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Abstract

We unite the conventional analog/RF design objectives such
as design centering and performance targeting and propose a
generalized analog/RF design objective. We propose expected
performance centering, i.e., to maximize the expected perfor-
mance margin of a circuit under process and environmental
variations for topology selection with performance specifica-
tion in a hierarchical design. We develop three methods to
compute expected performance margin. Our experimental re-
sults show improved expected performancemargin achieved by
the proposed expected performance centering technique.

1 Introduction

Analog/RF design complexity arises due to (1) complex de-
sign specification including up to tens of performance metrics,
such as gain, linearity, noise signal ratio, power consumption,
etc., and (2) the significant sensitivities of the design metrics
to variations of environmental and design parameters, such as
temperature, supply voltage, transistor channel length, thresh-
old voltage, gate oxide thickness, and resistive and capacitive
parasitics. Such sensitivities have been growing increasingly
significant due to the latest technology scaling, and introduce
significant variations of analog/RF design performance met-
rics. As a result, analog/RF design must target parametric yield
optimization.
Several techniques have been proposed for analog/RF design
parametric yield maximization. Implicit parametric yield op-
timization techniques include robust programming, which in-
cludes process parameter variability bounds as inequality con-
straints, and optimize design metrics under such constraints
[12]. Stochastic programming includes explicit probability
density functions in constraints and targets parametric yield op-
timization [6]. Exact parametric yield can be computed by sur-
face integrals [3, 4]. Maximum parametric yield can be found
by design centering, e.g., to find a point in the variable space
with the maximum distance to the boundaries of an acceptabil-
ity region [1, 8, 9]. Alternatively, performance centering finds
the maximumperformancemargin, e.g., the maximumdistance
to the performance boundaries in a performance space [5].
We observe that design centering does not take into consid-
eration of performance targeting, while performance centering
does not take into consideration of parametric yield, e.g., a cir-

cuit with a large performance margin and a small parametric
yield may not dominate another circuit with a small perfor-
mance margin and a large parametric yield. We propose ex-
pected performance centering, i.e., to maximize the expected
performancemargin of a circuit under process and environmen-
tal variations for topology selection with performance speci-
fication in a hierarchical design, which unifies design center-
ing and performance centering. We develop three methods to
compute expected performance margin. Our experimental re-
sults compare design centering, performance centering, and ex-
pected performance centering.
The rest of this paper is organized as follows. We first
present the notations that we use in this paper before we briefly
present the existing analog/RF design optimization methods
and objectives in Section 2, and propose expected performance
centering in Section 3. We present our experimental results in
Section 4, and conclude in Section 5.

2 Background

2.1 Notations

We use the following notations in this paper.
• x = design parameters1

• ε = design parameter variabilities

• P(x+ ε) = probability density function for design param-
eter variabilities

• y = f (x) = performance metrics given by macromodeling
in terms of design parameters

• U = performance constraints

• R = acceptability region in the solution space such that
yi ≤Ui, ∀x ∈ R, ∀i

• Y = P(y ≤U) = parametric yield, i.e., the probability for
the performance constraints are satisfied

• ρ = performance margin

• φ = expected performance margin
1We refer to design parameters which include parameters given by design-

ers (e.g., transistor channel length and width), process parameters (e.g., tran-
sistor threshold voltage), and environmental parameters (e.g., temperature and
supply voltage), etc.

0-7803-9742-8/06/$20.00 © 2006 IEEE. 126



2.2 Methods

2.2.1 Robust Geometric Programming

Robust programming takes design parameter variabilities into
account by including their bounds in terms of polyhedrons (i.e.,
intersection of a finite number of halfspaces) or ellipsoids as
constraints, e.g., as follows [12].

minimize supx∈U f0(x)

sub ject to supx∈U fi(x) ≤ 1, i = 1, ...,m
gi(x) = 1, i = 1, ..., p

xi > 0, i = 1, ...,n (1)

where x ∈U define uncertainties/variabilities.
In case that the objective f0 and the constraints fi are posyn-
omial functions, gi are monomial functions, (1) becomes a geo-
metric program [2], and can be efficiently solved for analog/RF
design automation.

