
Simul’Elec, a Delphi written simulator for power
Electrical Engineering, using VHDL-AMS modeling

Fabien Legrand

ALGO’TECH
INFORMATIQUE
Bidart – France

contact@algotech.fr

Maria Azurmendi,
Fernando Martin,

Luis Fontán, Senior
Member, IEEE

CEIT and TECNUN-
Dept. of Electronics and

Communications
San Sebastián – Spain
mazurmendi@ceit.es

Jean-Jacques Charlot

ELECTRONIC SOFTWARE
Setif, Algeria

jean-jacques.charlot@wanadoo.fr

Nadine Couture

LIPSI-ESTIA
Bidart – France

n.couture@estia.fr

ABSTRACT.

Few simulators are designed for power electrical
engineering and they should be usually used by high skilled
users. Simul’Elec is an electrical simulator, part of an
electrical CAD software. This simulator is designed with the
focus of giving access to simulation to electrical CAD users
usually not very familiar with simulation tools. It provides a
graphical modeling interface. This friendly simulator written
in Delphi integrates graphical user interface to generate
VHDL-AMS models and a compiler to simulate its.

1 INTRODUCTION.

If simulation is a complete and unavoidable part of the
design process in electronics, it’s not really the same with
electrical engineering. Some simulators can be used by
electrical engineers but are usually designed for power
electronics, automation or for educative purpose. Most of
these simulators are separate tools, distinct from the CAD
software available for electrical engineering.

Another issue is that electrical simulators are usually
developed for system design and requires a good knowledge
about the behavior of each modeled component and also
about the simulator working.
System maintenance and evolution, usually not made by
designers, could be successfully improved by electrical
simulation. For this, simulator must be able to provide result
without needing modeling skills or advanced knowledge
about the working of the simulator calculation core. A
particular attention must be paid to the used modeling tools
and language to find the best compromise between a
friendly way to model and the accuracy of the models.
Previous works demonstrated the interest of using VHDL-
AMS for power electrical engineering components
modeling [1]. Then, our solution is based on a friendly
graphical user interface to produce a VHDL-AMS model,

allowing afterward to use the capabilities of this standard
modeling language to define more complex behaviors.
The rest of the paper is organized as follows: Section 2
briefly presents our simulator and the context when using
simulation and CAD software in electrical engineering. In
section 3, we present the graphical user interface created for
the model edition that produces VHDL-AMS models. The
principles of translation of GUI data to VHDL-AMS are
detailed into section 4. Section 5 gives some details about
the VHDL-AMS compiler necessary to the simulator to
integrate the models.

2 SIMUL’ELEC, AN EVENT DRIVEN
ELECTRICAL SIMULATOR.

Simul’Elec is an electrical simulator integrated to the
Electrical CAD Software PackElecBuilder edited by
Algo’Tech Informatique [2]. Simul’Elec simulates the
diagrams drawn into the CAD environment without needing
a specific editor. This simulator is able to calculate voltage
and current values in every point of the circuit using the
nodal analysis [3] as Berkeley University’s Spice Simulator.
Simul’Elec is also able to evaluate the logical state of
components as relays, circuit breakers, multiple contacts
using a event driven modeling [4]. It can be used to simulate
electrical installation of buildings, special machines, etc.

The CAD software and the simulator are fully developed
using Delphi® [5] development environment. Before 2004,
all the models were built in models, written in Delphi and
compiled with the simulator. The user was not able to create
its own models.

Since 2004, Algo’Tech Informatique leads the FRESH
project from the 6th FP (European R&D Framework
Program). The aim of this project is to develop a suite of
tools for avionics electrical engineering, improve the
existing tools, including the simulator.

978-1-4244-1567-0/07/$25.00 © 2007 IEEE 94

One of the major improvements about simulation is
allowing user to create custom models, including behavioral
modeling.

The focus of this simulator is to give fast and coherent
result, with a reasonable accuracy but without needing
modeling skills or simulator special knowledge. Indeed, the
simulator is one tool among a range of electrical CAD tools.
The potential users are electrical technician or engineers for
the industrial side, student and teachers for the educational
side. Considering the use context of Simul’Elec and the
approach of users more practical than scientific, all the
simulator’s tools, analysis modes and models are designed
to favor a friendly use.

