
Certify- A Characterization and Validation Tool for Behavioral

Models
 Weifeng Li

University of Arkansas
wxl002@uark.edu

 Omair Abbasi
University of Arkansas

omair.abbasi@gmail.com

Naveed S. Hingora
University of Arkansas

nhingor@uark.edu

Yongfeng Feng
University of Arkansas

yfeng@uark.edu

H. A. Mantooth
University of Arkansas
mantooth@uark.edu

ABSTRACT

Device modeling plays an important role in VLSI circuit design

because computer-aided circuit analysis results are only as

accurate as the models used. This indicates a need for robust

tools that can facilitate the testing, validation and

characterization procedure of semiconductor device models.

Certify, the graphical tool for model characterization and

validation, is a step in this direction [1]. The software

architecture and different modules of Certify have been

described in this paper.

1. INTRODUCTION

As semiconductor devices scale into the nanometer range, the

fabrication process of these device structures becomes more

time consuming and expensive. As a result, modeling is having

an increasingly important role, as one can perform simulations

much faster with much less cost, and different device

geometries can be investigated before their actual fabrication.

Writing a model which can accurately depict the characteristics

of a real device is a challenging task. An efficient model should

not only include the device characteristics in normal conditions

of operation but should also be able to accurately depict the

device behavior under worst case conditions such as high

temperature ranges, extreme conditions etc. There are various

programming languages in which such models can be written.

They can be written in popular programming languages such as

C and C++. Models for most popular circuit simulator SPICE

(and its variants), are written in C. A second choice is writing

these models in Hardware Description Languages (HDLs). The

syntax of HDLs is easier to understand as they deal specifically

with the problems of describing hardware. Various HDLs are

available today for different purposes. VHDL and Verilog were

invented to describe digital systems. Then came MAST [2],

VHDL-AMS [3] and Verilog-AMS [4] which are used to

describe analog and mixed–signal systems. Though HDLs

simplified the model creation process significantly, the modeler

still had no escape from customs and practices of coding and

debugging [1].

Writing a model solves just half of the problem. The other half

is testing, characterizing and validating the model. The process

of extracting the optimum values of model parameters is called

model characterization. Once the model is characterized it has

to be validated by simulating it under various test conditions

and then comparing the results with the results of actual device.

Modelers greatly feel the need for a tool which can facilitate the

whole characterization and validation process. This paper

describes a software tool called Certify that is specifically

designed to fulfill this need. Certify reads semiconductor

device models written in the Common Model eXchange (CMX)

language in order to test and characterize them [5][6]. The

modeling tool Paragon was developed as a graphical editor for

this format [7]. In addition, different hardware description

languages such as Verilog-A, Verilog-AMS, VHDL-AMS, or

MAST can be converted to CMX using the commercial version

of Paragon, ModLyng tool of Lynguent, Inc [8]. Using Certify,

a user can work in a virtual test bench environment. Virtual test

benches can be added and deleted in a highly user friendly

Graphical User Interface (GUI). Experiments for each test

bench can be defined and whole recipes can be saved. Certify

has an in-built optimizer that can be used to optimize the model

parameters and thus, characterize the model.

2. CERTIFY

Certify UI consists of a test-bench editor, an experiment editor,

analyses dialogs, and an optimizer dialog. It is fully integrated

with Saber Simulator [9] and partially integrated with Virtual

Test Bed (VTB) simulator [10]. Certify makes calls to

ModLyng to extract the model information in CMX format.

The elaborator module of Certify calls the appropriate

simulator in order to test and characterize the desired model.

Figure 1 shows a brief overview of how the different

components of Certify interact with ModLyng and the

simulators. The following sections describe each component in

further detail.

978-1-4244-1567-0/07/$25.00 © 2007 IEEE 40

Figure. 1. Block diagram showing the interaction between Certify,

ModLyng and Saber Simulator

2.1. Certify GUI

Figure 2 shows the test bench editor of Certify, which is also

the main window. Users can create test benches, run the whole

recipe, and set constraints for model parameter optimization.

Users can also save and load the whole recipe. As the

procedures for testing different devices are mostly the same, the

users can reuse the saved recipes by simply replacing the model

files and netlists.

The test-bench recipe is composed of the device model under

test. Every individual test-bench consists of a netlist containing

the device, and experiments to test the device. One can add

multiple benches on the test bench editor.

