
Statistical Eye Analysis Implemented in VHDL-AMS
Arpad Muranyi

Mentor Graphics Corporation
8383 158

th
 Avenue NE, Suite 350

Redmond, WA 98052
(503) 685-0440

arpad_muranyi@mentor.com

ABSTRACT
This paper introduces the reader to a VHDL-AMS (an

IEEE-endorsed standard modeling language, standard

1076.1) implementation of the basic Statistical Eye

Analysis algorithm. The main purpose of this paper is to

show how such algorithms can be implemented using

VHDL-AMS, and not to discuss the derivation details,

novelty or usefulness of the algorithms. The example

code that accompanies this paper is fully functional, but

many more features and refinements need to be added to

it to make it ready for real-world design work. The topic

of this paper is essentially a continuation of the

presentation given by the author on “Peak Distortion

Analysis Implemented in VHDL-AMS”[1].

1. INTRODUCTION
While Peak Distortion Analysis (PDA)[2] is useful to

predict the worst possible eye opening of a

communication channel, PDA cannot tell what the

probability is of getting an eye size like that, or what the

Bit Error Rate (BER) is for that channel. However, the

principles used in the PDA algorithms can be combined

with statistical techniques to predict the probability of

various eye openings, and/or the BER of the channel.

Numerous analysis tools have been developed by various

organizations and companies using such algorithms, but

most of them are written in general purpose programming

languages (such as C, C++ or similar), or various

mathematical software packages (such as MATLAB® or

Mathematica®). The implementation of these algorithms

in the VHDL-AMS modeling language makes statistical

algorithms and models directly available in Signal

Integrity (SI) analysis tools. In addition, since VHDL-

AMS is a standard hardware description language, these

models are portable and compatible between SI tools.

The VHDL-AMS code presented in this paper is

based on the algorithms described in the popular open

source statistical analysis package, StatEye, which was

initially developed using MATLAB® by Anthony

Sanders and Edoardo Prete of Infineon[3]. As stated in

the Abstract, this paper does not attempt to provide a

complete replica of all the features and capabilities found

in StatEye. The primary goal is to provide a good starting

point for further development using the basics of StatEye.

2. METHODOLOGY OVERVIEW
The code example consists of a top level test circuit

which is made up from various circuit elements and

blocks as follows. A Piecewise Linear (PWL) voltage

source provides a pulse waveform through a series

resistor into an ideal transmission line. On the other end

of the transmission line, there is a series inductor and a

block representing a receiver, containing a capacitive

load. A schematic drawing of the circuit is shown in

Figure 1.

Figure 1 Top Level Test Circuit

The block representing the receiver contains three

VHDL-AMS architectures. One is a simple capacitance

model, called “ideal”. The remaining two, called

“StatEye_on” and “StatEye_off” are variants of the

Statistical Eye algorithm. The two slightly different

versions of the algorithm were implemented in order to be

able to measure the simulation time of the Statistical Eye

algorithm alone more accurately.

The values of the circuit elements are parameterized. The

waveforms shown in this paper were generated using the

following parameters:

pulse source: 1 volt, 200 ps width, 1 ps edge

series resistor: 100

transmission line: 100 , 0.5 ns delay

inductor: 10 nH

receiver capacitance: 1 pF

These values were chosen rather arbitrarily. The goal

978-1-4244-1567-0/07/$25.00 © 2007 IEEE 64

was to generate a waveform at the receiver’s input that

looks very much like a pulse response of a typical

communication channel. (See the top portion of Figure 2

below).

Using this test circuit, a normal time domain simulation is

started. The waveform obtained at the receiver’s input

corresponds to the pulse response of the channel. While

the simulation is running, this pulse response is saved in a

vector inside the receiver block at a fixed sampling rate.

The waveforms shown below were generated with a 1 ps

sampling rate (fixed time step) and the length of the pulse

response was 3 ns.

At the end of the pulse response simulation (3 ns) the

VHDL-AMS code in the receiver block begins to process

the waveform stored in the vector, and the remaining part

of the time domain simulation is used to display the

results of the Statistical Eye algorithm, which is the eye

contours corresponding to the various BER levels. Since

the pulse width used for the waveforms of this paper was

200 ps, the eye waveforms have a total width of 200 ps

and therefore the last portion of the simulation is a little

over 200 ps long. The number of eye contours calculated

and plotted depends on an input parameter passed into the

Statistical Eye algorithm. With appropriate parameter

values, the innermost eye contour will be identical to the

worst eye opening that is obtained with the PDA

algorithm. Figure 2 shows the waveforms of the pulse

response (top half) and a collection of eye contours which

are the result of the Statistical Eye algorithm (bottom

half).

