
ABSTRACT
Automated modeling strategies for analog circuits are becom-
ing more and more important. For complex analytic models,
the simulation performance plays a crucial role. This paper
presents a highly efficient model compilation based on sym-
bolic analysis. A main feature is the efficient exploitation of
advantageous equation structures (so-called sequential equa-
tions).

1.  INTRODUCTION
Simulation performance is an important criterion for effi-
cient verification of nonlinear analog circuits. A promising
approach to reduce simulation effort is the application of bot-
tom-up generated behavioral models. As manual modeling is
time-consuming and error-prone, an automated approach is
highly desirable. Symbolic analysis turned out to be a flexible
and efficient technique to derive accurate behavioral models
from a circuit design. The resulting analytic models are of
high accuracy and can be easily parameterized.

The symbolic analysis toolbox Analog Insydes [1] provides a
promising bottom-up modeling flow that is visualized in
Fig. 1. It derives differential algebraic equations (DAE) based
on an MNA formulation using linear as well as nonlinear
symbolic device models from a given circuit. A nonlinear
model reduction technique has been proven to efficiently
reduce the high complexity of the DAEs [2]. Subsequent
reformulation of the equations with regard to numerical
methods is used to enhance the simulation performance [3].
Finally, a behavioral model in an analog hardware description
language (AHDL) is generated from the reduced DAEs.

Despite efficient model reduction and optimization the simu-
lation performance of these models is still unsatisfactory as
was analyzed in detail in [4]. Unsimplified models with
100 % accuracy have been used for the performance analyses
and have been compared to the corresponding netlist-based
simulation (using the same simulator). Thus, comparable
conclusions regarding the simulation performance have been
drawn for different examples, simulators, as well as modeling
languages. The resulting figure of merit is the “slow down”
representing the simulation performance of a model normal-
ized to the performance of its netlist-based original. As the
models contain the same equations that have to be solved
within the netlist-based simulation, the expectation value for

the slow down would be one or slightly above. For the exam-
ple of the operational amplifier uA741 the slow down signifi-
cantly varies between 19 and 425 (for 4 widely used
commercial simulators using VHDL-AMS or Verilog-A).
This performance is unacceptably low and can hardly be
compensated by model reduction without significant loss of
accuracy.

The aim of this work is to generate compiled models that are
spezialized in efficiently dealing with high dimensional DAE
systems. Thus, any kind of limitations and drawbacks posed
by model compilers and AHDLs are avoided and the slow
down is reduced to reasonable values between 1 and 5. The
Titan simulator of Qimonda AG was chosen as simulation
environment [5]. Its behavioral simulation is based on a sub-
set of VHDL-AMS [6]. A new C-interface provides the
opportunity to integrate user-specified compiled models. The
model export of Analog Insydes was extended to directly
generate C-based models for Titan. Similar approaches exist
in the field of device model compilation [7, 8] (e.g. Verilog-A
to CMI). However, device model compilation is typically
more specific (e.g. requires admittance formulation) and
relies on (manually) optimized models. In contrast to that, the
model generation within Analog Insydes is applicable to gen-
eral DAE systems.

Figure. 1.  Bottom-Up Modeling Flow
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2.  ANALOG SIMULATION ALGORITHMS
SPICE-like simulators use Newton’s method to iteratively
calculate transient solutions for nonlinear dynamic circuits.
To solve a system of DAEs , it is discretized
over time by numerical integration methods with a variable
time step (see [9] for details). Within each time step, the
resulting nonlinear algebraic equations are iteratively linear-
ized within Newton’s method and solved by a linear solver.

 with (1)

Equation 1 shows the linear system where  is the Jacobian
matrix,  the Newton correction, and  the residual
(right-hand side). The Jacobian matrix is determined through
partial derivation of the algebraic equations:

. (2)

The actual solution  is determined from the previous
solution  and the Newton correction .  is
accepted as solution for a time step as soon as the conver-
gence criteria are met. Most important are the residual test
( ) and the test of the Newton correction
( ).

The network equations for circuits are set up via modified
nodal analysis (MNA). The linear equation system is derived
through “direct inspection” - all device models contribute
their “stamp” to the Jacobian matrix  and the right-hand
side. In behavioral simulation, the Jacobian matrix is deter-
mined from the equation set by symbolic derivation
(Equation 2).

