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ABSTRACT
In this paper, we study a new architecture level thermal
modeling problem from behavioral modeling perspective to
address the emerging thermal related analysis and optimiza-
tion problems for high-performance quad-core microproces-
sor designs. We propose a new approach to build the thermal
behavioral models by using transfer function matrix from the
measured thermal and power information at the architecture
level. The new method builds behavioral thermal model us-
ing generalized pencil-of-function (GPOF) method, which
was developed in the communication community to build the
rational modeling from the measured data of real-time sys-
tems. To effectively model transient temperature changes,
we propose two new schemes to improve the GPOF. First
we apply logarithmic-scale sampling instead of traditional
linear sampling to better capture the temperature changing
characteristics. Second, we modify the extracted thermal
impulse response such that the extracted poles from GPOF
are guaranteed to be stable without accuracy loss. Experi-
mental results on a practical quad-core microprocessor show
that generated thermal behavioral models match the mea-
sured data very well.

1. INTRODUCTION
As CMOS technology is scaled into the nanometer region,
the power density of high-performance microprocessors will
increase drastically. The exponential power density increase
will in turn lead to average chip temperature to raise rapidly [2].
Higher temperature has significant adverse impacts on chip
performance and reliability. Excessive on-chip temperature
leads to slower transistor speed, more leakage power con-
sumption, higher interconnect resistance, and reduced reli-
ability.

One way to mitigate the high temperature problem to put
multiple CPU or cores into one single chip [7, 1, 3]. In this
way, one can simply increase the total throughput by parallel
computation, and have lower voltage and frequency to meet
thermal constraints. But the thermal effects are influenced
by the placement of cores and caches. So it is very important
to consider the temperature during the floorplanning and
architecture design of multi-core microprocessor.

The estimated temperature at the architecture level can then
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be used to perform power, performance, and reliability anal-
ysis, together with floorplanning and packaging design [9].
As a result, design decision is guided by temperature and
design is optimized theoretically without potential thermal
problems. To facilitate this temperature-aware architecture
design, it is important to have accurate and fast thermal
estimation at the architecture level. Both architecture and
CAD tool community are currently lacking reliable and prac-
tical tools for thermal architecture modeling. Existing work
on the HotSpot project [6, 9] tried to resolve this problem by
generating the architecture thermal model in a bottom-up
way based on the floorplanning of the function units. But
this method is difficult to set up for new architecture with
different thermal and packaging configurations. Also the re-
sulting model work for only single CPU architecture and
the accuracy may not sufficient as many approximations are
made.

This paper, we propose a new thermal behavioral model-
ing approach for fast temperature estimation at the quad-
core thermal architecture level at early design stage. The
new approach builds the transfer function matrix from the
measured architecture level thermal and power information.
It first builds behavioral thermal model using generalized
pencil-of-function (GPOF) method [4, 5, 8], which was de-
veloped in the communication community to build the ratio-
nal modeling from the measured data of real-time and elec-
tromagnetism systems. However, direct use of GPOF will
not generate stable useful thermal models. Based on the
characteristics of transient temperature behaviors, we make
two new improvements over the traditional GPOF: First we
apply logarithmic-scale sampling instead of traditional lin-
ear sampling to better capture the temperatures change over
the time. Second, we modify the extracted thermal impulse
response such that the extracted poles from GPOF are guar-
anteed to be stable without accuracy loss. Experimental
results on a practical quad-core microprocessor show that
the generated thermal behavioral models can be built very
efficient and the resulting model match well the measured
temperature for non-training data.

The rest of this paper is organized as the follows: Sec-
tion 2 presents thermal modeling problem we try to solve.
Section 3 reviews a generalized pencil-of-function (GPOF)
method for extracting the poles and residues from the tran-
sient response of a real-time system and electromagnetism.
Section 4 presents our new thermal behavioral modeling ap-
proach based on the GPOF. Section 5 presents the experi-
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mental results and Section 6 concludes this paper.