3 GRAPHICAL USER INTERFACE FOR
MODEL EDITION.

The user needs to define his own models, then a set of
graphical tools have been designed for this. The purpose of
these tools is to avoid the user to write model, allowing
defining a whole model graphically. As the simulator is
based on the nodal analysis, it’s only able to simulate
circuits made of primitives: basic components as ideal
voltage and current sources, resistances, capacitors, etc.
Then every model has to be described as a circuit made of
primitives and other models made also of primitives, as we
can define a macro model with SPICE simulator.

The different steps of graphical model definition are:
� Drawing the model circuit and its external connections.
� Voltage and current characteristic values, for display

purpose at different simulation time.
� Model parameters.
� Relation between model parameter and the inner model

parameters.
And finally, the model will be saved into the computer
memory.

3.1 Drawing of the circuit model.

The user draws a circuit with the same interface he uses to
draw electrical diagrams. It's a key point with an ergonomic
point of view in order to respect the continuity and the
homogeneity for the user interaction. He takes the
components he wants from the symbol library. A model is
automatically associated to each component of the circuit.
By using drawing tools, the user adds wires to link to
components.

21

-R1
1000 Ohms

21

-R2
1000 Ohms

Figure 1: Variable resistance without connections.

Finally, he add connection points one some wire to indicate
the input / output between the model and the outside. The
model should have the same number of connections as the
component it is about to model.

1112

13

21

-R1
1000 Ohms

21

-R2
1000 Ohms

Figure 2: Variable resistance with external connections.

3.2 Voltage and current characteristics.

Some measurement tools as voltmeters and amperemeters
can be set on the circuit to indicate to the simulator what are
the most interesting internal current or voltage to display.
This is not necessary for modeling and simulation. It allows
only the user to see some internal current and voltage at
different simulation times.

1
Fi l1 -2
2
1

1
Fi ls2 -2
4
2

1
Fi ls3 -2
6
3

1
Fi l1 -1
1
1

1
Fi l2-1
3
2

1
Fi l3 -1
5
3

1
2

1000 Ohms
Rfil1-1

1
2

1000 Ohms
Rfil2-1

1
2

1000 Ohms
Rfil3-1

-C12
1e-6 F

-C23
1e-6 F

-C13
1e-6 F1

2

1000 Ohms
Rfil1-2

1
2

1000 Ohms
Rfil2-2

1
2

1000 Ohms
Rfil3-2

A1
 0 A

A2
 0 A

A3
 0 A

Figure 3: Model of 3 wires high voltage line.

The model of 3 wires high voltage line of Figure 3 has
capacitor between each vertical wire to model capacitive
effects. Here, we don’t want to display internal voltage and
current values because the model component are not actual
components but are use to model some behaviors. The 3
amperemeters (A1, A2 and A3) indicate to the simulator
what are the most pertinent values.
The measurement tools have not effect on simulation
calculation, only on results display.

3.3 Model parameters.

Once the previous steps are done, the model parameters
must be defined. These parameters are the key values
allowing characterizing every model. Usually, these values

95

are used to define the parameters of the inner components of
the model. Each parameter has these characteristics:
� Name (unique for a given model).
� Description (long text).
� Type of data (integer, float, boolean, text, etc).
� Unit.
� Default value.
� Range of validity.

Among these values, some are not necessary to simulate but
are used by the graphical interface.

Figure 4: Definition of the parameter “frequency” of a voltage
sinusoidal source.

3.4 Association between model parameters and
inner component parameters.

Every inner component of the model has parameters. With
the graphical interface, the user can associate a formula for
each component parameter that is a mathematical expression
including constants and model parameters.

For example, a model of variable resistance is composed of
two resistances R1, R2 in series. The model parameters are
the global resistance Rtotal and the cursor position PosCur.

Curseur : 50 %

0%

100%

1000 Ohms
Rvar

1112

13

21

-R1
1000 Ohms

21

-R2
1000 Ohms

Figure 5: Symbol and model of a variable resistance.

The next figure shows the interface editing the value of the
first resistance. Each (outer) parameter of the model, is
identified by a label as "P1".

