
A Mathematica-Based Approach to Designing Receiver
and Transmitter Gain Tables

Jesse E. Chen
Senior Staff Engineer, Qualcomm Campbell, CA

jessec@qualcomm.com

ABSTRACT
This paper describes a few intrinsic Mathematica functions

particularly well suited for designing a gain line up by

exhaustively searching through all possible gain states of a

given architecture. The key Mathematica function is the

“Outer” function. Armed with the proper performance

functions and input data, the Outer function fully

characterizes a given architecture in one command. Since the

arguments and operators for the Outer function are lists, the

approach is extremely flexible. For example, one can quickly

assess architectural changes simply by manipulating lists.

1. INTRODUCTION
Receiver and transmitter chains attain wide dynamic ranges

by including one or more programmable gain blocks. For

any power level within the specified dynamic range, the

receiver/transmitter must find a gain distribution (i.e. gain

state) that produces the desired power level with an
acceptable amount of overall impairment. Intermediate

values of composite gain can almost always be achieved by

multiple gains states. I steal terminology from quantum

physics to define gain states with the same composite gain

(within some tolerance) as degenerate gain states. Although

degenerate gain states have the same gain, they do not

perform the same; different degenerate gain states have

different degrees of impairments. A gain table describes

how gain is distributed along a receiver/transmitter chain for

each input/output power level in the desired dynamic range.

The traditional RF systems tool is the spreadsheet [1, 2].
Spreadsheets are interactive, easy to use, and inexpensive.

The classic RF system spreadsheet analyzes one gain state at

a time with a level diagram [3]. A level diagram shows the

power levels of the desired signal, noise floor, compression

point, and for receivers, perhaps a few undesired signals

(blockers) along the chain. The level diagram can be

enhanced to display curves for multiple gain states but the

best gain state for each input power level is not immediately

apparent. Furthermore, architectural changes can require

major spreadsheet carpentry. Spreadsheets are justifiably the

main work horse for designing RF systems but they can
quickly become unwieldy when trying to compare various

architectures over the entire dynamic range.

This paper presents an approach to gain table design based

on Mathematica [4]. Mathematica is a programming

language with extensive graphics and word processing

features. Mathematica includes a rich vocabulary of

functions extremely well suited to RF systems analysis. The

resulting code is concise, easily documented, and easily

maintained. The problem with Mathematica is that the key

functions do not leap out from the rather formidable four-
inch manual. In fairness to Mathematica, the manual is thick

because Mathematica is capable of much more than RF

systems analysis. This paper highlights the small subset of

Mathematica functions particularly well suited to RF systems

analysis.

I explain the Mathematica approach to gain table design

primarily through a receiver example. However, I also briefly

mention a transmitter application. The design objective for

the receiver example is to convert a set of standard RF

specifications for each gain state of each block in the chain
into a table relating input power to gain state.

The first step is the key to obtaining a gain table for a given

architecture that is “best” in some sense. The first step

characterizes all possible gain states. This approach differs

significantly from an evolutionary algorithm [5]. An

evolutionary algorithm involves new generations, mutations,

and natural selection. The approach discussed below

computes all “mutations” up front in one generation and then

sequentially weeds out all but the best states; there are no

new generations. I characterize all possible gain states with

Mathematica’s Outer function. The Outer function generates
a list of composite RF metrics for every possible gain state.

The list of metrics includes composite gain, noise figure, and

compression point over several frequencies. The list also

includes a label. The label is an important diagnostic tool

because it records the gain state of each block. The label

could be the actual digital command for that gain state. The

compression point frequencies correspond to the in-band

signal and several blockers. Regardless of the blocker

problem (desensitization, reciprocal mixing, etc.), I assume

the severity of the problem increases with decreasing backoff

from the compression point and that the backoff pass/fail
threshold for each blocker frequency is known.

With all possible states of the candidate architecture fully

characterized, I need only weed out unfit and/or inferior

states to reveal the best states. The surviving states are “best”

by definition because we started with all possible states.

The paper is organized as follows: Section 2 explains the

details of the weeding process. Section 3 describes the inputs

to the design process. Section 4 describes the state function.