2. ARCHITECTURE-LEVEL THERMAL MOD-
ELING PROBLEM

We first present the new thermal behavioral modeling prob-
lem. Basically we want to build the behavioral model, which
is excited by the power input and product the temperature
outputs for the specific locations in the floorplan of the quad-
core microprocessor. Our behavioral models are created and
calibrated with the measured temperature and power infor-
mation from the real chips. The benefit of such behavioral
thermal models is that it can easily built for many different
architecture with different thermal conditions and thermal
parameters (thermal conductivity, cooling configuration).

Since the given the temperature data are transient and chang-
ing over time, we need to capture the transient behavior of
the temperature, which can be achieved by building the im-
pulse functions between temperature and power in the time
domain.

In this paper, we specifically look at quad-core microproces-
sor architecture from our industry partner to validate new
thermal modeling method. The architecture of this multi-
core microprocessor is shown in Fig. 1, where there are four
CPU cores (die 0 to die 3) and one cache core (die 4). The
temperature of each die is reported on the die bottom face in
the center of each die. We can abstract this quad-core CPU
into a linear system with 5 inputs and 5 outputs as shown
in Fig. 2. The inputs are the power traces of all the cores,
and the outputs are the temperature of them, respectively.

Such system can be described by the impulse-response func-
tion matrix H

H(t) =

2
6664

h00(t) h01(t) h02(t) h03(t) h04(t)
h10(t) h11(t) h12(t) h13(t) h14(t)
h20(t) h21(t) h22(t) h23(t) h24(t)
h30(t) h31(t) h32(t) h33(t) h34(t)
h40(t) h41(t) h42(t) h43(t) h44(t)

3
7775 (1)

where hij are the impulse response function for output port
i due to input port j.

Given a power input vector for each core u(t), the transient
temperature can be then computed

y(t) =

Z t

0

H(t − τ )u(τ )dτ (2)

Equation (2) can be written in frequency domain as in (3).

y(s) = H(s)u(s) (3)

where y(s), u(s) and H(s) are the Laplace transform of
y(t), u(t) and H(t), respectively. H(s) is called the transfer-
function matrix of the system where each hij(s) can be rep-
resented as the partial fraction form or the pole-residue form
(4).

hij(s) =
nX

k=1

rk

s − pk

(4)

where hij(s) is the transfer function between the jth input
terminal and the ith output terminal; pk and rk are the kth
pole and residue. Once transfer functions are computed, the
transient responses can be easily computed.

The remaining important problem is to find the poles and
residues for each transfer function hij from the measured
thermal and power information. It turns out the general-
ized pencil-of-function can be used for this propose. But we
cannot simply apply GPOF method as we show in the Sec-
tion 4. In the following section, we will briefly review the
GPOF method before we present our improvements.

3. REVIEW OF GENERALIZED PENCIL-
OF-FUNCTION METHOD

Generalized pencil-of-function (GPOF) method can be used
to extract the poles and residues from the transient response
of a real-time system and electromagnetism [4, 5, 8]. Specif-
ically, GPOF can work for such a system that can be ex-
pressed in sum of complex exponentials:

yk =
X

i=1,M

rie
(pi∆tk) (5)

where, k = 0, 1, ..., N-1, is the number of sampled points,
ri is the complex residues, pi are the complex poles, and ∆t
is the sampling interval. M is the number poles we used to
build the transfer function. Let’s define

zi = e(pi∆tk) (6)

which become the poles in Z-plane. For real value yk, both
ri and pi should be in complex conjugate pairs. Let’s define
the new vector of node temperatures (in our problem) as
y0,y1, ..., yL where,

yi = [yi, yi+1, ..., yi+N−L−1]
T (7)
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where L can be viewed as sampling window size. Based on
these vectors, we can define the matrices Y1 and Y2 as

Y1 = [y0,y1, ..., yL−1] (8)

Y2 = [y1,y2, ..., yL] (9)

Then one can obtain the following relationship among the
Y1, Y2 and the pole and residue vectors Z0 and R based on
the structure of Y1, Y2:

Y1 = Z1RZ2 (10)

Y2 = Z1RZ0Z2 (11)

where

Z1 =

2
6664

1 1 ... 1
z1 z2 ... zM

...
... ...

...
ZN−L−1

1 ZN−L−1
2 ... ZN−L−1

M

3
7775 (12)

Z2 =

2
6664

1 z1 ... zL−1
1

...
...

... ...
...

