. The quantization noise
power is evaluated as [3]:

2

Quantization Noise Power= % (1)
where,

Inputfullscale
o - lpufullscale @

2

It can be seen that for high resolution converters i.e. high val-
ues of "N", the quantization noise value is much less than that
of low resolution ADCs.

One approach for ADC modeling found in the literature
depends on the structure of the converter itself. The main
modeling effort consists in building behavioral models for the
building blocks of the ADC. This approach is illustrated in
[1][9]. In this approach, the models typically show the imper-
fections of every individual block constructing the ADC. All
modeled imperfections contribute to the overall nonlinearity
of the converter.

An alternate approach is to model the analog to digital con-
verter as a whole [1]. Some models based on this approach
require the user to provide the INL value at every input
threshold i.e. (2N—1) different numbers. For a high number of
resolution bits, this is a monumental task (65,535 parameters
in case of a 16 bit ADC). Other models generate a random
INL error based on a maximum number given by the user,
this error is then added to the input thresholds. These models
are computationally extensive and since they generate the
INL randomly, they do not reflect a proper level of accuracy.
In the following section, we present a new modeling approach
based on formulating the INL as a polynomial.

3. ANOVEL MODELING APPROACH

Considering the nonlinearity of any converter, the value of
the INL in terms of LSB versus the input voltage is illustrated
as the highly fluctuating line in Figure 2. The proposed model
evaluates the average value of the INL using a polynomial.

This average value is shown as the smooth thick line in Fig-
ure 2.
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Figure. 2. A general figure for the INL of an ADC chip [5]

Describing the well-known staircase transfer function of the
ADC as a polynomial requires a large number of terms. So, it
is useful to decompose the nonlinear staircase function to the
cascade of a smooth nonlinear block and an ideal quantization
block [5]. This is shown in Figure 3.
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Figure. 3. The decomposition of the transfer function of the
ADC. (a) The nonlinear actual transfer function of the ADC. (b)
The smooth polynomial block. (¢) The ideal quantization block.
Consider the actual transfer of the ADC as g(x) and the quan-
tization block as quant() and the smooth polynomial as g (x).
The cascade of the decomposed blocks is formulated as [5]:

3)

The proposed modeling approach presented in this paper
relies on the theory of the "Chebyshev test" for generating the
unique polynomial describing the non linearity of a given
ADC.

quant(g,(x)) = g(x)
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3.1. The “Chebyshev Test” Theory

The Chebyshev test is to stimulate the ADC with a sinusoidal
signal x(¢)=Vcoswt + C to obtain the best polynomial approx-
imation for the input-output characteristics.

Consider the nonlinear static transfer function of a converter,

y =Jx) 4)

where the function f{) is operating on the input x to give the
output y. When stimulated by a sinusoidal input in the form:

x(t) = Veoswt+ C %)
will result in a periodic output in the form of:
y(t) = %ﬁ- Z a, cos(nwt) + e(t) (6)

n=1
where the term e(?) takes into account all random errors like
noise [5][6].

If the transfer function is a polynomial then f(x) can be
expanded in the sum of Chebyshev polynomials as follows

[5]:

(7

fw) = 2+ i a(5)

n=1

where C,() is the Chebyshev polynomial of the first type and,
®)

Similarly, from the approximation of dividing the characteris-
tics of the ADC into a polynomial and an ideal quantizer, we
can describe the smooth polynomial g(x) as:

C,(cosB) = cos(nb)

a _
g = 2+ 3 0,6, (15) ©)
n=1
provided that the effect of the quantization is neglected. This
is true for high resolution bits as shown in (1) and (2).

To describe the dynamic response of the converter, additional
terms are introduced in the output equation,

oo oo

y(t) = %ﬁ- Z a,cos(nwt) + Z b, sin(nwt) + e(t)

n=1

(10)
n=1

where the out of phase terms accounted for by the coefficients
b, are caused by the dynamic nonlinearity [6]. It can be seen
in Figure 4 [6] that the dynamic response of a converter is not
a single valued function, meaning that the converter responds
to rising inputs and falling inputs differently. The converter
transfer function can be divided into two functions: g, (x) and
g>(x) describing the ADC response to falling and rising val-
ues of the sinusoidal input respectively.