The state function operates on a single composite state to

978-1-4244-1567-0/07/$25.00 © 2007 IEEE 78

generate end-to-end specifications. Section 5 describes the

key Mathematica functions, including the “Outer” and

“FoldList” functions. These two key functions appear to be

unique to Mathematica. Section 6 makes some concluding

remarks.

2. THE WEEDING PROCESS
This section assumes all possible states have already been

fully characterized and sorted into gain bins. Subsequent

sections describe how to characterize all possible gain states.

In the following example, the gain bins are 2dB wide.

Figure 1 shows the input referred target output (IRTO) and

the input referred minimum detectable signal (MDS) versus
gain for all possible gain states. The horizontal axis is the

gain of each bin. The vertical axis is input referred power.

The IRTO equals the desired receiver output in dBm, minus

the composite gain. In this example the IRTO points lie on a

straight line with unity slope because the target output is

constant. The MDS equals the noise floor plus the minimum

required signal-to-noise ratio (SNR). The receiver chain had

five cascaded blocks. The blocks had 2, 2, 13, 2, and 13 gain

states respectively, giving a total of 1352 possible gain states.

The first weeding
process removes gain

states for which the

IRTO lies below the

MDS. Figure 2

shows the surviving

1006 gain states.

The next weeding

process removes gain

states violating in-

band linearity. Figure
3 shows the IRTO

and the input referred

maximum allowable

signal (MAS) for all

possible gain states.

The MAS equals the

in-band one dB

compression point

minus the minimum

required backoff. I

weed out gain states

for which the IRTO

lies above the MAS.

Figure 4 shows the

IRTO, MAS, and
MDS points for the

756 gain states

surviving the first two weeding processes. Note that there are

no points for composite gains below about 12 dB. Figure 3

shows why: for gains below 12dB, the MAS points lie below

the IRTO points.

Figure 4. 756 of the 1352 original gain states survive margin

weeding.

The next weeding process checks for blocker violations. The

compression point and backoff depend on blocker frequency.

A blocker violation occurs when two things happen: 1) the

blocker power at the LNA input exceeds the one dB

compression point minus the specified minimum backoff; 2)

the computed desired input signal level lies above the desired

signal level specified for blocker testing. For example,
suppose:

1. IRTO equals -70dBm;

2. The specified input signal power during blocker

testing equals -60dBm.

3. the blocker at an offset frequency of 30MHz equals

-40dBm;

4. The input referred compression point at 30MHz

offset is -35dBm.

5. The required backoff is 10dB.

In this case, weeding for blocker performance would not

weed out the gain state because the IRTO power (-70dBm)

lies below the input signal power specified for the test (-
60dBm); the test does not apply here. If we drop the power

listed in item 2 to -70dBm, the blocker test would apply and

it would remove this gain state because -35dBm -10dB = -

45dBm < - 40dBm. Getting back to the main example, all

states passed the blocker tests.

The last weeding process removes any remaining degeneracy

by removing all but the best state within each gain bin. This

step requires a definition of "best". For receivers I apply two

definitions, one based on lowest noise figure and one based

on highest in-band compression point. Figure 5 shows the
least noisy gain states while Figure 6 shows the most linear

gain states.

Figure 3. Some states violate backoff.

Figure 1 shows input power levels and

MDS points for all possible gain states.

Figure 2 shows the states surviving

screening for minimum SNR.

79

Figure 5. Only 25 states survive noise optimization.

Figure 6. Degeneracy can also be removed through linearity

optimization.

Figure 7 shows similar results for a transmitter. The vertical

axis in Figure 7 is normalized output power instead of input

power. The lower curve is the noise floor plus the minimum

required SNR. The upper curve shows the output
compression point minus the minimum required backoff

from the one dB compression point. The center curve shows

the output power. Here, the input power is fixed and the

output power varies with gain. In this example I also applied

noise and linearity margins but I optimized for current. For

each gain state of each block in the chain, I added current

consumption to the list of specifications. I also added a

function to the list of state function to compute total current

consumption of the chain. After weeding for noise and

linearity margins, I remove the remaining degeneracy in each

gain bin by selecting the state with minimum total current.
Figure 8 shows the resulting current as a function of output

power.

Figure 7. The method can also be applied to transmitters.

Figure 8. This transmitter was optimized for total current

consumption.