2.2.2 Stochastic Programming

Explicit analog/RF design parametric yield maximization
needs to (i) take into account variabilities for the design param-
eters and (ii) include the probabilistic parametric yield function
in the objective [3, 4]. This gives a stochastic program as fol-
lows [6].

Maximize P(y < U)

Subject to P(x) (2)

Stochastic programming is a framework for modeling opti-
mization problems which involve uncertainties and probability
distributions. It maximizes the expectation of certain function
of random variables, e.g., analytically or numerically, to pro-
vide useful information to a decision-maker [6].

2.2.3 Parametric Yield Computation

Parametric yield is the probability for the design parameter
variations not to result in an unacceptable circuit performance.
In a disturbance space, e.g., a Cartesian space spanned by the
parameter variations, the acceptability region is defined as the
set of parameter variations which do not result in unacceptable
circuit performance for given design parameters. Parametric
yield is given by the volume integral of the joint probabilistic
density function of the variations in the acceptability region, or,
the surface integral on the boundary of the acceptability region
by applying Stokes’ theorem [3, 4].

Y =

Z
R

P(x)dx =

Z
∂R

D(x)dx (3)

where R is the acceptability region, yi(x) ≤ Ui, ∀x ∈ R, ∀i,
∂R gives the boundaries of the acceptability region R, P(x) is
the joint probability density function of the design parameters,
D(x) is the vectorial field which divergence is the joint proba-
bility density function P(x), i.e.,

∇ ·D(x) = P(x)

2.3 Objectives

2.3.1 Design Centering

Based on parametric yield and yield gradient computation, a
greedy algorithm finds the maximum parametric yield [3, 4].
A double-sided ellipsoidal technique recursively divides a hy-
perellipsoid into three parts using two parallel hyperplanes [1].
A convexity-based technique approximates an acceptability re-
gion by a polytope and recursively partition the polytope into
two parts using a hyperplane [8].
A more efficient approach is to find the parameter distances
[9] as a guide to find maximum parametric yield. A parame-
ter distance is given by a performance margin and the gradi-
ent of the performance metric respect to the design parameter.
An exponential function is applied to provide a differentiable
approximation of the minimum function of the parameter dis-
tances [9]. The maximum parameter distance may not imply
the maximum parametric yield, e.g., in the presence of non-
convex acceptability regions, or multiple acceptability regions
in a close range, but serve as a guide to find a good starting
point for the maximum parametric yield.

2.3.2 Performance Centering

Performance centering finds the maximum performance mar-
gin, i.e., the maximum slack to all performance constraints. In
a performance space, this corresponds to finding the center of
a performance acceptability region with the maximum distance
to all boundaries [5].

Maximize ρ = ΠiSi

Subject to S = U − y

S > 0
x > 0 (4)

Performance centering is proposed to evaluate the “capability”
for each candidate circuit topology to meet given performance
specifications, e.g., in a hierarchical design, for topology se-
lection. The objective of performance centering differs with
the objective of design centering, in that the latter is for yield
maximization, while the first is for performance targeting.

2.3.3 Quality Loss Function

Taguchi proposed to reduce performance variability as a means
to increase parametric yield and product quality [4]. Observing
that design centering optimizes only parametric yield, which
is insensitive to the tightness of performance distributions,
Taguchi proposed to optimize quality loss function, which is
defined to increase gradually as the circuit performance devi-
ates away from the target performance, as a means to measure
the closeness of their performances to the targets. However,
Taguchi only considered quality loss function for a single per-
formancemetric, which is chosen arbitrary, e.g., any symmetric
function could serve as a Taguchi quality loss function.
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3 Robust Optimization by Expected
Performance Centering