Figure. 2. Certify main window or test bench editor

The small buds on the right of test benches are experiments.

Users can add multiple experiments to one test bench by right

clicking the test bench block. By double clicking the

experiment buds, the experiment editor can be invoked. Figure

3 shows the screenshot of the experiment editor.

Figure. 3. Experiment Editor of Certify

On the experiment editor users can define experiments to

simulate the circuit and compare the measured data to the

simulated data. The various analyses implemented in Certify

include DC Analysis, AC Analysis, Transient Analysis, and

DC Transfer Analysis. Users can also perform vary function to

these analyses, which can sweep part parameter values and

execute the analyses at each swept value within a user-specified

range [9]. After the simulation, the user can also choose to get a

result report. Figure 4 shows the DC Transfer analysis dialog.

Figure. 4. DC Transfer Analysis Dialog

Once the model file is imported, users can call the parameter

spreadsheet to set values of desired parameter for the

optimization as shown in figure 5.

41

Figure. 5. Model Parameter Spreadsheet

After setting up the parameter values, the optimizer can be

invoked by clicking the “Run” button of the parameter

spreadsheet. The optimizer can alter parameter values for

simulation and optimization. It can also draw graphs of the

target file and simulated result for comparison.

Figure. 6. GUI of the optimizer

2.2. Import models and extract model parameters

Certify is using ModLyng to get parameter names and values

from model files. Figure 7 shows how certify interacts with

ModLyng.

Model Files in
Multiple HDLs Certify GUIImport ModLyng

Return

Call

Figure. 7. the process of Certify to get model parameters

ModLyng is able to read AMS models written in various HDLs

such as Verilog-A, Verilog-AMS, VHDL-AMS, or MAST. In

the meantime, ModLyng itself is a powerful tool to create AMS

models and can be saved in Common Model eXchange (CMX)

format and can be converted to different HDLs.

The information Certify will need are the model parameter

names and their initial values. When users click the parameter

spreadsheet button, Certify will call ModLyng to parse and

extract information from the model file. After ModLyng

returns the parameter names and values, the parameter

spreadsheet will come up as shown in figure 5.

Models written in languages other than MAST need to be

converted to MAST by using ModLyng to perform Saber

simulations. For the VTB simulator, the model needs to be

already present in the VTB library before executing the

simulation task.

2.3. Process of model characterization/optimization

Figure 8 shows the methodology of the model characterization.

Experiments are setup with a test circuit containing the device

model under test with initial parameter values. Then simulation

is performed, and the simulation results are compared with

target data. The comparison is made by a cost function. If the

cost function value is minimum, the corresponding model

parameters are optimized. If not, model parameter values are

altered and the simulation is performed again. The comparison

between simulation results and target data are made again. This

process continues until the optimum match is acquired. This

technique is also referred to as the simulator-in-loop method

[11].

Model
Parameters

Netlist

Formulated
Model Device

Eqations

Setup
Experiments
and Simulate

Simulated
Results

Pysical
Experiment

Setup

Pysical
Experiment

Results

Match?

NO

Model with New
Parameter Values

YES

Figure. 8. Model characterization methodology [1]

Figure 9 shows the detailed procedure of optimization. The

strategy is to change one parameter value at a time. Other

parameters are temporarily fixed while the chosen one is being

optimized. If the user opts for the automated procedure, Certify

will optimize the parameters one by one. The user can also

choose which parameter to be optimized.

Extract
Parameters

Input Range of
the Parameters

Change one parameter while other
parameters are fixed. Simulate and get the

local optimum

Local Optimum
Good Enough?

All Parameters
Optimized?

YES

Final Global
Optimum Satisfied?

YES

End of
Optimization

YES

NO

NO

NO

Figure. 9. Optimization Flowchart

42

2.4. Simulator Integration

Certify has been fully integrated with Saber simulator and

partially integrated with the VTB simulator. At test-bench

run-time the user is given the option to choose either of the two

simulators to perform the simulation as shown in the following

figure.

Figure. 10. Simulator Option Dialog

2.4.1. Integration with Saber Simulator
Certify has an in-built module called elaborator that uses the

information from the Certify Database to get the desired results.