3. BLOCK LEVEL INPUTS
This section describes the structure of the input data. The

block level inputs are specified by lists of lists with the

format shown in listing 1. Listing 1 is pseudo-code. In
Mathematica, a list is a sequence of comma-separated

elements enclosed in curly brackets.

Listing 1. Block Specifications

Block-n=
 {List-for-gain-state-1,

List-for-gain-state-2,
etc};

List-for-gain-state-k =
 {Gain-list,
 Noise figure,
 Compression-point-list,
 Label};

Gain-list=
{In-band gain,

 Gain @ Blocker 1,
 Gain @ Blocker 2,
 Etc.}

Noise figure = scalar, not a list, no curly brackets.

Compression-point-list=
 {In-band compression point (i.e. Pi1dB),
 Pi1dB @ Blocker 1,
 Pi1dB @ Blocker 2,
 Etc.}

Label= 010 , for example.
To add more specifications to the analysis just expand the

appropriate list. Since the specifications are referenced by

their position in a list, you can minimize the amount of code

you must change to accommodate new metrics by always

adding to the end of the lists and never referencing any item

80

with Mathematica’s “Last” function. The order of these lists

is arbitrary but once set the order must be maintained

because everything else depends on it.

4.0 THE STATE FUNCTION
The state function operates on one state from each block to

characterize end-to-end performance of that composite gain

state. The state function is a list of multi-input functions that

produces a list of input referred end-to-end performance

metrics. Listing 2 shows the structure of the state function for

our receiver example.

Listing 2. State Function

State function =
{Composite gain,
Composite noise figure,
List of composite compression points,
Composite label or gain command,
In-band signal level along the chain,
Blocker levels along he chain,
Gain distribution}
The argument to each function within state function is also

list. Listing 3 shows one such argument; blocks 1,2,3,4 and 5

are in states 2, 1, 9, 1, and 6 respectively using the notation

from Listing 1.

Listing 3. Function arguments.

State function argument =
{Block1.list-for-gain-state-2,
Block2.list-for-gain-state-1,
Block3.list-for-gain-state-9,
Block4.list-for-gain state-1,
Block5.list-for-gain-state-6}
To add another end-to-end performance metric to the

analysis, just add the appropriate function to the state

function.

5.0 KEY MATHEMATICA FUNCTIONS
I use several Mathematica functions but two functions stand

out because they appear to be extremely well suited to RF

systems analysis and unique to Mathematica. These are the

“FoldList” and “Outer” functions which I describe in this

section.

5.1 The FoldList Function
Most if not all end-to-end metrics of a receiver or transmitter

chain are conveniently expressed as a recursive calculation.

The Friis formula [2,3] for the cascaded noise figure is a

good example. The FoldList function performs recursive

calculations. The FoldList function takes three arguments: a

function, a list, and an initial element. The FoldList function

starts with the initial element and recursively applies the

function to the list. The functional argument itself has two

arguments, usually the previous output of the function and a

new input. FoldList is best explained through example.

Suppose we are only interested in composite gain and label

for a 10-block chain. For simplicity, assume each gain is a

scalar (instead of a list). Let the input architectural data be as
shown in Listing 4. Gains are in dB.

Listing 4. Simplified State Function Input

chain={{1,a},{2,b},{3,c},{4,d},{5,e},{6,f},{7,g},{8,h},{9,i},{10,j}};
The composite gain equals the sum of block gains, which

equals 55 in this case. The composite label is “abcdefghij”.

Listing 5 shows the FoldList command to compute the

composite gain and label, along with the result. The line with

the “#” signs is what Mathematica calls a “pure function”.

This particular pure function takes two inputs (for example,

{1,”a”} and {2,”b”}). This pure function also has two

outputs. The first output equals the sum of the first

components of the two inputs; “#1[[1]]” is the first

component of the first input, which equals 1 in this case, and
“#2[[1]]” equals the first component of the second input, or 2

in this case. The second output is the concatenation of the

two labels, which equals “ab” for the two inputs above. The

second output operates on the second component of each of

the two inputs; it concatenates #1[[2]] and #2[[2]].

Note that the FoldList function computes all intermediate

results too. Intermediate results are important when

computing distributed gain, signals along the chain, or

cumulative compression points and noise figures.

Listing 5. Application of FoldList.