(11)
(12)

where g(x) representing the average characteristic and A (x)
representing the deviation from the average [6]. The average
function g(x) is that of (9), and h(x) is a function of the second
kind of Chebyshev polynomials.

g (x) = g(x) +h(x)

8(x) = g(x)—h(x)

Above, we described the difference between the static and
dynamic response of ADCs. The work presented in this paper
considers only the static characteristic of a given ADC, where
the function g(x) describing the static response is also the
average of the dynamic response. The Chebyshev test will
give an accurate measurement to the smooth part of the non-
linearity.
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Figure. 4. Dynamic Response of an ADC using a sinusoidal
input [6].

3.2. Modeling the INL

Equation (9) allows one to measure exactly a polynomial
nonlinearity. The coefficients a, of (9) can be evaluated using
a Fast Fourier Transform (FFT) test applied to the output of
the ADC, which is carried out as follows:

* Apply a sinusoidal input to the converter. This input test
signal has to span the full scale to be able to evaluate the
INL for the whole input range. A sufficiently low test fre-
quency must be used to validate the usage of (6) [6].

* Apply an FFT to the output of the converter (staircased
sinusoidal wave) using a suitable sampling frequency and
number of FFT points.

The FFT determines the frequency components of a signal.
The output of the test includes a noise floor and significant
harmonics. The quantization noise forms the noise floor,
which is a small value for high resolution bits. This noise is
not a defect but it is due to the finite length of the digital out-
put. For ADCs with 8 resolution bits and more, the quantiza-
tion effect can be neglected [7][8]. The INL and other
converter impairments cause the harmonics and add extra
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noise to the noise floor [8]. Also offset effects on the har-
monic distortion are negligible with respect to the nonlinear-
ity effects [2].

The first few harmonics (amplitude and phase) extracted from
the FFT test are inserted in the model. The harmonics taken
into consideration are those above the noise floor. The error
of the ADC is then calculated as the difference between the
input signal and a signal constructed from the limited number
of harmonics. The input is scaled to the output, i.e. inputs
spanning the full input range will also span the output full
range (from code 000...0 to 111...1).

The INL is modeled using the following equation:

inl = (aofé(sz 1)) +(alf%(2Nf 1))cos(wt+f1) (13)

+a,cos(wt+f,) +asycos(wt+ f3) + aycos(wt +£y)
+ascos(wt +fs5) +agcos(wt + f¢) + ajcos(wt + ;)
+agcos(wt+f)+ ...

where the coefficients a, are the harmonics values extracted
from the FFT test and f,, are the phases of the harmonics in
radians.

3.3. Model Implementation

The model is implemented using Verilog-AMS hardware
description language. It assumes an ADC with high resolution
bits to neglect the effect of the quantization noise. The model
parameters are:

* Number of resolution bits (N).

* Conversion time (td) which is the time the ADC takes to
convert the analog input to the digital code.

* Offset error, representing a shift in the transfer function to
the right or to the left.

* Gain error, representing a change in the slope of the ideal
straight line representing the transfer function of the ADC.

* The reference voltages, where the difference determines the
input full scale range.

* The harmonics extracted form the FFT test (amplitude and
phase).

A partial listing of the model is given in Listing 1.

From (9), an infinite number of harmonics is required, but
this is to get the actual response. Harmonics above the noise
floor are sufficient to represent the INL. The model presented
here uses a limited number of harmonics. The more harmon-
ics used, the better the accuracy and the closer the modeled
INL is to the actual value. As the INL is plotted, if the INL
versus the code words is a bow shaped plot, this indicates the
predominance of the even harmonics wheras, an S-shaped
plot indicates the predominance of odd harmonics [4].