1 zM ... ZL−1
M

3
7775 (13)

Z0 = diag[z1, z2, ..., zM ] (14)

R = diag[r1, r2, ..., rM ] (15)

So the problem we need to solve is to find the pole and
residue vector Z0 and R efficiently. It turns out that this
can be easily computed by observing that

Y +
1 Y2 = Z+

2 R−1Z+
1 Z1RZ0Z2

Z+
2 Z0Z2 (16)

Hence, the poles is the eigenvalues of Y +
1 Y2, where + in-

dicate the (Moore-Penrose) pseudo-inverse, as Y1 is not a
square matrix. As a result, one can obtain the Z0 by using

Z = D−1UHY2V (17)

where Z is a M × M matrix and V and U comes from the
singular value decomposition (SVD) of Y1:

Y1 = UDV H (18)

After the Z is computed, we can obtain the pole vector Z0

by performing the eigen-decomposition of Z, Z0 = eig(Z),
where eig(X) is to obtain the eigenvalue vector from matrix
X. Once Z0 is obtained, we can compute the residue vector
R by using either (10) or (11).

For GPOF method, it allows M ≤ L ≤ N − M , which
means that we can allow the different window size and pole
numbers. Typically, choosing L = N/2 can yield better
results.

4. NEW ARCHITECTURE-LEVEL THER-
MAL BEHAVIORAL MODELING METHOD

In this section, we present our new thermal behavioral mod-
eling approach based on the GPOF method mentioned in
the previous section.

For a linear time-invariant system, the sum of complex expo-
nential form shown in (5) essentially is the impulse response

in the s-domain. So we need to apply the GPOF method
to the thermal impulse responses, which in generally cannot
be obtained directly from measurement. Instead, we mea-
sure the thermal step responses for each core (center of the
core) excited by the some power inputs in the given multi-
core microprocessor. Then impulse responses are obtained
by performing the numerical differentiation of the step re-
sponses.

But directly applying the GPOF to the computed thermal
impulse responses (from the measured data) may not lead to
accurate and stable models as shown below. In the following,
we will present two improvement schemes in the new method
such that the resulting models are accurate and stable.

4.1 Logarithmic scale sampling for poles and
residues extraction

The first problem we face for the thermal modeling is that
linear sampling in the traditional GPOF method does not
work for our thermal data.

According to GPOF method reviewed in Section 3, we know
that matrices Y1 and Y2 are constructed from the sampled
data and the sampling time interval ∆t must be the same.
However, how to obtain sample data from the observed tem-
perature curve became a big issue in our CPU tempera-
ture simulation, because the step temperature response of-
ten goes up drastically in the first few seconds and gradually
tends to reach a steady state after a relatively long time.

This can be observed in Fig. 3(a), which is step temperature
responses for core0 (die : 0) when only core0 is driven by a
step 20W power sources beginning at t = 0 (which is called
active in this paper). The environment temperature (initial
temperature when no input power at the beginning) is 35◦C.
We observe that almost all the temperature increase occurs
within the first second, from 35◦C to 57.9◦C, where 61.1◦C
is the final temperature when core0 reaches a steady state.
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Figure 3: The transient temperature change of core0
when core0 is excited by 20W power input.

Hence we observe that temperature changes can be very
rapidly in a very short time and gradually reach a steady
state for a long time. This can cause the modeling problem
for GPOF method if linear sampling is used. To capture
the thermal change information, sampling interval needs to
very small, but this will lead to very large number of sam-
pled data (or intervals) due to the long tail of the thermal
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response reaching the steady state. As a result, we have to
use a very big N and consequently very big L, which cause
large dimensions of matrices Y1 and Y2 in GPOF. As a re-
sult, the following matrix operations such as multiplication,
inverse or singular value decomposition (SVD) become very
expensive.

In this paper, we propose to use logarithmic-scale sampling
(log-scale sampling for short) to mitigate this problem. If
we use the log-scale sampling for the same temperature re-
sponses in Fig. 3(a), we obtain the log-sampled temperature
response in Fig. 3(b), which clearly show how the tempera-
ture changes over the log-scale time gradually.