Figure 2 Simulation Results, Pulse Response and Eye

Contours

For better readability, Figure 3 shows an enlarged version

of the eye contour plot from the bottom half of Figure 2.

Figure 3 Eye Contours Enlarged

A special feature was added to the VHDL-AMS code to

enable the viewing of the results in 3-dimensional plots

with third party tools. When this portion of the code is

enabled, the results of the Statistical Eye algorithm will

be written into a data file in MATLAB® format. A 3D

representation of the eye contour plot in Figure 3 is

shown here in Figure 4.

Figure 4 3D view of the Statistical Eye Results

65

2.1 FUNCTION DESCRIPTIONS
The following sections give a short description for each

of the functions and processes in the VHDL-AMS code.

2.1.1 Process “GetCursorIndex”
Locates the peak of the pulse response waveform which is

assumed to coincide with the center of the eye (in time).

2.1.2 Process “Ticker”
Saves the points of the pulse response waveform (during

the first 3 ns of the TD simulation at a 1 ps time interval,

a total of 3000 points in our example). After the pulse

response part of the simulation is done (3 ns), it calls the

MakeEyeContours function (200 times at 1 ps intervals,

determined by the pulse width, which is 200 ps in this

study). MakeEyeContours and all of its associated

functions make up the statistical eye algorithm and are

located in the file “StatEye_functions.vhd”.

2.1.3 Function “MakeEyeContours”
Partitions the pulse response waveform into windows of

size BitWidth and passes an array of one sample from

each of these windows into the function called Convolve.

2.1.4 Function “Convolve”
Convolves all of the pre/post cursor samples to generate

the probability distribution function (PDF) of the inter

symbol interference (ISI) only and calls the MakeCPDF

function.

2.1.5 Function “MakeCPDF”
Combines the logic 1 and 0 cursors with the ISI PDF,

generates the cumulative probability distribution

functions (CPDF) by integration, generates the eye

contours for 2D plotting in the simulator, and calls the

Make3Dfile function to save the CPDF data to a file.

2.1.6 Function “Make3Dfile”

Generates the output data in MATLAB® syntax for a cell

array containing the data and writes it to a file.

3. BENCHMARKS
The simulation times of the various configurations for the

above test case were recorded in Table 1.

Table 1 Top Level Run Results

ON with

file write

On without

file write
OFF

Device evaluations
70.0 %

(5s 48ms)

76.0 %

(4s 826ms)

79.5 %

(4s 983ms)

Factorizations
2.6 %

(200ms)

2.8 %

(179ms)

3.5 %

(220ms)

Resolutions
0.1 %

(9ms)

0.5 %

(29ms)

0.3 %

(19ms)

Convergence checks
0.4 %

(29ms)

0.3 %

(19ms)

0.5 %

(29ms)

Logic kernel solve --- ---
0.2 %

(9ms)

Logic generated

processes

11.3 %

(859ms)

4.7 %

(300ms)

1.9 %

(119ms)

Logic generated

memory allocations

6.4 %

(489ms)

6.6 %

(420ms)

5.3 %

(329ms)

Waveform display
1.4 %

(109ms)

1.4 %

(89ms)

1.1 %

(69ms)

Other routines
7.7 %

(590ms)

7.6 %

(479ms)

7.7 %

(483ms)

Total
100.0 % (7s

640ms)

100.0 % (6s

348ms)

100.0 %

(6s 268ms)

The numbers in Table 1 reveal that writing to the file takes

the longest time. The statistical eye algorithm increases

the CPU time of the digital engine, but it is very fast

(adds only 181 ms). It takes more time to simulate the

pulse response with the analog circuit solver than

calculating the statistical eye contours with the digital

kernel.

4. FUTURE WORK
The work discussed in this paper implements only the

basic statistical algorithms. No higher order effects, such

as cross talk and jitter are included. To make this

capability useful in real-life design work, additional

algorithms to take such effects into account will have to

be added. These algorithms are readily available, and can

be easily implemented in the VHDL-AMS code presented

in this paper.

5. REFERENCES
[1] A. Muranyi, “Peak Distortion Analysis Implemented

in VHDL-AMS”, 2006 IEEE International

Behavioral Modeling and Simulation Conference,

http://www.bmas-

conf.org/2006/4.7_presentation.pdf., Sep. 2006.

[2] B. Casper, “Peak Distortion ISI Analysis”, Circuits

Research Lab, Intel Corporation,

http://download.intel.com/education/highered/signal

/ELCT865/Class2_15_16_Peak_Distortion_Analysi

s.ppt., Aug. 2003.

[3] A. Ghiasi, S. Anderson, “Using StatEye for IEEE

Backplane Evaluation”, IEEE 803.3ap Task Force,

http://www.ieee802.org/3/ap/public/signal_adhoc/gh

iasi_01_0904.pdf, Sep 2004.

66