3.1 Comparing Analog/RF Design Objectives

We now compare design centering and performance centering
for a given performance macromodel and the acceptability re-
gion boundaries, e.g., as shown in Fig. 1.
Performance centering finds the maximum performance

margin, i.e., a point in the performance space with the max-
imum distance to all performance boundaries. In Fig. 1, this
corresponds to finding x1 in the deepest valley. However, there
is no parametric yield consideration. For example, perfor-
mance centering could find a solution with large margins to all
performance bounds but also a large gradient of performance
regarding to disturbances, therefore of a small parametric yield.
In Fig. 1, this corresponds to a deep but narrow valley.
Alternatively, design centering finds maximum parametric
yield, which, e.g., in some cases, implies the maximum vari-
able margin, i.e., a point in the variable space with the maxi-
mum distance to the performance boundaries y = f (x) = U . In
Fig. 1, this corresponds to finding the widest valley. How-
ever, design centering regards circuits with accepted perfor-
mance with equal quality, without preference of performance
margins. E.g., it may find a shallow valley in Fig. 1.
Quality loss function introduces increased penalty in ana-
log/RF design optimization as the expected circuit performance
deviates from the specified target performance. However, in
many design scenarios, designers do not have a specific per-
formance target. Rather, a minimum allowable performance
requirement is specified. Achieving further performance im-
provement is preferred, because it would boost the overall sys-
tem specification, or, in a hierarchical design, an improved per-
formance in a module leads to increased design margins for
the other modules. We propose expected performance center-
ing which fits better with these design scenarios compared with
quality loss function optimization.

3.2 Expected Performance Centering

We propose a more sophisticated design objective, i.e., ex-
pected performance centering, which is to maximize the ex-
pected performance margins under process and environmental
variations. Expected performance centering combines para-
metric yield maximization and performance centering into a
more generalized design objective. It is an extension of design
centering / yield maximization, in that it introduces preference
of large performance margins among accepted solutions. It is
also an extension of performance centering, in that it introduces
yield consideration. E.g., in topology selection in a hierarchi-
cal design for given performance specifications, a circuit with a
large performance margin and a small yield may not be prefer-
able to that of a small performancemargin and a large yield. In
Fig. 1, expected performance centering finds a deep and wide
valley.
Mathematically, we define expected performance margin as
follows.

U

y = f(x)

x1 x2

Figure 1: Performance y = f (x) and its boundU . Performance
centering finds x1 for maximum performance margin (i.e., the
deepest valley). Design centering / parametric yield maximiza-
tion finds x2 for maximum variable margin (i.e., the widest val-
ley). Expected performance centering finds a deep and wide
valley.

Definition 1 For design performance requirements y ≤ U un-
der design parameter distribution P(x), expected performance
margin is given by:

φ(x) =

Z
R

ρ(x+ ε)P(x+ ε)dε

=

Z
R

Πi(Ui − yi(x+ ε))P(x+ ε)dε (5)

where yi(x+ ε)≤Ui, ∀x+ ε ∈ R, ∀i.

For design parameters of extremely small variabilities, e.g.,
P(x+ ε) = δ(ε), (5) becomes

φ(x) =

Z
R

ρ(x+ ε)δ(ε)dε = ρ(x) (6)

i.e., expected performance margin becomes conventional per-
formance margin.
For a extremely small performance margin which can be ap-
proximated by a constant ρ(x) = ΠiUi−yi(x) = α, (5) becomes

φ =

Z
R

αP(x)dx = α
Z

R
P(x)dx = αY (7)

i.e., expected performance centering becomes parametric yield
maximization or design centering.
In general cases, expected performance centering provides
a better estimate of product quality in the presence of design
parameter variations. In a hierarchical design, a large perfor-
mance margin of a module circuit ease design complexity of
the rest of the system. Performance margin as a product of the
performance metrics also gives an estimate of the volume of
the performance space bounded by the Pareto front [10, 11]. A
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larger volume of performance space implies a larger capabil-
ity to tradeoff among the performance metrics, and possibly a
larger parametric yield [5].
We formulate the problem of expected performance center-
ing as follows.