The formula to define the value of the inner parameter uses
these labels (P1) and not the name of the outer parameter
(Rtotal).

Figure 6 :Inner parameter definition.

Using these formulas, the two inner resistances will be
calculated by the simulator.

R1 = Rtotal * CurPos / 100 (1)
R2 = Rtotat * (1-CurPos / 100) (2)

3.5 Model backup.

After all these steps done by the user, it is necessary to save
all the information about the model. The circuit drawn at the
first step is saved into a CAD file, only for later display
purpose. No model information will be used from this
drawing at simulation time. Every model information is
saved into a single VHDL-AMS model file.

3.6 What about more complicated models.

It appears that the graphical model edition is quite friendly
and easy to use and does not require specific modeling
skills. This method is sufficient for purely structural models
but does not allow defining more complicated behavior. For
example, a circuit breaker can be modeled by an ideal
switch in series with a resistance, but the rules of its opening
following the value of the current cannot easily be defined
graphically.
This last aspect, managed by the event manager of the
simulator will be defined by some addition into the model
file obtained using the graphical interface.

96

4 GRAPHICAL MODEL TO VHDL-AMS
TRANSLATION.

The model made using the graphical interface needs to be
saved into a file to be used later by the simulator. Different
solutions could be used, such as using binary files or custom
text file format (based on XML for example), Delphi script
or a standard modeling language.
The last solution has been chosen, using VHDL-AMS as
modeling language.

4.1 Choice of VHDL-AMS.

It is important to provide a friendly and easy way to allow
end user of the simulator to change some features of the
electrical models, without the necessity of a deep knowledge
of the internal structure of the simulator. For this purpose,
the electrical models defined previously in Delphi language,
can also be described in a more intuitive and standard
textual modeling language. The language chosen is VHDL-
AMS: Analog and Mixed-Signal extension to the Very high
speed integrated circuit Hardware Description Language
(VHDL). One of the main characteristics of this language
and an important reason for this choice is its behavioral
modeling capability for discrete, continuous and mixed
systems. The continuous systems are described using
differential algebraic equations. VHDL-AMS also provides
mixed-discipline modeling, so different domains such as
electrical and thermal could be described and simulated in a
single entity, which is very interesting thinking in possible
future improvements of the simulator.

4.2 The translator.

A translator was developed to obtain VHDL-AMS files
from the model data structure of the simulator. After the
translation and the possible changes introduced by the user
to modify some aspects of the components, these files are
checked and compiled to be understandable by the
simulator. Basic electric components are defined in a
behavioral architecture and stored in a library. More
complex models are defined from these basic components
according to a structural architecture of VHDL-AMS files.
The final target is to complete a model library containing
VHDL-AMS files describing all the electric components
required by the simulator.

Generated VHDL-AMS files contains some comment lines
that are inserted by the translator to give useful information
to the simulator interface, such as:
� The different sections of these files.
� Parameter and quantity names.
� Parameter values, description, data type, range or

possible values, units, etc.

Listing 1: Variable resistance model.

LIBRARY IEEE;
LIBRARY Composants_elementaires;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
USE IEEE.MATH_REAL.ALL;

ENTITY Potentiometre IS
 GENERIC (

--@Name=Rtotal@Description=Total Resistance
--@Data Type=1@NumberRange=1@MaxValue=0
--@MinValue=0@MaxLength=0@ListPosition=-1

 --@PossibleValues=@Unit=Ohm@Value=100@
 Rtotal : REAL := 100.0;
 --@Name=CurPos@Description=Curseur position (percentage)
 --@Data Type=1@NumberRange=5@MaxValue=100
 --@MinValue=0@MaxLength=0@ListPosition=-1
 --@PossibleValues=@Unit=%@Value=50@
 CurPos : REAL := 50.0
);
 PORT(TERMINAL EXT1, EXT2, EXT3: ELECTRICAL);
END ENTITY Potentiometre;

--ARCHITECTURE DECLARATION
ARCHITECTURE Struct OF Potentiometre IS
 -- intermediate values for resistance calculation
 QUANTITY Comp_R1_Param_Resistance : REAL;
 QUANTITY Comp_R2_Param_Resistance : REAL;