FoldList[
{#1[[1]]+#2[[1]],StringJoin[#1[[2]],#2[[2]]]}&,
First[chain],Rest[chain]

]

(*Result*)
{{1,a},{3,ab},{6,abc},{10,abcd},{15,abcde},{21,abcdef},{28,abcdefg},{
36,abcdefgh},{45,abcdefghi},{55,abcdefghij}}

If you don’t want the intermediate results, the “Fold”

function works like the FoldList function except that it

outputs only the last result. However, intermediate results

make quick work of level diagrams. Figure 9 shows the

signal levels along the chain for all 25 gain states as well as

the level of a blocker all along the chain. The curves
converging at the right show desired signal over the dynamic

range hitting a fixed target output level. The curves diverging

from the left show the blocker level along the chain for the

25 surviving gain states. (In reality, the blocker would likely

start out larger than the desired signal and cross over the

desired signal after passing through a filter stage. I chose the

low blocker level just to make the two families of curves

easily discernable.)

81

Figure 9. Intermediate FoldList results produce level diagrams.

5.2 The Outer Function
The Outer function is the central function of this paper. The

Outer function generates a list of all possible gain states

along with all metrics of interest for each gain state. The
Outer function is a general form of the conventional outer

product function, or dyad. Consider the conventional dyad of

two vectors, {1,2} and {3,4}. Listing 6 shows how to

generate the dyad using Mathematica’s Outer function.

Listing 6 also shows that we can chose a different operator

than “Times”, such as the “Plus” operator.

Listing 6. Simple Application of the Outer Function.

Outer[Times,{1,2},{3,4}]

(*Result*)
{{3,4},{6,8}}

Outer[Plus,{1,2},{3,4}]

(*Result*)
{{4,5},{5,6}}
I can also apply the Outer function to more than two lists at a

time. At this point the output is easier to read if we “flatten”

it to express it as a single list (only one set of curly brackets).

Listing 7 shows how to use the Outer function to compute all

possible combinations of three vectors representing three

bits.

Listing 7. Applying the outer function to more than two inputs.

Flatten[Outer[StringJoin,{"0","1"},{"0","1"},{"0","1"}],2]

(*Result*)
{000,001,010,011,100,101,110,111}

The functional argument to the Outer function, which was

“StringJoin” in listing 7, is not limited to single-input-single

output functions. We can use multi-input-multi-output

functions. I expand on the example in listing 7 to illustrate

that point. The input lists in listing 7 were strings (“0” and

“1”). Let’s add variables to the input data that represent

numbers. Suppose we want to sum the numbers for each

combination. Listing 8 shows the code and the results.

Listing 8. A simple multi-input-multi-output example.

Flatten[Outer[{#1[[1]]+#2[[1]]+#3[[1]],StringJoin[#1[[2]],#2[[2]],#3[[2]]
]}&,{{a,"0"},{b,"1"}},{{c,"0"},{d,"1"}},{{e,"0"},{f,"1"}},1],2]

(*Results*)
{{a+c+e,000},{a+c+f,001},{a+d+e,010},{a+d+f,011},{b+c+e,100},{b+
c+f,101},{b+d+e,110},{b+d+f,111}}
If we assume {a,”0”} represents the gain and label the first

gain state of the first block, and {b,”1”} does the same for

the second gain state of the first block, {c,”0”} does the same

the first gain state of the second block and so on, the results

in listing 8 show that the Outer function computed the

composite gain and label for all possible gain states of this

simple 3-block example of a chain..

To characterize all possible gain states of a real receiver

chain, I replace the multi-input-multi-output pure function in

listing 8 with the state function of section 4 and I replace the

input list with a list of elements as described in section 3.

5.3 A Few Other Handy Functions
This section explains a few details that make the overall

approach more flexible. In listing 8 I called out the
arguments explicitly. For example, to sum the gains I used

the pure function #1[[1]]+#2[[1]]+#3[[1]]. This approach is

not flexible because I must keep track of the number of

blocks in the chain. Listing 9 shows the commands to define

the complete state function, specify the receiver chain, and

characterize all possible gain states. (For brevity, I do not

explicitly show the definitions of all individual functions

within the state function or definitions of all the individual

blocks.) For a particular end-to-end state, the “Composition”

function in listing 9 combines the specifications for a

particular state of each block into a single list before calling

the state function (ChainMetrics). Passing the architectural
data to the state function in this fashion saves me from

having to modify all functions within the state function

whenever the number of blocks changes; I can change the

architecture just by adding or deleting elements in

“AllChain” list.