Maximize φ(x) =

Z
R

ρ(x+ ε)P(x+ ε)dε

Subject to ρ(x+ ε) = Πi(Ui − yi(x+ ε))
yi(x+ ε) ≤Ui, ∀x+ ε ∈ R, ∀i

x ≥ 0 (8)

3.3 Computing Expected Performance Margin

3.3.1 Sampling

(5) is in the form of an expectation of a distribution, which in-
dicates that an expected performance margin can be computed
by a Monte Carlo simulation based on the design variable dis-
tributions.

φsampling =
1
N

N

∑
i=1

Πi(Ui − yi(x+ ε = ai)) (9)

where ai are sampling points in an acceptability region y(x +
ε)≤U , which are generated by following the variable distribu-
tions P(x+ ε).
Therefore, expected performance margin φ can be taken as a
weighted sum of performance margins of the variational vari-
ables. A performance margin is in the form of posynomial
function and can be optimized by geometric programming. As
a result, an expected performance margin is also in the form
of a posynomial function, and can be optimized by geometric
programming.

3.3.2 Integral of Gaussian Distributions

For efficiency improvement, we can compute integrals based
on closed form y(x) = f (x) and P(x + ε) formulas. For ex-
ample, for (piecewise) linear polynomial macormodels y(x) =
f (x) and Gaussian design parameter distributions P(ε),

f (x) = a0+ a1x

P(ε) =
1√
2πσ

e
−

(ε−µ)2

2σ2 (10)

we can use Gaussian integrals, e.g., as follow.
Z z

0

1√
2πσ

e
−

(ε−µ)2

2σ2 dε =
1
2

er f (
z−µ√
2σ

)

Z z

0

1√
2πσ

εe
−

(ε−µ)2
2σ2 dε =

σ2√
2π

(1− e−
(z−µ)2
2 )

+
µ
2

er f (
z−µ√
2σ

) (11)

3.3.3 Surface Integral

Similar to (3), by applying Stokes’ theorem, we can achieve
volume integral by computing surface integral of a vectorial
field which divergence is the joint probability density function.

φ(x) =

Z
R

Πi(Ui − yi(x+ ε)P(x+ ε)dε

=

Z
∂R

Πi(Ui − yi(x+ ε)D(x+ ε)dε (12)

where R is the acceptability region, y(x) < U∀x ∈ R, P(x) is
the joint probability density function of the design parameters,
D(x) is the vectorial field which divergence is the joint proba-
bility density function P(x), i.e.,

∇ ·D(x) = P(x)

3.4 Overall Flow

We formulate robust/RF analog design optimization problem
as follows.

Problem 1 Given

1. design parameter x,

2. design parameter variabilities P(x+ ε),

3. performance constraints y < U,

find design parameters x∗ such that the expected performance
margin φ(x∗) is maximized.

Algorithm 1 presents our proposed analog/RF design opti-
mization method by expected performance centering.

Algorithm 1: Expected Performance Centering for Ana-
log/RF Designs
Input: x, P(x+ ε), y ≤U
Output: x∗ s.t. φ(x∗) is maximized
1. Construct a performance macromodel y = f (x)
2. Find acceptability region boundaries y = f (x) = U
3. Compute performance margin ρ(x)
4. Compute expected performance margin φ(x)
5. Find maximum expected performance margin φ(x∗)

We construct a macromodel for an analog/RF design by
circuit simulation and data regression. and find performance
boundaries y = f (x) = U based on the analytical performance
macromodel, which is more efficient than the line search algo-
rithm as in [3, 4].
After finding the boundaries of the acceptability regions, we
compute expected performancemargin within the acceptability
regions by sampling, direct volume integral, or surface integral.
Finally, a steepest descent search algorithm can be applied to
find the largest expected performance margin.
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4 Experiments

