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ABSTRACT 

Device modeling plays an important role in VLSI circuit design 

because computer-aided circuit analysis results are only as 

accurate as the models used. This indicates a need for robust 

tools that can facilitate the testing, validation and 

characterization procedure of semiconductor device models. 

Certify, the graphical tool for model characterization and 

validation, is a step in this direction [1]. The software 

architecture and different modules of Certify have been 

described in this paper. 

1. INTRODUCTION

As semiconductor devices scale into the nanometer range, the 

fabrication process of these device structures becomes more 

time consuming and expensive. As a result, modeling is having 

an increasingly important role, as one can perform simulations 

much faster with much less cost, and different device 

geometries can be investigated before their actual fabrication.

Writing a model which can accurately depict the characteristics 

of a real device is a challenging task. An efficient model should 

not only include the device characteristics in normal conditions 

of operation but should also be able to accurately depict the 

device behavior under worst case conditions such as high 

temperature ranges, extreme conditions etc. There are various 

programming languages in which such models can be written. 

They can be written in popular programming languages such as 

C and C++. Models for most popular circuit simulator SPICE 

(and its variants), are written in C.  A second choice is writing 

these models in Hardware Description Languages (HDLs). The 

syntax of HDLs is easier to understand as they deal specifically 

with the problems of describing hardware. Various HDLs are 

available today for different purposes. VHDL and Verilog were 

invented to describe digital systems. Then came MAST [2], 

VHDL-AMS [3] and Verilog-AMS [4] which are used to 

describe analog and mixed–signal systems. Though HDLs 

simplified the model creation process significantly, the modeler 

still had no escape from customs and practices of coding and 

debugging [1]. 

Writing a model solves just half of the problem. The other half 

is testing, characterizing and validating the model. The process 

of extracting the optimum values of model parameters is called 

model characterization. Once the model is characterized it has 

to be validated by simulating it under various test conditions 

and then comparing the results with the results of actual device. 

Modelers greatly feel the need for a tool which can facilitate the 

whole characterization and validation process. This paper 

describes a software tool called Certify that is specifically 

designed to fulfill this need. Certify reads semiconductor 

device models written in the Common Model eXchange (CMX) 

language in order to test and characterize them [5][6]. The 

modeling tool Paragon was developed as a graphical editor for 

this format [7].  In addition, different hardware description 

languages such as Verilog-A, Verilog-AMS, VHDL-AMS, or 

MAST can be converted to CMX using the commercial version 

of Paragon, ModLyng tool of Lynguent, Inc [8]. Using Certify, 

a user can work in a virtual test bench environment. Virtual test 

benches can be added and deleted in a highly user friendly 

Graphical User Interface (GUI). Experiments for each test 

bench can be defined and whole recipes can be saved. Certify 

has an in-built optimizer that can be used to optimize the model 

parameters and thus, characterize the model. 

2. CERTIFY 

Certify UI consists of a test-bench editor, an experiment editor, 

analyses dialogs, and an optimizer dialog.  It is fully integrated 

with Saber Simulator [9] and partially integrated with Virtual 

Test Bed (VTB) simulator [10]. Certify makes calls to 

ModLyng to extract the model information in CMX format. 

The elaborator module of Certify calls the appropriate 

simulator in order to test and characterize the desired model. 

Figure 1 shows a brief overview of how the different 

components of Certify interact with ModLyng and the 

simulators. The following sections describe each component in 

further detail. 
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Figure. 1. Block diagram showing the interaction between Certify, 

ModLyng and Saber Simulator 

2.1. Certify GUI 

Figure 2 shows the test bench editor of Certify, which is also 

the main window. Users can create test benches, run the whole 

recipe, and set constraints for model parameter optimization. 

Users can also save and load the whole recipe. As the 

procedures for testing different devices are mostly the same, the 

users can reuse the saved recipes by simply replacing the model 

files and netlists. 

The test-bench recipe is composed of the device model under 

test. Every individual test-bench consists of a netlist containing 

the device, and experiments to test the device. One can add 

multiple benches on the test bench editor. 

Figure. 2. Certify main window or test bench editor 

The small buds on the right of test benches are experiments. 

Users can add multiple experiments to one test bench by right 

clicking the test bench block. By double clicking the 

experiment buds, the experiment editor can be invoked. Figure 

3 shows the screenshot of the experiment editor. 

Figure. 3. Experiment Editor of Certify 

On the experiment editor users can define experiments to 

simulate the circuit and compare the measured data to the 

simulated data. The various analyses implemented in Certify 

include DC Analysis, AC Analysis, Transient Analysis, and 

DC Transfer Analysis. Users can also perform vary function to 

these analyses, which can sweep part parameter values and 

execute the analyses at each swept value within a user-specified 

range [9]. After the simulation, the user can also choose to get a 

result report. Figure 4 shows the DC Transfer analysis dialog. 