BEGIN
 Comp_R1_Param_Resistance == Rtotal*(CurPos/100);
 Comp_R2_Param_Resistance == Rtotal*(1-CurPos/100);

 R1 : ENTITY Composants_elementaires.RESISTANCE(Behav)
 GENERIC MAP(Resistance => Comp_R1_Param_Resistance)
 PORT MAP(EXT1 => EXT1, EXT2 => EXT2);
 R2 : ENTITY Composants_elementaires.RESISTANCE(Behav)
 GENERIC MAP(Resistance => Comp_R2_Param_Resistance)
 PORT MAP(EXT1 => EXT2, EXT2 => EXT3);
END ARCHITECTURE Struct;

VHDL-AMS models obtained with the translator could be
used, after some small changes if required, in other
commercial VHDL-AMS simulators, such as Simplorer or
SystemVision. Similarly, some other models obtained with
these commercial simulators could be integrated in the
simulator described in this paper.

4.3 The VHDL-AMS Editor.

The VHDL-AMS editor has been developed to display the
source code of the model to the user. To maintain a
maximum coherence between the GUI for model edition and
the simulator capabilities, the user cannot modify the whole
model. The entity section can be completely defined by the
graphical interface. Then any change to carry to this section
must be done through the graphical interface. The entity
section of the VHDL-AMS model is shown but is not
editable. The mandatory use of the graphical interface for
entity ensures a full compatibility with the simulator. About
the architecture body, only some parts can be edited, such as
the formulas and names of variables, but the component

97

instances cannot be changed. In this way, the user can
modify the behavior of the models.
The VHDL-AMS model is compiled to obtain a Delphi
script model understandable by the simulator.

5 VHDL-AMS TO DELPHI COMPILER.

The VHDL-AMS generated files will be edited by the user
to build, for example, event driven behavioral models. This
language was also used, in other applications, to describe
complex mechanical systems and their interconnections [6].

Before the existence of this range of model edition tool, all
the models were written in Delphi language. Here, the
purpose is to compile the VHDL-AMS model to a format
understandable by the simulator, Delphi code. The closeness
[7] between object oriented language such as Delphi and
VHDL-AMS makes this solution applicable.

5.1 Lexical, syntax and semantic analyzers.

For checking the VHDL-AMS code, lexical, syntax and
semantic analyzers have been developed. These analyzers
are the components of every compiler and they are
explained in the following lines:

-Lexical Analyzer: checks the source code of the input file
for lexical errors. For example: if ‘si’ is written instead of
‘is’.
-Syntax analyzer: is used to find syntax errors in the input
code. For example, whether the “if” sentences have been
written correctly.
-Semantic analyzer: finds in the input code semantic errors.
For example, an undeclared variable is used in source code.

In the development of the lexical, syntax and semantic
analyzers, we used the lex and yacc tools [8]. These tools,
from a lexical, syntax and semantic specification generate
the lexical analyzer, syntax analyzer and semantic analyzer.
Several types of lex and yacc compiler tools exist. To
mention but a few: Flex and Bison, Jlex and Cup, TPlex and
TPYacc.
The analyzers were developed with TPLex and TPYacc [9],
reason being that these tools generate the analyzers in Pascal
language (Delphi is Object Pascal). Thereby, making the
integration of these analyzers in the simulator, developed in
Delphi language, is quite easy.

5.2 VHDL-AMS compiled subset.

The developed compiler is fitted to the general structure of
the source code generated by the VHDL-AMS translator.

In this structure we can find the sentences corresponding to
Entity_declaration and a subset of Architecture_body [10],
such as:
� quantity_declaration.
� terminal_declaration.
� simultaneous_statement.
� generic_map_aspect.
� port_map_aspect.

Actually, the limitations of the VHDL-AMS capabilities
compiler reflect the simulator’s own limitations. For
example, when simulating current / voltage relations of a
model, the simulator requires a circuit made of basic
electrical components. Then the compiler is able to compile
entities instantiation and mapping necessary to define the
model circuit. For the same reasons, the compiler is not able
to understand direct current / voltage relationship base on
ACROSS and THROUGH statements. The following
resistance model is a typical example of what the simulator
cannot understand.