We present a simple analog/RF circuit design as an illustrative
example which shows the differences between the existing ana-
log/RF design objectives and compares our proposed expected
performance centering with the existing design centering and
performance centering techniques.
We design a three-inverter ring oscillator (which schematic
is shown in Fig. 2) based on Synopsys HSpiceRF simulation
on Berkeley Predictive Technology Model (BPTM) of 70nm
technology. We adjust two design parameters, namely, chan-
nel width W and channel length L for each transistor in the
ring oscillator, to achieve three performance metrics: oscilla-
tion frequency f0 ≥ 1GHz, phase noiseN ≤−40dB, and power
consumption P ≤ 1mW .
Fig. 3, Fig. 4 and Fig. 5 show respectively the contours
of oscillation frequency f0, phase noise N, and power con-
sumption P of the ring oscillator for different transistor chan-
nel width W and transistor channel length L, which are mul-
tiple times of the minimum transistor channel length 0.07µm.
Fig. 6 shows the three performance constraints and the accept-
ability region bounded by the oscillation frequency boundary
f0 ≥ 4GHz and the phase noise boundary N ≤ −40dB. Table
1 gives the design parameters and the performance metrics of
the four corners of the acceptability region. We approximate
the three performance metrics in the acceptability region via
bi-linear interpolation as follow.

∆ f0 = (
W
64

−1)(−0.61L+2.10)+(2− W
64

)(−0.49L+1.26)

∆N = (
W
64

−1)(2.44L−5.79)+(2−W
64

)(2.10L−4.69)

∆P = (
W
64

−1)(0.17L−0.32)+(2−W
64

)(0.09L+0.32)(13)

Design centering finds the largest distance to the boundaries
of the acceptability region. Because process variation has little
effect on the large transistor channel widthW , in this case, de-
sign centering finds the median of the longest vertical strip of
the acceptability region, which is at (W,L) = (128,2.91).
Performance centering finds the largest performancemargin,
by computing the derivative of the performance margin, e.g.,

∆ f0 ·∆N ·∆P = −0.25L3+1.93L2+−4.82L+3.90
∂

∂L
(∆ f0 ·∆N ·∆P) = −0.75L2+3.86L−4.82= 0 (14)

forW = 128, and the performance center is given by one of the
roots of the quadratic equation at (W,L) = (128,3.04),
Assuming Gaussian distribution for transistor channel length

L with 3σ = 20%µL,2 we find the expected performance mar-
gin by taking samples for the design centering solution, per-
formance centering solution, and the points in between. Ta-
ble 2 gives the results. We observe that performance cen-
tering solution has a larger product of the performance mar-
gins (80.33MHz · dB ·mW ) than the design centering solution
2Ourmethodology can still be applied in cases that transistor channel length

is not in a Gaussian distribution.

Figure 2: A three-inverter ring oscillator.

Table 1: Design parameters and performance metrics of the
four corners of the acceptability region.

W L f0 N P
128 3.46 1.00 -42.67 0.78
128 2.37 1.66 -40.00 0.92
64 2.59 1.00 -40.75 0.44
64 2.23 1.17 -40.00 0.47

(75.37MHz · dB ·mW ), however, the largest expected perfor-
mance margin (67.53MHz · dB ·mW ) is achieved at (W,L) =
(128,3.00), other than the design centering solution and the
performance centering solution. Expected performance center-
ing finds such a solution.

5 Conclusion

We propose expected performance centering, which unifies
performance centering and design centering as analog/RF de-
sign objectives. For a large parametric yield, expected perfor-
mance centering approaches conventional performance center-
ing. For a small parametric yield, expected performance cen-
tering approaches design centering. We develop three methods
which compute expected performance centers, and present a
circuit example which illustrates the differences between the
design objectives. Expected performance centering provides a
new method for analog/RF design optimization.

Table 2: Performance margin (ρ) and expected performance
margin (φ) in MHz · dB ·mW for (I) the design centering, (II)
the performance centering, and (III) the expected performance
centering solutions.

W L ρ φ
I 128 2.91 75.37 65.42
II 128 3.04 80.33 67.12
III 128 3.00 79.76 67.53
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Figure 3: Resonant center frequency (Hz) as a function of
transistor channel width W (×0.07µm) and transistor channel
length L(×0.07µm).
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Figure 4: Phase noise (dB) as a function of transistor channel
widthW (×0.07µm) and transistor channel length L(×0.07µm).
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