Figure. 4. DC Transfer Analysis Dialog 

Once the model file is imported, users can call the parameter 

spreadsheet to set values of desired parameter for the 

optimization as shown in figure 5. 
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Figure. 5. Model Parameter Spreadsheet 

After setting up the parameter values, the optimizer can be 

invoked by clicking the “Run” button of the parameter 

spreadsheet. The optimizer can alter parameter values for 

simulation and optimization. It can also draw graphs of the 

target file and simulated result for comparison. 

Figure. 6. GUI of the optimizer

2.2. Import models and extract model parameters 

Certify is using ModLyng to get parameter names and values 

from model files. Figure 7 shows how certify interacts with 

ModLyng. 

Model Files in
Multiple HDLs Certify GUIImport ModLyng

Return

Call

Figure. 7. the process of Certify to get model parameters

ModLyng is able to read AMS models written in various HDLs 

such as Verilog-A, Verilog-AMS, VHDL-AMS, or MAST. In 

the meantime, ModLyng itself is a powerful tool to create AMS 

models and can be saved in Common Model eXchange (CMX) 

format and can be converted to different HDLs.  

The information Certify will need are the model parameter 

names and their initial values. When users click the parameter 

spreadsheet button, Certify will call ModLyng to parse and 

extract information from the model file. After ModLyng 

returns the parameter names and values, the parameter 

spreadsheet will come up as shown in figure 5. 

Models written in languages other than MAST need to be 

converted to MAST by using ModLyng to perform Saber 

simulations. For the VTB simulator, the model needs to be 

already present in the VTB library before executing the 

simulation task. 

2.3. Process of model characterization/optimization 

Figure 8 shows the methodology of the model characterization. 

Experiments are setup with a test circuit containing the device 

model under test with initial parameter values. Then simulation 

is performed, and the simulation results are compared with 

target data. The comparison is made by a cost function. If the 

cost function value is minimum, the corresponding model 

parameters are optimized. If not, model parameter values are 

altered and the simulation is performed again. The comparison 

between simulation results and target data are made again. This 

process continues until the optimum match is acquired. This 

technique is also referred to as the simulator-in-loop method 

[11]. 
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Figure. 8. Model characterization methodology [1] 

Figure 9 shows the detailed procedure of optimization. The 

strategy is to change one parameter value at a time. Other 

parameters are temporarily fixed while the chosen one is being 

optimized. If the user opts for the automated procedure, Certify 

will optimize the parameters one by one. The user can also 

choose which parameter to be optimized. 

Extract
Parameters

Input Range of
the Parameters

Change one parameter while other
parameters are fixed. Simulate and get the

local optimum

Local Optimum
Good Enough?

All Parameters
Optimized?

YES

Final Global
Optimum Satisfied?

YES

End of
Optimization

YES

NO

NO

NO

Figure. 9. Optimization Flowchart 
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2.4. Simulator Integration 

Certify has been fully integrated with Saber simulator and 

partially integrated with the VTB simulator. At test-bench 

run-time the user is given the option to choose either of the two 

simulators to perform the simulation as shown in the following 

figure. 

Figure. 10. Simulator Option Dialog 

2.4.1. Integration with Saber Simulator 
Certify has an in-built module called elaborator that uses the 

information from the Certify Database to get the desired results. 

For the Saber simulator, the elaborator converts all of the 

information in the analyses blocks of the database into Saber 

specific commands. A “.scs” extension analysis file is created 

for every analysis inside an experiment and this file is passed 

on to the Saber simulator for simulation. Thus, different 

analyses are performed for different calls of Saber simulator. A 

sample (.scs) script for a dc sweep analysis with vary over the 

primary voltage source is shown in the following figure. 

Figure. 11. Saber Script (.scs) File 

The GUI of optimizer (figure 6) is created by an “.aim” script 

file generated by the module called AIMoptimizer. This 

module gathers information about the model parameters from 

the parameter spreadsheet, and gets the simulation commands 

from the module elaborator to generate the script. Using this 

optimizer, Certify can call the Saber simulation to alter 

parameter values and perform simulation. Figure 12 shows an 

example of the generated .aim script file. 

Figure. 12. AIM Script (.aim) File

2.4.2. Integration with VTB 

When the option VTB is exercised at test-bench run time, a 

second elaborator in Certify is invoked that carries on the task 

of extracting the analysis information from the database file 

and calling a C# executable that in turn controls the VTB 

simulator. Work is underway to be able to tweak more 

simulation parameters in VTB and also, go beyond the transient 

analysis capability of VTB to implement DC sweep and AC 

analysis.  

3. SOFTWARE DESIGN 

Certify was written in Python programming language. Python 

is an interpreted, interactive, object-oriented programming 

language [12]. The GUI of Certify was developed using PyQt 

toolkit. PyQt is a set of Python bindings for the Qt toolkit [13]. 

The bindings are implemented as a set of Python modules. Qt is 

primarily a GUI toolkit. 