Listing 2: Model of a resistance.

ENTITY ams_resistance IS
GENERIC (r :real:= 1.00);
PORT (TERMINAL RIN, ROUT: Electrical);

END ams_resistance;

ARCHITECTURE res_BODY OF ams_resistance IS
 quantity vr across ir through RIN to ROUT;
BEGIN

ir == vr / r; -- cannot be compiled
END res_BODY;

This limitation could be solved at compilation by
transforming the current / voltage relations into an
equivalent circuit. Such a work has been done with the
compiler of VamSpiceDesigner [10] which transforms
VHDL-AMS model into a model recognized by SPICE.

5.3 Delphi model.

In order to correct the changes made by the user, a lexical,
syntactic and semantic analyzer have been developed.
Finally, if the model written in VHDL-AMS language is
correct, a Delphi script is generated. This Delphi model will
be used in the simulator.

Today, the Delphi models obtained from the VHDL-AMS
compiler still have to be compiled with the simulator source
code to be used at simulation time. For each new model, a
new version of the simulator has to be provided.

Scripting solution is required for runtime model integration.

98

6 CONCLUSION.

In order to allow Simul’Elec users to model component, a
set of modeling tools have been designed. The solution used
to save the created models has been carefully chosen. The
easier way to implement these tools must be to build the
modeling user interface on some specific language or even
on Delphi programming language used to develop the
simulator. Finally, we choose to use VHDL-AMS modeling
language as an output of the modeling tools. Even if the
implementation is more complicated, requesting translation,
edition and compiling capabilities, the use of an IEEE
standard carry many advantages for the current use of our
simulator and future evolution.

Today, the VHDL-AMS models made with our graphical
interface are successfully compiled. The compiled models
are considered by the simulator, only if they are compiled
with the simulator source code.
Before the end of 2007, a Delphi scripting engine will be
integrated into the simulator to allow using any VHDL-
AMS model coming from our interface, without compiling
the model into the simulator source code.

The next evolution of the VHDL-AMS compiler will be to
transform literal current / voltage relations to the equivalent
circuit to allow the simulator to integrate it.

Power electrical engineering deals not only with electrical
components but also with many electromechanical devices,
thermal phenomenon, etc. The choice of VHDL-AMS is
also justified by a will to take care, at mid term, of non-
electrical behavior using its multi-technological capabilities.

REFERENCES.

[1] F. Legrand, N. Couture, H. Lévi et J.-J. Charlot, VHDL-AMS
Modeling and Library Building for Power Electrical
Engineering, ACM'04, Kawasaki, Japan, 2004

[2] Algo’tech Informatique, electrical CAD software editor,
http://www.algotech.fr/

[3] V. Litovski, M. Zwolinski, VLSI Circuit Simulation and
Optimization, Chapman & Hall, 1997 ISBN 0-412-63860-6

[4] F. Legrand, N. Couture, R. Briand, H. Lévi, Simulation de
schémas electriques ou electrotechniques par utilisation de
l’analyse événementielle, 4éme Conférence Internationale sur
l’Automatisation industrielle, Montréal, 2003.

[5] Delphi integrated development environment,
http://www.codegear.com/products/delphi/

[6] A. Suescun, J. Calleja, J. Imbernon, Modeling of Complex
Mechanical Systems in VHDL-AMS, IEEE/ACM International
Workshop on Behavioral Modeling and Simulation, Orlando
(Florida), USA, 1999

[7] F. Legrand, Modélisation de circuits électrotechniques en
vue de leur simulation – Réalisation d’un simulateur. Phd
thesis, p114

[8] The Lex & Yacc Page
http://dinosaur.compilertools.net/

[9] Turbo Pascal Lex/Yacc
http://www.musikwissenschaft.uni-mainz.de/~ag/tply/

[10] VHDL-AMS Syntax (IEEE Std 1076.1)
http://www.iis.ee.ethz.ch/~zimmi/download/vhdlams_syntax.html

[11] S. Jemmali, J.-J. Charlot, VamSpiceDesigner, a
hierarchical schematic design tool of multi-technological
systems based on VHDL-AMS and SPICE, MIXDES 2003

99