After the logarithmic operation of time, the converted time,
which is ln(time), will become negative. So we need to offset
it to make sure that temperature response always starts at
t = 0. And the offsetting will not affect GPOF operations.
After we obtain the transfer function from GPOF, we need
to compute the response in original time scale. We can get
the response back by using (19),

y′(t) = y(ln(t) + t0) (19)

where y′(t) is the response in normal time scale y(t) is the
response in log-scale; t0 is the offset, which is selected dif-
ferently based on different transfer function.

4.2 Stable poles and residues extraction
4.2.1 Stable pole extraction
The second problem with the GPOF method is that it will
not always generate stable poles for a given impulse re-
sponse. Actually GPOF model can give a very good match-
ing for a given impulse response for the sampled interval
while using positive poles. But outside the sampled interval,
the response from the model by GPOF can be unbounded
due to the positive poles.

Fig. 4(a) shows the extracted impulse response compared to
the original one for one of the cores. For this example, the
sampled time interval is from 0 to 1000 seconds. Except for
the very beginning (we will address this issue later), it can
be seen that the computed model matches very well with
the original model from time 0 to the 1000s(the correspond-
ing x = 18.55 in log-scaled x-axis with offset being 11.64).
But outside the time interval, if we extend the time scale to
1010 seconds, they are significant difference between the two
models. The computed models does not look like an impulse
responses and will go unbounded actually owning to the pos-
itive poles. Fig. 5(a) shows the extracted poles where not
all the poles extracted by GPOF are stable (negative real
parts).

To mitigate this problem, we propose to extend the time
interval for zero-response time. For any impulse response,
after sufficient time, the response will become zero (or nu-
merically become zero) as the area integration of the impulse
curve below is a constant. By sufficiently extending the time
interval for zero-response time in a impulse response, we can
make all the poles stable. The reason is that if we have posi-
tive poles, after sufficient long time, the response will always
go non-zero and eventually become unbounded assuming all
the poles are different numerically, which is always true prac-
tically. If we ensure the zero response for sufficient long time,
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Core0
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Figure 5: Poles distributions of unstable and stable
extracted transfer function

all the poles must be stable to have the zero responses for
very long time as response contributed by those poles will
decay to zero.

Using the same example, if we extend the time interval to
1010 seconds, which actually does not increase significantly
in log-scale, all the extracted poles become stable. Fig. 5(b)
shows the extracted poles by extending zero-response time to
1010s where all the poles are stable (with negative real part)
and Fig. 4(b) shows the extracted stable impulse response.
For different problems, we may need to find such a sufficient
time period. For all our problem, we find 1010s seems such
a good sufficient time for our example.

4.2.2 Stabilizing the starting response
After the log-scale sampling and numerical differentiation,
the obtained impulse response become zero numerically for
a short period as temperature changes at the very beginning
is very slow. For example, we consider the temperature of
core1 when only core0 is active. Assume that core0 is ac-
tive at t = 0, in the first very short time, such as t = 10−4s,
temperature response of core1, due to the delay in ther-
mal transmission, is probably still 0 and it may begin to
increase at t = 10−3s. Normally we consider the differ-
ence 10−4s and 10−3s as a small value, but in log-scale,
this difference is translated to a period of time with zero
responses at the beginning. And long zero-response time at
beginning may cause the significant discrepancies as shown
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in Fig. 6(a), although the computed response tends to be
accurate after some time period. This means this trans-
fer function we obtained is not accurate enough. Fig. 6(b)
shows a step response computed by the transfer function ob-
tained in Fig. 6(a). Obviously, it has noticeable difference
compared to the original one.
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Figure 6: Impulse and step response computed by
inaccurate model with large error in the starting
time.

The reason for this problem is that the log-scaled impulse re-
sponse is different than the typically impulse response from
physical RLC circuit in which the response goes to non-zero
immediately after t = 0. To resolve this problem, we propose
a method to truncate the beginning time of zero-response,
so responses could get to numerical non-zero immediately.
This can be achieved by setting threshold temperature to
locate the new zero time. And the computed temperature
responses before the new zero time will be all set to zero.
Fig. 7 shows the impulse and step response computed by
accurate model after truncating the beginning zeros.
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Figure 7: Impulse and step response computed by
accurate model with both improvements.