For the Saber simulator, the elaborator converts all of the

information in the analyses blocks of the database into Saber

specific commands. A “.scs” extension analysis file is created

for every analysis inside an experiment and this file is passed

on to the Saber simulator for simulation. Thus, different

analyses are performed for different calls of Saber simulator. A

sample (.scs) script for a dc sweep analysis with vary over the

primary voltage source is shown in the following figure.

Figure. 11. Saber Script (.scs) File

The GUI of optimizer (figure 6) is created by an “.aim” script

file generated by the module called AIMoptimizer. This

module gathers information about the model parameters from

the parameter spreadsheet, and gets the simulation commands

from the module elaborator to generate the script. Using this

optimizer, Certify can call the Saber simulation to alter

parameter values and perform simulation. Figure 12 shows an

example of the generated .aim script file.

Figure. 12. AIM Script (.aim) File

2.4.2. Integration with VTB

When the option VTB is exercised at test-bench run time, a

second elaborator in Certify is invoked that carries on the task

of extracting the analysis information from the database file

and calling a C# executable that in turn controls the VTB

simulator. Work is underway to be able to tweak more

simulation parameters in VTB and also, go beyond the transient

analysis capability of VTB to implement DC sweep and AC

analysis.

3. SOFTWARE DESIGN

Certify was written in Python programming language. Python

is an interpreted, interactive, object-oriented programming

language [12]. The GUI of Certify was developed using PyQt

toolkit. PyQt is a set of Python bindings for the Qt toolkit [13].

The bindings are implemented as a set of Python modules. Qt is

primarily a GUI toolkit.

3.1 Architecture Design of Certify

The software architecture of Certify is described through a data

flow diagram. Figure 13 shows the architecture of Certify. Test

Bench Editor is the main window of Certify, which gathers the

inputs from the users and it calls the tools and modules such as

schematic and drawing manager, database manager, elaborator

and experiment editor to capture the recipe and run the

experiment. Experiment editor is called by test bench editor and

it defines the analysis to be done on the circuit. Schematic and

drawing manager manage the objects and the drawing activities

on the canvas of test bench editor and experiment editor.

Database Manager writes all information of Certify in a

database file during save operation and loads all information

during load operation. Elaborator reads the certify database and

implements functions to interact with the Saber/VTB simulator

and the optimizer to run the whole test-bench recipe.

43

Figure. 13. Architecture of Certify [1]

3.2 GUI Design of Certify

Figure 14 shows the components of the Certify GUI and how

they are bond together. Schematic objects module is a sub

module of the schematic and drawing manager. It defines all of

the objects drawn in both the test bench editor and the

experiment editor. The objects include the ellipses representing

the start and end point of the flow, the rectangles representing

the test benches and the analyses blocks, the small buds that

represent experiments and invoke the experiment editor, and

the connector to connect different objects to form the recipe

flow. The parameter spreadsheet sub module reads the

information of the device model from ModLyng and forms a

spreadsheet to control the model parameters for

characterization. The analysis dialog module connected to the

experiment editor defines the data structures of the analysis

dialogs. The Model Characterization Tool (MCT) properties

module defines the common frame for all the analysis dialogs

such as the dialog size, the function of the “Apply”, “OK” and

“Cancel” buttons. All this information can be saved by database

manager in XML format.

Figure. 14. Control Flow of Certify GUI [1]

3.3 Data Structure Design of Certify

There is a set of data structures associated with each object in a

canvas. These data structures are mostly Python strings, lists

and dictionaries. Listing 1 shows a part of the actual code for

the data structure of properties of DC analysis. In this example,

all data structures are strings and are initialized to some value

when they are created.

Listing 1 a part of the data structure of DC analysis properties

 #dcAnalysisDataStruc()
 #
 #this data struc will be initialized if it is a dc analysis block

def dcAnalysisDataStruc(self):
 self.samplePointDensity="0"
 self.monitorProgress=""
 self.holdNodes=""
 self.releaseHoldNodes="yes"
 self.displayAfterAnalysis="no"
 self.optimizeParameters="no"
 self.signalList=""
 self.waveformsAtPins="Across Variables Only"
Certify uses the build in data type “dictionary” in python to

store the data. Dictionary is called “associative memories” or

“associative arrays” in some other languages and it is formed of

unsorted key: value pairs [12]. Listing 2 shows some part of the

code of the method called “createProperDict” which was

implemented as part of data processing for Certify. This

method creates dictionaries whose keys contain the name of an

attribute (of some node) to be used in an XML file and the value

of the dictionary as the value of that attribute. In other words, it

is the mapping between the internal data structures in the code

and their names in the output XML file.