Listing 9. The key commands.

(*Define the complete state function*)
Clear[ChainMetrics];
ChainMetrics[chain_]:=
 Module[{},
 {ChainGain[chain],
 ChainNF[chain],
 ChainPi1dB[chain],
 ChainCmd[chain],
 SigLevel[AdcTarget,chain],
 BlockerLevel[BlockerInputs,chain],
 GainDist[chain]}
]

82

(*Define the receiver chain*)
Clear[AllChain];
AllChain={FrntEnd,Filt1,Pga1,Filt2,Pga2};

(*Characterize all possible gain states*)
Clear[ChainData];
ChainData=
 Reverse[
 Sort[
 Flatten[
 Apply[Outer,
 Prepend[
 Append[AllChain,1],
 Composition[ChainMetrics,List]
]
],
 Length[AllChain]-1(*Level=Number of blocks-1*)
]
]
];
The “Reverse”, “Sort”, and “Flatten” functions merely

rearrange the results of the Outer function. The “Apply”,

“Prepend”, and “Append” functions assemble the input

architectural data, the ChainMetrics function, and the word

“Outer” into the proper syntax for the Outer function.

5.4 A Sample Element of the State Function
Listing 10 shows the first element of the state function. This

function computes the end-to-end gain and then bins the

result. The “Map” line creates a list of gains from the first

element of each list of block level specifications. The “Total”

line sums the gains from each block. The last line bins the

data by rounding the gain to the nearest 2dB.

Listing 10. Sample element of the state function.

Clear[ChainGain];
ChainGain[chain_]:=
 Module[{gains,xx},
 gains=Map[First[#[[1]]]&,chain];
 xx=Total[gains];
 2 Round[xx/2.0]
]

5.5 A Sample Weeding Function
Listing 11 shows the code for selecting only those gain states

that survive the first two weeding processes (noise and

linearity margins). The “LimitFlags” function appends each

state function output list with a True/False variable indicating

whether the state violated (False) either the noise or linearity

margins. The “MarginOnly” function selects those states for

which the True/False variable is True and then drops the
True/False variable.

Listing 11. Selection functions.

Clear[LimitFlags];
LimitFlags[ChainData_]:=
 Module[{},
 Map[Append[#,
 (AdcTarget-#[[1]] #[[3,1]]-BackOff[[1]])&&
 (AdcTarget-#[[1]] #[[2]]+NoiseInput+MinSnr)]&,
 ChainData]
]

Clear[MarginOnly];
MarginOnly[ChainData_]:=
 Module[{x,y},
 x=LimitFlags[ChainData];
 y=Select[x,Last[#]&];
 Map[Drop[#,-1]&,y]
]

6. CONCLUSION
Mathematica has a thick manual and a fairly steep learning

curve but the small subset of functions described in this

paper can make the investment worthwhile for RF systems

engineers. In particular, the FoldList, and Outer functions

allow the user to code up with just a few lines an algorithm to

find optimal gain tables for a given architecture. The

Mathematica approach to gain table design is very flexible
because the user can modify the analysis simply by

manipulating lists.

Although this paper did not discuss it, the function Outer can

also be applied to frequency planning. For example, I have

also used the Outer function to quickly generate all possible

mixing spurs within a specified order and flag those spurs

that fall into a vulnerable band.

ACKNOWLEDGEMENTS
I am grateful to several people for long discussions that

influenced my work. Among them are Tim Nguyen,

Lawrence Chang, Pengfei Zhang, Isaac Server, Patrick

Vandenameele, and Anthony Tsangaropoulus.

REFERENCES
[1] Thomas R. Turlington, Behavioral Modeling of Nonlinear RF
and Microwave Devices. Artech House.

[2] William F. Egan, Practical RF Systems Design. Wiley
Interscience.
 [3] Behzad Razavi, RF Microelectronics. Prentice Hall. 1998. First
Edition.
[4] Mathematica, http://www.wolfram.com/
[5] http://en.wikipedia.org/wiki/Evolutionary_algorithm

83