Fig. 2 visualizes the iterative solving process and the interac-
tion between models and simulator kernel. The compiled
model calculates its matrix entries and the residual vector for
a solution vector provided by the simulator kernel. This pro-
cess step is called loading. The achieved linear system is
solved by a linear solver (using LU-factorization and for-
ward-/backward-substitution) and yields a Newton correc-
tion (the solving process). The simulator kernel checks for

convergence and - if necessary - computes a new solution
vector.

The CPU time of the simulation scales linearly over the num-
ber of necessary Newton iterations, with the latter depending
on the number of performed time steps. The solving perfor-
mance is dominated by the dimension and the structure (spar-
sity, ordering) of the linear system. The performance of the
loading process is related to both the evaluation performance
for a large number of complex expressions as well as to the
communication between model and simulator kernel. The lat-
ter is realized through a shared memory and is therefore
determined by the amount of data to copy (which itself is
influenced by dimension and sparsity).

The task of a model compiler is to convert an AHDL-based
behavioral model into an efficient compiled model. This
includes the generation of code for the following process
steps:

• Structural information (connectivity, matrix structure)

• Calculation of Jacobian matrix and residual

• Parameter handling

• Initial values

• Numerical integration

• Prevention of numerical problems

• Definition of options and tolerances for the solver

3.  MODEL COMPILATION
Due to the highly specialized application of compiling com-
plex DAEs for an efficient simulation a new model compiler
was developed. Especially the large number of equations
used to result in performance problems when modeled with
AHDLs and compiled with common model compilers. The
new concept was to process the behavioral model similarly to
a device model and to thereby achieve competitive perfor-
mance to netlist-based simulations.

One of the main concepts is to take advantage of so-called
sequential equations. The first order DAE system

 with

sequential variables

simultaneous variables

sequential equations

simultaneous equations

is a DAE system with sequential structure, if  is of the
form

 for .

The sequential equations are explicit for their corresponding
sequential variable and ordered in such a way that they can be
solved procedurally with a given solution of the simultaneous
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Figure. 2.  Simulation Cycle
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variables. Hence, they do not need to be solved within the lin-
ear solver but will be calculated locally within the model.
Thus, the dimension of the linear system can be reduced sig-
nificantly leading to performance improvements. Further-
more, the direct solution of these explicit (nonlinear)
equations enhances the convergence. The previous compiler
for Titan did not support a modeling method to use sequential
equations.

The bottom-up model generation is based on Analog Insydes
and starts from a circuit netlist. As described above, the sys-
tem of DAEs is set up. To ensure a fair performance compari-
son with the netlist-based simulation, no model reduction is
applied. In [3], algorithms have been presented that optimize
DAEs with respect to sequential equations. The optimizations
maximize the number of sequential equations, perform com-
mon subexpression elimination, and remove redundancy
(copy propagation) to speed-up the model evaluation without
loss of accuracy. To take advantage of these optimizations the
model compiler has to support sequential equations.

Afterwards, the equations are exported to a C-based model.
This model is finally compiled with a standard C-compiler
and the resulting library is dynamically linked to the simula-
tor kernel. Still, optimizing the DAEs alone does not solve
the performance problem. The focus of this paper is on the
code generation to achieve optimal simulation performance.
Data structures, efficiency of the algorithm’s implementation,
as well as code optimizations determine the performance of
the resulting model to a large degree.

3.1.  Newton’s Method for Sequential DAEs

How can Newton’s method actually take advantage of the
sequential structure of a DAE system? Let  be
a DAE system with sequential structure. The vector of
unknowns consists of the sequential variables  and the
simultaneous variables . Setting up the linearized system
yields the following equation system:

(3)

Due to the lower diagonal structure of  resulting from the
ordering and properties of sequential equations, it is possible
to solve the sequential subsystem for  in an explicit form
(  is regular due to its diagonal structure). The Newton
correction for the sequential variables yields

. (4)

By substituting  into the simultaneous subsystem we
achieve a linear system of reduced dimension that has to be
solved for the Newton correction of the simultaneous vari-
ables :

(5)

(6)

As the sequential variables  can be determined via direct
solution of the sequential equations with the previous solu-
tion vector of  through

 for , (7)

their residual  is zero. Hence the residual of the
reduced system can easily be determined with the knowledge
of . Consequently, Newton’s method has to be applied to
solve

(8)

with the reduced Jacobian matrix obtained by the Schur
complement:

(9)

 represents the Jacobian matrix for the simultaneous sub-
system taking into account additional contributions to the
original Jacobian matrix resulting from the evaluation of the
chain rule for the sequential equations.