5. EXPERIMENTAL RESULTS
The proposed new algorithm has been implemented in Mat-
lab 7.0 and tested on the quad-core microprocessor architec-
ture shown in Fig. 1 from Intel. We first extracted transfer
function matrix of the system through a training data set,
which consists of the step responses for each core from other
cores. After extracting the transfer functions, we could ap-

0 200 400 600 800 1000
30

40

50

60

70

80

90

100
Temperature response for core0

Time (s)

T
em

pe
ra

tu
re

 (°
 C

)

original
computed model

(a) Temperature response
of core0 in linear scale.

10
−6

10
−4

10
−2

10
0

10
2

10
4

30

40

50

60

70

80

90

100
Temperature response for core0

Time (s)

T
em

pe
ra

tu
re

 (°
 C

)

original
computed model

(b) Temperature response
of core0 in log-scale.

Figure 8: Comparison results of core0’s temperature
when all cores are active (driven by 20W powers).
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Figure 9: Comparison results of cache’s temperature
when all cores are active (driven by 20W powers).

ply them to compute the thermal responses from any power
inputs with any time varying inputs.

Table 1: Difference when temperatures achieve the
steady state

Measured Computed Difference
Temp. (◦C) Temp. (◦C) percentage

Core0 88.96 88.78 0.22%
Core1 90.60 90.52 0.08%
Core2 90.04 88.94 0.11%
Core3 88.96 88.78 0.20%
Cache 68.46 68.32 0.20%

Our experimental data are each core’s temperatures mea-
sured directly from the center of the dies as we introduced
in Section 2, which are provided by Intel. At the beginning
all the cores are in zero state and have an initial environ-
mental temperature 35◦C. From t = 0 each core is excited
by a step power input of 20W simultaneously. And the tem-
perature of each core is collected from 0s to 1000s.

Now we verify the correctness of our model based on the
given thermal data also from Intel. For each transfer func-
tion, we set an order of 50. This is already enough for our
model. In practice, temperature on each core or cache can
be computed very fast by our model during any time in-
terval. Because our model is directly based on the transfer
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Table 2: Features of the difference between measured and computed temperatures
Difference (◦C) Difference percentage

Maximum Mean Std. deviation Maximum On average

Core0 0.46 0.25 0.08 0.89% 0.32%
Core1 0.27 0.18 0.07 0.42% 0.15%
Core2 0.37 0.16 0.08 0.73% 0.20%
Core3 0.46 0.24 0.08 0.88% 0.31%
Cache 0.31 0.16 0.08 0.51% 0.26%

function represented by poles and residues instead of state
space equations.

We show our comparison results of core0 and cache in Fig. 8
and Fig. 9 under normal linear time scale and log-scale,
respectively. The red solid curve represents the measured
temperature and the blue curve represents our computed
temperature. The simulation runs very fast and costs only
few minutes. From these result figures, we can see that our
model has very good accuracy. Actually, the temperatures
of other cores match well too. We could not show them here
due to limit of the maximum pages.

In Table 1 we show the temperatures when all the cores
achieve the steady state and the differences percentage. The
difference is only around 0.2%. Furthermore, Table 2 shows
some statistical features of the differences over all the sam-
pling time points, including the maximums, the means and
the standard deviations. Also, the maximum and average
percentages are given. From this table we can see the max-
imum difference is less than 0.5◦C and 1% and the average
difference is less than 0.3◦C and 0.3% for all the cores.

6. CONCLUSION
In this paper, we proposed a new architecture level thermal
behavioral modeling method. The new method, builds the
thermal behavioral models by using transfer function matrix
from the measured architecture thermal and power informa-
tion. We applied the generalized pencil-of-function (GPOF)
method to construct the impulse response functions from the
measured thermal data. To effectively model the transient
temperature changes, we have proposed two new schemes to
improve the GPOF. First we applied logarithmic-scale sam-
pling instead of traditional linear sampling to better cap-
ture the temperature changing characteristics. Second, we
modified the extracted thermal impulse response such that
the extracted poles from GPOF are guaranteed to be stable
without accuracy loss. Experimental results on a practical
quad-core microprocessor have demonstrated that generated
thermal behavioral models match the measured data very
well. The proposed method can also be applied to thermal
modeling of VLSI circuits at different granularity.
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