Listing 1. ADC Model Implementation using Verilog-AMS

module adc(out,in,clk)
parameter integer N=16 from [12:24]; /[resolution in bits}
parameter real ref_plus =5;
parameter real ref_minus=-5;\
parameter real td= 1e-9; // conversion time
parameter real offset_error=0; //in terms of LSB
parameter real gain_error=0; // in terms of LSB
parameter real test_frequency= 15.25879;//test frequency
II'hx: harmonic components in dB
Il phx: the phase of each harmonic
parameter real dc_component = 90.30866;\
parameter real h1= 90.309;\
parameter real phl = 0.008306843;
parameter real h2=-29.70907;\
parameter real ph2 = 179.302248269;
parameter real h3=-23.73895;
parameter real ph3 = 77.269534889;
parameter real h4=-21.79287;
parameter real ph4 =-32.298964788;
parameter real h5=-18.40337;
parameter real ph5 = 105.741288156;
parameter real h6=-29.09376;
parameter real ph6 =-177.111585591;
parameter real h7=-17.02576;
parameter real ph7 = 91.889480473;

initial

begin
fullscale=ref_plus-ref_minus;
LSB=fullscale/pow(2,N);
a0 = pow(10,(dc_cmoponent/20));
al = pow(10,(h1/20));

end

always @(posedge clk)

begin
inl=(a0-(0.5*(pow(2,N)-1)))+(al1-(0.5*(pow(2,N)-1)))*cos(w*t+f1)
+az2*cos(2*wit + f2);

end

endmodule

4. SIMULATION RESULTS

This section shows some simulation results comparing the
behavior of the model to a real circuit’.

An ADC model with a different modeling approach is also
compared to the proposed solution.

The first example consists of, a 12-bit SAR (Successive
Approximation Register) analog to digital converter simu-

T All simulations were done using Mentor Graphics-ADVance MS
version 4.2-2.1.
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lated at the transistor level. A sinusoidal input spanning the
full input range was used to stimulate the ADC. The ADC
clock used was SMHz. The staircased output was passed
through an FFT test and the harmonics were extracted. These
harmonics were plugged into the model. Both, the model and
the circuit , were stimulated using a ramp signal, slow enough
to cover all codes of the ADC. The input-output characteris-
tics of both simulations is compared in Figure 5. This figure is
only a zoomed part to show clearly part of the simulation. The
rest of the transfer function is also very close. The model runs
in Isec 120ms achieving a gain of more than 300x.
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Figure. 5. A comparison between a 12-bit ADC Spice circuit and
the output from the proposed behavioral model.

The second example compares the output obtained from the
suggested model and a general ADC model having the INL as
an input vector. Both models used a resolution of 16 bits.The
input fullscale used is 10 volts varying from -5.0 volts to +5.0
volts. The old approach simulated in 45min 29sec 820ms
while the new model simulated in /5sec 450ms. A speed gain
of 176x acquired. Results shown below in Figure 6 show a
zoomed figure comparing the two transfer characteristics. .
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Figure. 6. A comparison between the transfer functions of a 16-

bit behavioral model using the INL as an input vector and the
new model.

Figure 7 shows the INL value calculated for the full scale
input from the model.
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Figure. 7. The INL value calculated from the new model.

The two models were further simulated with a sinusoidal
input. The old model completed the transient simulation in
1hr 31min 39sec 730ms while the new model simulated in
38sec 270ms achieving a speed gain of 143x. A zoomed por-
tion of the sinusoidal outputs is shown in Figure 8.
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Figure. 8. A comparison between the two models stimulated by
a sinusoidal input.
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Applying an FFT to both outputs results in a very close spec-
tral distribution as shown in Figure 9.
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Figure. 9. Spectral comparison between the two model.

S. CONCLUSION

The work presented in this paper targets a new approach for
ADC modeling. Chebyshev polynomials were used to
describe the average nonlinearity of the converter. The pro-
posed approach was found to suit all types of ADCs because
it is not a structural model. It models the average overall per-
formance of the converter which is required at different levels
of the design process. From the experimental results, the
model showed a noticeable speed gain with minimal loss of
accuracy. The transfer function generated by the model is
very close to that of the real circuit. Future work will be
devoted to further experimental tests, validating the model for

low resolution bits and calculating the deviation from the
average. In addition, other effects such as supply noise and
temperature effects will be added to the model.
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