3.2.  Schur Complement

Calculating the Schur complement (refer to Equation 9) is
based on structural matrices. Within these matrices, all non-
zero entries of the original matrix are represented by a refer-
ence element (row/column index). The operator 
applied to a matrix containing symbolic expressions returns
the corresponding structural matrix.

There are several solutions to evaluate the chain rule from the
submatrices  of the complete Jacobian
matrix . The resulting  matrix is the same for all
approaches. Nevertheless, the implementation significantly
determines their efficiency:

• Symbolic Schur Complement: All sequential variables
within the simultaneous equations are substituted by their
determining sequential equations. Subsequently, a fully
symbolic  matrix is set up by symbolic derivation. This
approach results in an expression set of tremendous com-
plexity with a high degree of redundancy. The complexity
of the expressions alone disables this procedure even for
low dimensional DAE systems.

• Numeric Schur Complement: The full Jacobian matrix 
is set up by symbolic derivation during the model compila-
tion (as for both following methods). After numerically
evaluating this matrix within each iteration, the reduced
Jacobian  is calculated from (9). This approach requires a
matrix inversion and two matrix multiplications without
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exploiting the structural knowledge of the problem (high
sparsity, lower diagonal structure).

• Semi-Symbolic Schur Complement: This method com-
bines the strengths of both numeric and symbolic process-
ing. Therefore, the structural Jacobian matrix

 is set up and the Schur complement is sym-
bolically calculated from to derive . Finally, evaluating

 and  results in the reduced Jacobian matrix . Hence,
the Schur complement takes advantage of structural zeros
within . Unfortunately, the necessary symbolic matrix
operations still result in extraordinary high complexity (dis-
abling the approach starting from medium size matrices).

• Semi-Symbolic Schur Complement by an Elimination
Method: In order to reduce the complexity of the previous
approach, a method with low redundancy (no repetition of
performed calculations) and maximal usage of structural
properties of the matrices (exploitation of structural zeros
and ones) is proposed. Instead of calculating the Schur com-
plement based on , the submatrix  is
eliminated with the diagonal elements of submatrix

 that are structurally one. The per-
formed elimination steps are “recorded” and represent a
procedurally evaluated transformation to calculate  from
the submatrices of . Thus, the high complexity of a fully
symbolic matrix can be avoided. The transformation
process has the advantage of containing a large number of
very simple expressions (instead of a small number of
highly complex expressions for the previous method).

Due to its advantageous properties, the latter approach was
chosen. Fig. 3 shows the proposed elimination method. The
Schur complement is calculated from a two-stage elimina-
tion process. Within the first step, the submatrix  is col-
umnwise eliminated using the diagonal elements to achieve
an identity matrix. The elimination starts with the first col-
umn. During the processing, the submatrix  is gradually
altered into . Fig. 3 (left) exemplarily shows a single step
of the proposed elimination method. To eliminate the entry

, an elimination step is added to the transformation rules:

(10)

During the elimination, fill-ins (former structural zero ele-
ments) are generated within the submatrix . Within a sec-
ond step, the entries of the submatrix  are eliminated
using the derived identity matrix. Fig. 3 (right) shows the
elimination scheme for this stage. The elimination is per-
formed rowwise and results in the desired chain rule contri-
butions within submatrix . Finally, the gray part of the
matrix in Fig. 3 (right) is provided to the simulator as reduced
Jacobian matrix. The elimination typically results in a large
number of transformation steps to perform. Still, a single
elimination step is of very limited complexity. The transfor-
mation process itself can be effectively optimized by the C-
compiler.