3.1 Architecture Design of Certify

The software architecture of Certify is described through a data 

flow diagram. Figure 13 shows the architecture of Certify. Test 

Bench Editor is the main window of Certify, which gathers the 

inputs from the users and it calls the tools and modules such as 

schematic and drawing manager, database manager, elaborator 

and experiment editor to capture the recipe and run the 

experiment. Experiment editor is called by test bench editor and 

it defines the analysis to be done on the circuit. Schematic and 

drawing manager manage the objects and the drawing activities 

on the canvas of test bench editor and experiment editor. 

Database Manager writes all information of Certify in a 

database file during save operation and loads all information 

during load operation. Elaborator reads the certify database and 

implements functions to interact with the Saber/VTB simulator 

and the optimizer to run the whole test-bench recipe. 
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Figure. 13. Architecture of Certify [1]  

3.2 GUI Design of Certify 

Figure 14 shows the components of the Certify GUI and how 

they are bond together. Schematic objects module is a sub 

module of the schematic and drawing manager. It defines all of 

the objects drawn in both the test bench editor and the 

experiment editor. The objects include the ellipses representing 

the start and end point of the flow, the rectangles representing 

the test benches and the analyses blocks, the small buds that 

represent experiments and invoke the experiment editor, and 

the connector to connect different objects to form the recipe 

flow. The parameter spreadsheet sub module reads the 

information of the device model from ModLyng and forms a 

spreadsheet to control the model parameters for 

characterization. The analysis dialog module connected to the 

experiment editor defines the data structures of the analysis 

dialogs. The Model Characterization Tool (MCT) properties 

module defines the common frame for all the analysis dialogs 

such as the dialog size, the function of the “Apply”, “OK” and 

“Cancel” buttons. All this information can be saved by database 

manager in XML format. 

Figure. 14. Control Flow of Certify GUI [1]

3.3 Data Structure Design of Certify 

There is a set of data structures associated with each object in a 

canvas. These data structures are mostly Python strings, lists 

and dictionaries. Listing 1 shows a part of the actual code for 

the data structure of properties of DC analysis. In this example, 

all data structures are strings and are initialized to some value 

when they are created. 

Listing 1 a part of the data structure of DC analysis properties 

        #dcAnalysisDataStruc() 
        # 
        #this data struc will be initialized if it is a dc analysis block 

def dcAnalysisDataStruc(self): 
                self.samplePointDensity="0" 
                self.monitorProgress="" 
                self.holdNodes="" 
                self.releaseHoldNodes="yes" 
                self.displayAfterAnalysis="no" 
                self.optimizeParameters="no" 
                self.signalList="" 
                self.waveformsAtPins="Across Variables Only" 
Certify uses the build in data type “dictionary” in python to 

store the data. Dictionary is called “associative memories” or 

“associative arrays” in some other languages and it is formed of 

unsorted key: value pairs [12]. Listing 2 shows some part of the 

code of the method called “createProperDict” which was 

implemented as part of data processing for Certify. This 

method creates dictionaries whose keys contain the name of an 

attribute (of some node) to be used in an XML file and the value 

of the dictionary as the value of that attribute. In other words, it 

is the mapping between the internal data structures in the code 

and their names in the output XML file. 

Listing 2 Part of the code using dictionaries

#createProperDict() 
#
#creates proper dictionaries which hold the data name and their value 
#if you need to add anything to the database just add another item to 
the dic. 
#with key as the name you want in database and value as the 
corresponding data struc 
def createProperDict(self): 
        #self.dataDic={} 
        self.basic={} 
        self.io={} 
        self.calibration={} 
        self.algorithmSelection={} 
        self.integrationControl={} 

if self.analysisType=="DC": 
                #data struc for basic 
                self.basic["SamplePointDensity"]=self.samplePointDensity 
                self.basic["MonitorProgress"]=self.monitorProgress 
                self.basic["HoldNodes"]=self.holdNodes 
                self.basic["ReleaseHoldNodes"]=self.releaseHoldNodes 
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All the data contained in the data structures is converted into a 

Document Object Model (DOM) [14] tree by the Database 

Manager when the user saves the information. A DOM 

implementation presents an XML document as a tree structure 

or allows client code to build such a structure from scratch. It 

then gives access to the structure through a set of objects which 

provide well-known interfaces. This DOM tree is finally saved 

in the form of a XML file.  Python has a built-in XML parser in 

a module called “xml.dom.minidom.” This module was used in 

Database Manager to save and load all the information to and 

from the database.  Figure 14 shows a part of the saved XML 

file. 

Figure. 14. Part of the saved data in XML format

4. CONCLUSION 

The tool described in this paper enables the modelers to quickly 

and effectively validate and characterize a semiconductor 

device model. Standard validation and characterization recipes 

can be created and stored. These recipes can be re-used again 

for other models. This saves lot of time. Also, all simulation 

parameters can be saved and the user doesn’t need to fill the 

simulation information every time a similar type of simulation 

needs to be performed.

Certify is using ModLyng to read the model parameters and 

values from various HDLs in order to test and optimize a model 

using Saber or VTB simulator. By using ModLyng, models 

written in other languages can also be translated into MAST, 

which make it possible for Saber simulator to simulate the 

circuits. 
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