Listing 2 Part of the code using dictionaries

#createProperDict()
#
#creates proper dictionaries which hold the data name and their value
#if you need to add anything to the database just add another item to
the dic.
#with key as the name you want in database and value as the
corresponding data struc
def createProperDict(self):
 #self.dataDic={}
 self.basic={}
 self.io={}
 self.calibration={}
 self.algorithmSelection={}
 self.integrationControl={}

if self.analysisType=="DC":
 #data struc for basic
 self.basic["SamplePointDensity"]=self.samplePointDensity
 self.basic["MonitorProgress"]=self.monitorProgress
 self.basic["HoldNodes"]=self.holdNodes
 self.basic["ReleaseHoldNodes"]=self.releaseHoldNodes

44

All the data contained in the data structures is converted into a

Document Object Model (DOM) [14] tree by the Database

Manager when the user saves the information. A DOM

implementation presents an XML document as a tree structure

or allows client code to build such a structure from scratch. It

then gives access to the structure through a set of objects which

provide well-known interfaces. This DOM tree is finally saved

in the form of a XML file. Python has a built-in XML parser in

a module called “xml.dom.minidom.” This module was used in

Database Manager to save and load all the information to and

from the database. Figure 14 shows a part of the saved XML

file.

Figure. 14. Part of the saved data in XML format

4. CONCLUSION

The tool described in this paper enables the modelers to quickly

and effectively validate and characterize a semiconductor

device model. Standard validation and characterization recipes

can be created and stored. These recipes can be re-used again

for other models. This saves lot of time. Also, all simulation

parameters can be saved and the user doesn’t need to fill the

simulation information every time a similar type of simulation

needs to be performed.

Certify is using ModLyng to read the model parameters and

values from various HDLs in order to test and optimize a model

using Saber or VTB simulator. By using ModLyng, models

written in other languages can also be translated into MAST,

which make it possible for Saber simulator to simulate the

circuits.

REFERENCES

[1] O. Abbasi, Certify: A Tool for Model Characterization and

Validation, Masters Thesis, University of Arkansas,

Fayetteville, Arkansas, May 2006.

 [2] MAST – Analog, Mixed – Technology and Mixed – Signal

HDL for Saber.

www.synopsys.com/products/mixedsignal/saber/mast_ds.html

[3] P. J. Ashenden, G. D. Peterson, D. A. Teegarden, The

System Designer's Guide to VHDL-AMS, Morgan Kaufmann

Publishers, San Francisco, CA, 2002.

[4] Accellera Verilog Analog Mixed-Signal Group.

www.eda.org/verilog-ams/

[5] Common Model eXchange (CMX), cmx.sourceforge.com

[6] A. M. Francis, V. Chaudhary, H. A. Mantooth, “Compact

semiconductor device modeling using higher level methods”

Proceedings of IEEE 2004 International Symposium on

Circuits and Systems, vol.5, 23-26 May 2004, pp 109-112.

[7] V. Chaudhary, A. M. Francis, X. Huang, H. A. Mantooth,

“Paragon-A Mixed-Signal Behavioral Modeling

Environment,” Proceedings of IEEE 2002 Communications,

Circuits and Systems and West Sino Expositions, vol 2, 29

June-1 July 2002, pp 1315- 1321

[8] ModLyng™ Integrated Development Environment,

www.lynguent.com/products/modlyng.html

[9] Saber® Simulator Guide Reference Manual,

www.synopsys.com/products/mixedsignal/saber/saber.html

[10] Virtual Test Bed Professional (VTB Pro),

www.vtbpro.com/index.htm

[11] H. Gunupudi, Survey of Optimization Algorithms for

Model Parameter Extraction, Masters Thesis, University of

Arkansas, Fayetteville, Arkansas, Dec. 2005.

[12] Fred L. Drake, Python Tutorial,

http://docs.python.org/tut/tut.html

[13] QT overview, Trolltech.

http://www.trolltech.com/products/qt/

[14] W3C Document Object Model (DOM).

http://www.w3.org/DOM/

45