3.3.  Optimization

Further enhancements to the performance of the model have
been achieved through strategies known from compiler
design - constant propagation, constant folding, copy propa-
gation, and preevaluation of loop-invariant expressions
(see [10] for details on compiler design). As the optimiza-
tions are already carried out on a relatively high abstraction
level (the DAEs), they are much more efficient than relying
on the C-compiler’s code optimizations. Previous analyses
made it obvious that commercial model compilers do not suf-
ficiently apply such optimizations [3].

Especially the common subexpression elimination - applied
to both symbolic Jacobian matrix and function evaluation -
yields very good speed-ups (20 to 40 %). The algorithm rec-
ognizes reoccuring subexpressions and replaces them by an
additional sequential variable and equation. Furthermore, it is
highly desirable to handle as many equations as possible
sequentially. A recognition algorithm scans the set of simul-
taneous equations in order to recognize additional sequential
equations. Thus, the dimension of the simultaneous sub-
system is efficiently reduced. Please refer to [3] for details on
both algorithms.

Constant propagation identifies constants assigned to a vari-
able and removes the corresponding variable by replacing all
its occurences with the constant’s value (saving evaluation
time and memory). As the Jacobian matrix  contains a rela-
tively large number of constant nonzero entries (especially
ones) and simple expressions consisting only of parameters
(e.g. 1/R), those entries have been recursively propagated
into the transformation rules of the Schur complement. Com-
bined with constant folding (preevaluation of expressions
containing only constants) the Schur complement could be
simplified efficiently.

Finally, the preevaluation of loop-invariant expressions saves
unnecessary evaluations within a loop. This strategy is
adapted as so-called preloading within simulators. The con-
stant entries of the reduced Jacobian matrix  are loaded
only once within the initialization of the model instead of
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being processed repeatedly within each iteration. Further-
more, sub expressions that consist only of parameters and
constants are recognized and evaluated within the initializa-
tion phase. Thus, the computational effort and the number of
necessary memory accesses within each iteration is further
reduced.

There are plenty of features that could not be covered within
this publication due to limited space. For the sake of high
efficiency and high robustness special attention was payed to
the following aspects:

• Tolerances - to assure adequate accuracy.

• Limiting functions - to avoid numerical problems (e.g.
floating point exceptions) for nonlinear functions.

• Initial values - to enhance DC convergence and avoid
numerical problems (e.g. division by zero).

• Sparse data structures and algorithms - to assure good
performance for high dimensional sparse systems.

• Data locality - to reduce the cache miss rate and thereby
enhance performance.

• Structural information and checks - to enable pivoting
strategies and guarantee solvability.

4.  RESULTS
To evaluate the simulation performance of the compiled mod-
els, four analog blocks have been modeled without applica-
tion of model reduction using the described flow:

• cfcamp – a complementary folded-cascode operational
amplifier in degenerative feedback (unity gain buffer),
pulse input voltage (500 kHz frequency, 1.3 V amplitude,
900 GV/s slew rate, 450 mV DC), 19 BSIM3 instances

• multiplier – a small circuit “multiplying” two input volt-
ages, 8 Gummel-Poon instances

• nand2 – a NAND gate, input stimuli trigger all states (1.5 V
supply voltage, 1.5 GV/s slew rate), 4 BSIM3 instances

• opamp741 – the uA741 operational amplifier in degenera-
tive feedback (unity gain buffer), pulse wave input voltage
(220 kHz frequency, 200 mV amplitude, 2 MV/s slew rate),
26 Gummel-Poon instances

These models are an exemplary selection of typical nonlin-
ear applications for the presented modeling method. The big-
gest example (cfcamp) consists of 19 transistors modeled
with the fully symbolic BSIM3 model resulting in the enor-
mously complex model of ~1300 equations. As the focus is
on perfomance measurements only, no waveforms will be
shown. As no model reduction was applied, the models’
accuracies are still 100 %, resulting in identical simulation
results.

The comparison is based on unsimplified models of different
optimization levels and compared to the netlist-based simula-
tion (Cir.) as reference:

• Simultaneous Model - All equations are modeled simulta-
neously and solved by the linear solver (Sim.)

• Sequential Model - Sequential equations defined within the
symbolic device models are locally solved (Seq.)

• Optimized Model - An optimized sequential model formu-
lation [3] using local solving (Opt.)

The simulation settings and model equations have been set up
carefully to ensure equal conditions for the compared simula-
tions. The results in Table 1 show the number of sequential
and simultaneous model equations. Note that the sequential
equations are solved locally whereas the simultaneous equa-
tions require the application of an iterative solving method.
The average number of Newton iterations per time step is a
convergence criterion (2 is pretty much “perfect conver-
gence”). Finally, the overall performance is indicated by the
CPU time spent for the transient analysis and compared to the
circuit simulation by the slow down (CPU time normalized to
the netlist-based reference simulation).

As Fig. 4 shows, the simulation performance has been signif-
icantly enhanced by locally solving as many equations as
possible. This leads to a reduced dimension of the linear sys-
tem that has to be solved by the simulator kernel. In fact, the
optimized systems have almost the same dimension (number
of simultaneous equations) as the netlist-based simulation -
which is an important prerequisite for competitive perfo-
mance. Solving behavioral models of such high complexity

Example
Seq. 
Eqs.

Sim. 
Eqs.

Iter/
Step

TCPU
Slow 
Down

bsim3

Cir. n/a (4) 1.94 0.154 s 1

Opt. 68 4 1.94 0.208 s 1.35

Seq. 68 8 2.61 0.414 s 2.69

Sim. 0 72 3.11 1.209 7.85

cfcamp
(BSIM3)

Cir. n/a (16) 2.1 1.076 s 1

Opt. 1261 22 2.9 7.984 s 7.4

Seq. 1205 78 2.9 30.193 s 28.0

multiplier
(Gummel 

Poon)

Cir. n/a (23) 2.0 0.344 s 1

Opt. 70 20 2.90 0.488 s 1.42

Seq. 48 42 2.95 0.764 s 2.22

Sim. 0 90 2.97 1.3 s 3.78

opamp741
(Gummel 

Poon)

Cir. n/a (53) 2.25 1.050 s 1

Opt. 246 63 3.05 1.802 s 1.72

Seq. 177 132 3.05 3.001 s 2.86

Sim. 0 309 3.10 6.452 s 6.14

nand2
(BSIM3)

Cir. n/a (6) 2.09 0.314 s 1

Opt. 270 6 3.21 1.271 s 4.05

Seq. 254 22 3.25 2.72 s 8.66

Table 1. Performance Results
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(~1300 eqs.) could only be achieved by efficient processing
and local solving. Even more, a performance quite close to
the theoretical optimum of a slow down of one has been
reached (1.4 to 7.4). Compared to the performance that was
previously achieved with models realized in VHDL-AMS or
Verilog-A, the CPU-time was reduced by factors of at least
10 (e.g. opamp741, from slow down 19 to 1.72). In the past,
simulation of behavioral models based on BSIM3 was utterly
impossible due to lacking consideration of sequential equa-
tions and the resulting numerical problems. Furthermore, a
slow down of 7.4 for the highly complex cfcamp model
(compared to previously 64 using a Verilog-A model [11]), is
a great achievement. The remaining overhead can easily be
compensated by efficient model reduction, which has yielded
a speed up of factor 40 with a 10 % accuracy of the output
voltage for this example [11].

5.  CONCLUSIONS
The presented work describes the integration of a high-per-
formance model compilation into the symbolic analysis tool-
box Analog Insydes. It enables the future usage of the tool for
bottom-up modeling purposes with competitive simulation
efficiency. The compiler generates specialized C-based mod-
els for a compiled model interface of the Titan simulator.
Compared to AHDL-based models, a significant improve-
ment of the simulation performance by at least one order of
magnitude was achieved.

Especially the efficient handling of sequential equations led
to a major speed-up resulting from a local solving method
and a significantly reduced dimension of the equation system
that has to be solved by iterative methods. Furthermore, the
convergence of the highly nonlinear and complex DAE sys-
tems was improved by the same means.

The compiler has been proven to be capable of handling
models of up to 1300 equations based on a fully symbolic
BSIM3 model. By combining the presented model generation
with the nonlinear model reduction, a fully automated bot-
tom-up modeling method to generate high-performance ana-

lytic models is available.

Future aspects of the modeling flow include an extension of
the general model compilation strategy for other simulator
interfaces (e.g. Cadence’s CMI). Furthermore, a user-friendly
integration into the Cadence Design Framework II is planned.
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Figure. 4.  Comparison of Slow Down Factors
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